Решение перечисленных задач возможно только при наличии достаточного количества зарегистрированных и доступных для измерения показателей, отражающих уровень качества продукции.
Скачать 253.46 Kb.
|
max λmax λ Выбирают светофильтр такой длины волны, при котором поглощение света раствором max, когда светофильтр пропускает максимальное количество света. Кюветы — сосуды, изготовленные из прозрачного материала, в которые помещают исследуемый раствор. На рабочей поверхности кюветы указывается толщина слоя с точностью до 0,001. Выбор кюветы осуществляется опытным путём, для этого измеряют оптическую плотность одного и того же раствора в кюветах разной толщины и выбирают ту, для которой оптическая плотность (Д) приближена к 0,4. Д = 0,4, т.к. шкала прибора на разных участках имеет разную относительную ошибку, а в области Д = 0,4 эта ошибка минимальна. Например, экспериментально найдены результаты:
Следовательно, для данного определения целесообразнее выбрать: h = 10 мм Конденсоры — устройства, которые представляют линзу или систему линз, позволяющие направлять световой поток параллельным пучком Фотоэлементы, устройства, предназначенные для перевода световой энергии в электрическую, см. раздел 3.5.7. 3.6 Рефрактометрический метод анализа Метод, основанный на измерении показателя преломления светового потока при прохождении его через анализируемый раствор, называется рефрактометрическим. Он широко применяется как в лабораторной, так и в промышленной практике. С помощью рефрактометрического метода быстро определяют концентрации водных, спиртовых эфирных и других растворов. Им пользуются в лабораториях и автоматизированных линиях аналитического контроля химической нефтехимической, фармацевтической и пищевой промышленности. Его применяют при идентификации и установлении чистоты толуола, бензола, керосина, водно-спиртовых смесей, сахара, вина, а также при аналитическом контроле производства синтетического каучука, волокон, пластмасс и др. продукции. 3.6.1 Теоретические основы метода При переходе луча света из одной прозрачной среды в другую, направление его меняется, рис. 3.10. Это явление называется преломлением. Известно, что при прохождении света через оптически более плотную среду его скорость уменьшается. Замечено, что при этом угол падения луча при выходе из среды изменяется. При переходе луча из среды менее оптически плотной в среду более оптически плотную угол падения луча (α) больше угла преломления (β), таким же образом изменяется и скорость распространения световых волн. Отношение синуса угла падения к синусу угла преломления называется относительным показателем преломления второй (анализируемой) среды относительно первой (эталонной), выражение 3.6.1. Sin α / sin β = v1 / v2 = n (3.6.1) Показатель преломления зависит от природы вещества, температуры и длины волны света.. Например, для температуры 200 С и длины волны 589 нм показатели преломления п некоторых веществ имеют следующие значения: стекло 1,5 – 1,9; алмаз – 2,42; плавленый кварц – 1,46; кристаллический кварц – 1,54; глицерин – 1,47; этиловый спирт – 1,36; вода – 1,3330 (при 150С – 1,3395, при 250С - 1,3325). Поэтому при точных измерениях показателя преломления анализируемого вещества необходимо соблюдать постоянство температуры. С увеличением длины волны показатели преломления уменьшаются. В табл. 3.6.1 приведены длины волн, при которых обычно определяют показатели преломления. Таблица 3.6.1. Показатели преломления воды для световых волн различной длины
При измерении показателя преломления необходим источник света, дакющий излучение определённой длины волны (натровые, ртутные, водородные лампы). Табличные показатели преломления приводятся для длины волны 589нм и обозначаются nD// Количественно дисперсию оценивают как разность показателей преломления для различных длин волн, выражение 3.6.2. Разность nF – nC называют средней дисперсией. D = nλ2 - nλ1 (3.6.2) Показатель преломления определяют с помощью приборов, называемых рефрактометрами. В большинстве рефрактометров измерение ведётся при дневном свете или с помощью лампы накаливания. Эти приборы снабжаются компенсаторами дисперсии. Определение показателя преломления вещества сводится обычно к измерению предельного угла преломления на границе «жидкость – стекло». Допустим, что первая среда является жидкостью и необходимо измерить её показатель преломления - п1. Вторая среда представляет собой стекло призмы с показателем преломления п2. Вторая среда оптически более плотная, чем первая, а это значит, что п2 > п1 и угол преломления меньше угла падения. С увеличением угла падения увеличивается и угол преломления. Когда угол падения равен 900, луч света скользит по поверхности раздела. Если же угол падения меньше 900, то луч претерпевает преломление и попадает в зрительную трубу прибора. Этот луч называется предельным лучом, а угол преломления – предельным углом преломления. Для двух сред относительный показатель преломления может быть рассчитан по выражению, 3.6.3. n отн = sinα /sinβ = n2 /n1 (3.6.3) Показатель преломления призмы п2 всегда известен, поэтому остаётся найти показатель преломления первой среды п1 путём измерения угла преломления β. n1 = n2 sinβ В лабораторной практике наиболее часто используются рефрактометры типа Аббе и типа Пульфриха. Большее применение нашли рефрактометры типа Аббе: рефрактометр лабораторный универсальный РЛУ, рефрактометр ИРФ-22, рефрактометр лабораторный пищевой РПЛ и др. Оптические схемы и техника работы на этих приборах одинаковы, отличаются они несколько по конструкции. Призма Амичи состоит из трёх склеенных призм с различными показателями преломления и различной дисперсией. Призмы рассчитаны так, что при прохождении через них цветных лучей только жёлтые лучи (линии D в спектре натрия) не меняют, не меняют своего направления. Устройство такого рода получило название дисперсионного компенсатора. Меняя положение призмы Амичи (или поворачивая одну призму относительно другой). Можно лучи разложенные измерительной призмой . собрать в один луч. Его направление будет таким же как и луча D , показатель преломления соответственно nD. Рефрактометры типа Пульфриха более сложны в обращении и требуют специального источника света. Шкала рефрактометра градуирована в углах и нужно, производить пересчёт их на показатель преломления по специальным таблицам. 4. Электрохимические методы анализа Электрохимические методы анализа основаны на использовании зависимости электрохимических параметров — электропроводности, сопротивления, силы тока и др. от концентрации и природы вещества, участвующего в электрохимической реакции. Электрохимические параметры при этом служат аналитическими сигналами, при условии, что они измерены достаточно точно. Электрохимические методы анализа в практику химического анализа вошли сравнительно давно и занимают в ней важную роль. Впервые потенциометрическое титрование было проведено в 1893 г. в институте Оствальда в Лейпциге, а в 1902 г. появились труды по применению кондуктометрического титрования. А ещё в 1830 г. А.Беккерель провёл осаждение ионов свинца и марганца на положительном электроде в процессе электролиза, тем самым, положив начало электрогравиметрии. Сейчас электрохимические методы анализа широко применяются во всех технологических процессах, научных работах и т.д., т.к. обладают рядом достоинств. Они позволяют определить концентрацию вещества в широком интервале от 1 до 1•10-9 моль/л с высокой точностью, могут проводиться дистанционно и могут быть легко автоматизированы. Обычно электрохимические методы анализа используют для прямых измерений, основанных на зависимости — “аналитический сигнал — состав”, либо для индикации конечной точки титрования в титриметрии. Следует отметить, что по первому типу работает большинство приборов автоматического контроля. Одни приборы измеряют электропроводность раствора анализируемого продукта, которая зависит от его концентрации и изменяется пропорционально изменению последней, другие — потенциал электрода, погружённого в раствор анализируемого продукта, величина потенциала также зависит от концентрации ионов. Методы прямой потенциометрии (ионометрии) основаны на прямом применении уравнения Нернста. Для нахождения концентрации определяемого иона по величине ЭДС цепи или потенциала соответствующего электрода. В ионометрии сначала по стандартным растворам строят градуировочный график зависимости величины ЭДС или потенциала соответствующего электрода от концентрации определяемого иона или градуируют измерительный прибор (рН-метр, например), а затем измеряя потенциал или ЭДС анализированного раствора — находят его концентрацию. Например, широко применяют этот метод для определения рН раствора, можно использовать также для определения концентрации ионов металлов, анионов и пр. В настоящее время прямая потенциометрия — ионометрия развивается как новая область физико-химических исследований, основной задачей ионометрии является разработка, изучение и применение широкого круга ион-селективных электродов, обратимых к большому числу катионов и анионов. Ион-селективные электроды получают на основе самых разнообразных веществ: твёрдых и жидких ионитов, моно- и поликристаллов, хелатов и т.д. Появление большого числа новых электродов значительно расширело инструментальную базу потенциометрического анализа, с помощью которого осуществляется контроль за ионным составом разнообразных сред. В объёмном анализе широко применяется косвенная потенциометрия — потенциометрическое титрование, при этом цветной индикатор заменяют электродом. Конечной задачей потенциометрического титрования определяемого компонента рабочим раствором является определение точки эквивалентности по изменению потенциала электрода в эквивалентной точке. Классификация электрохимических методов анализа. Электрохимические методы анализа основаны на электрохимических процессах, происходящих в электрохимических системах, состоящих из электродов и электролитов, находящихся в контакте. Эти методы, основанные на использовании электрохимических свойств анализируемых систем в зависимости от изучаемого аналитического сигнала подразделяются на несколько больших групп — кондуктометрию, потенциометрию, полярографию, электрогравиметрию и т.д. а) кондуктометрия — метод основан на измерении электропроводности раствора анализируемого электролита, которая зависит от концентрации электролита и изменяется пропорционально изменению концентрации. б) потенциометрия — метод основан на измерении потенциала электрода, погружённого в анализируемый раствор, величина потенциала зависит от концентрации ионов. в) полярография — метод основан на изучении зависимости между характером поляризации рабочего электрода и концентрацией раствора, в который он помещён. Полярографию можно применять как для непосредственного определения концентрации анализируемого вещества, так и для определения конечных точек при титровании. г) Электрогравиметрия — метод основан на выделении из раствора определяемого вещества с помощью электролиза. При этом чистый взвешенный электрод погружают в анализируемый раствор, пропускают постоянный ток, по окончании процесса электролиза электрод вновь взвешивают. По разнице взвешивания находят массу выделившегося на электроде вещества и производят расчёт. Существуют другие методы, кроме вышеперечисленных, но все они основаны на использовании электрохимических свойств анализируемых систем. Химические реакции, используемые в ЭХМА. В электрохимических методах анализа могут быть использованы реакции нейтрализации, осаждения, окисления – восстановления, комплексообразования и др. Например, в косвенной кондуктометрии (кондуктометрическое титрование) и косвенной потенциометрии (потенциометрическое титрование) очень часто используются реакции осаждения, в результате которых наблюдается изменение электропроводности в первом случае и изменение потенциала — во втором. Рассмотрим эти случаи. а) Кондуктометрическое титрование. Нитрат серебра титруют хлоридом натрия: Ag+NO3- + Na+Cl - → ↓AgCl + Na+NO3- Ионы серебра и хлора в процессе титрования удаляются из раствора, образуя осадок, ионы натрия приходят с титрантом и остаются в растворе, заменяя ионы серебра. Такая замена ионов приводит к изменению электропроводности, и характер такого изменения определяется подвижностью ионов, участвующих в этом обмене. В данном случае более подвижные ионы серебра (λ0 = 61,9) уходят из раствора, а вместо них приходят менее подвижные ионы натрия (λ0 = 50,1 ), что естественно, ведёт к уменьшению электропроводности раствора, которая уменьшается до полного осаждения ионов серебра, а после этого электропроводность увеличивается, что фиксируется на кондуктометрической кривой в виде излома. Чем острее угол излома, тем легче установить точку эквивалентности. Острота излома зависит от характера изменения электропроводности после достижения точки эквивалентности. При подборе реагентов в кондуктометрическом титровании следует это учитывать и подбирать таким образом, чтоб реагирующие ионы отличались своими подвижностями. Е V т.э. б) Потенциометрическое титрование. AgNO3 + NaCl → AgCl↓ + NaNO3 Здесь титрование нитрата серебра хлоридом натрия проводится с применением индикаторного серебряного электрода, потенциал которого зависит от концентрации ионов серебра и будет изменяться с её изменением в процессе титрования, это отразится на кривой титрования, скачок потенциала отразит точку эквивалентности. EAg/Ag+ = Exc + 0,059ℓg[Ag+] К химическим реакциям, применяемым в ЭХМА применяются почти все те требования, что и в обычном титриметрическом анализа: скорость реакции должна быть достаточно высокой; реакция должна протекать строго по уравнению до конца; должны отсутствовать побочные реакции, искажающие электрические характеристики; в потенциометрическом титровании выбор реагентов должен обеспечивать резкое изменение потенциала электрода (скачок), который зависит от разности потенциалов электрохимических систем, от величины скачка зависит точность результата; в кондуктометрическом титровании выбор реагентов должен обеспечивать острый угол излома на кривой титрования, т.к. от этого зависит точность определения точки эквивалентности, т.е. точности результата. 4.1 Кондуктометрические методы анализа 4.1.1 Удельная и эквивалентная электропроводность. Прямая кондуктометрия Одним из важных свойств водных растворов является их способность проводить электрический ток. Электропроводность зависит от концентрации о природы присутствующих ионов и поэтому она может быть использована для количественного определения химического состава раствора. Хотя одно лишь измерение электропроводности не даёт возможности аналитику идентифицировать отдельные ионы, метод с успехом применяется для определения общего содержания ионов в растворе, особенно в окрашенных или мутных растворах. Метод электропроводности оказался пригодным для определения малых количеств аммиака в биологических материалах, сточных водах и др. В этом случае аммиак отгоняют из пробы и поглощают раствором борной кислоты, замеряют удельную электропроводность и сравнивают со стандартной шкалой. Этот метод применяется для определения одного иона в присутствии минимальных количеств других. Метод прямой кондуктрометрии основан на зависимости электропроводности от концентрации, поэтому важным этапом определения является построение градуировочного графика, используя стандартные растворы электролита. Градуировочный график отражает зависимость электропроводности от концентрации. Определив электропроводность анализируемого раствора по градуировочному графику находят его концентрацию Метод кондуктометрии, обладая рядом преимуществ (точность, простота) имеет ограниченное применение, если анализируемый раствор содержит примеси, т.к. электропроводность — величина аддитивная — наличие примесей изменяет её значение. + + |