Главная страница
Навигация по странице:

  • Нагрузка: исходная общность всех упражнений для мышц

  • Принцип перегрузки

  • Принцип САУТ: специфической адаптации к устанавливаемым требованиям

  • Некоторые основные характеристики мышцы

  • Факторы, влияющие на выработку силы

  • Методика увеличения силы

  • Программа мм и объём. Руководство по развитию силы фредерик К. Хэтфилд всестороннее руководство по развитию силы


    Скачать 3.97 Mb.
    НазваниеРуководство по развитию силы фредерик К. Хэтфилд всестороннее руководство по развитию силы
    АнкорПрограмма мм и объём
    Дата19.04.2023
    Размер3.97 Mb.
    Формат файлаdoc
    Имя файлаFrederik_K_Khetfild_vsestoronnee_rukovodstvo_po...doc
    ТипРуководство
    #1075361
    страница2 из 23
    1   2   3   4   5   6   7   8   9   ...   23
    Глава 1. ОСНОВЫ ТРЕНИРОВОЧНОГО ПРОЦЕССА.

     

    Введение
    В недалеком прошлом, когда спортивное поднятие тяжестей было еще на стадии младенчества, у атлетов-силачей отсутствовали какие бы то ни было методические руководства по тренировкам. Тем не менее, многие их достижения стали легендой. Зачем же нам, современным троеборцам с огромным научным потенциалом, заботиться о правильной методике тренировок? Почему мы не можем, как делали наши предшественники, просто поднимать и поднимать огромные тяжести? Однако удивительным фактом является то, что силачи прошлых лет, сами того не зная, тренировались именно по-научному. При этом только очень немногие одаренные атлеты достигли уровня условно сравнимого с достижениями сегодняшних силачей. Следует признать, что мы прошли большой путь и именно благодаря науке ушли далеко вперед.

    За годы своих тренировок я заметил одну важную закономерность - классные атлеты значительно лучше разбираются в особенностях тренировочного процесса, чем слабые или средние. Это, конечно же, большое обобщение, которое не всегда является правилом. Тем не менее, оно безошибочно приводит к неизбежному выводу о том, что чем большим объемом знаний обладает атлет, тем выше его достижения. Эта истина верна как для мастеров прошлого, так и для современных атлетов.

    В ходе обсуждения с друзьями-спортсменами необходимости написания такой книги я не однажды слышал совет: "Сделай ее предельно понятной". Как мне представляется, это означало, что большинство троеборцев не обладают глубокими знаниями по психологии или биомеханике и то, что будет изложено в книге, должно быть передано самыми простыми словами. Иначе статус книги будет таков, что только очень высокообразованные люди смогут читать ее, а что касается среднего троеборца, то он останется, как и прежде, без доступного источника информации. Увы, упрощение не всегда возможно и приемлемо. Тем не менее, я постарался дать большую часть информации в этой книге в читабельной и понятной форме, оставив только несколько сложных вопросов на научном уровне. Сделано это было ввиду моей неспособности дать объяснение последних в какой-либо иной форме, а не потому, что их в принципе нельзя изложить простым языком. Я прошу прощения за эту свою неспособность. Отсылать "средненачитанных" атлетов к другим научным источникам, освещающим данные вопросы, вряд ли принесет им пользу, ибо тут возникнет та же проблема заумности изложения. Итак, единственной альтернативой является опора на таких атлетов, которые обладают необходимыми знаниями и смогут помочь объяснить сложные моменты другим. Я надеюсь, однако, что такие проблемы возникнут только в очень ограниченном числе случаев - в основном книга написана, очень простым языком.

    Еще одним пожеланием моих друзей троеборцев было то, чтобы книга была пригодна как для мужчин-троеборцев, так и для женщин, занимающихся этим видом спорта. Каждое слово в этой книге, касающееся требований к тренировочному процессу троеборцев и прочих моментов данного вида спорта, подходит для женщин в неменьшей степени, чем для мужчин - женщины тренируются так же, как мужчины, и они реагируют на упражнения таким же образом, как н спортсмены мужскою пола. Если же я где-то по ошибке использовал форму изложения, ориентированную на мужской пол, прошу извинения за это. Использование слов, подразумевающих только мужчину в качестве объекта, было вызвано соображениями упрощенного стиля, а не женоненавистничеством.

    По логике, вещей, любые рассуждения о тренировочных приемах, о каком спорте ни шла бы речь, должно начинаться с рассмотрения мышечной физиологии. В той мере, в какой это возможно, эти моменты были включены в общий контекст содержания книги, но некоторые базовые факторы, касающиеся мышечной физиологии, необходимо было дать отдельной темой, так как они являются суммарной основой всех тренировочных приемов.

    Я абсолютно убежден, что качественное понимание базовых процессов, проходящих в мышечных тканях, исключительно важно для постижения методологии упражнений. Как, например, может человек по-настоящему добиться максимальной отдачи от силовой программы без понимания тех факторов, которые влияют на прирост силы? Ответ однозначен - не может. Понимание основных концепций, лежащих в основе тренировки силы, базируется на понимании вовлекаемых в упражнение физиологических механизмов. Это не означает, что необходимы глубокие знания по данной проблеме, но важно знать сами концепции. В последующих разделах главы сконцентрируйте внимание прежде всего на понятиях, а не на изолированных отрезках информации. В этом случае содержание всей остальной книги будет вам понятно, ибо основные понятия действительно являются базой всего того, что написано в книге о тренировочной технике.

     

    Нагрузка: исходная общность всех упражнений для мышц
    Тренирует ли троеборец силу, мощность, локальную мышечную выносливость, гибкость или сердечно-сосудистую выносливость, один фактор всегда присутствует в тренировочной программе - это нагрузка, обеспечивающая максимальный результат. Точно также как мозоли наращиваются на руках при длительном воздействии нагрузки, то же происходит с разнообразными иными механизмами, связанными с каждым из компонентов тренированности, активно реагирующим на высокие уровни стресса. Однако каждый из этих внутренних механизмов отличается друг от друга. Нагрузка, воздействующая на адаптационные процессы механизмов, связанных с увеличением силы, сильно отличается от нагрузки, воздействующей на адаптационные процессы, происходящие в механизмах, ассоциируемых с мышечной выносливостью. При этом каждый механизм, связанный с отдельными компонентами тренированности, подвергается нагрузочному воздействию в соответствии с его особенностями.

     

    Принцип перегрузки
    Процесс приложения постепенно возрастающего стресса к соответствующему механизму, сопровождаемый адаптационными явлениями, называется принципом перегрузки. Каждый механизм, связанный с областью тренированности, должен подвергаться воздействию стресса с интенсивностью, превосходящей привычную для атлета норму. Перегрузка вследствие этого может быть в диапазоне от легкой до интенсивной. Выбранный уровень перегрузки зависит от множества факторов, включая возраст, состояние здоровья на данный момент, уровень тренированности, а для опытных троеборцев - от стадии тренировочного цикла. Как общее правило, интенсивность перегрузки должна быть максимально возможной, но исключать нежелательные эффекты «нервного срыва» или «перетренированности». В последующих разделах книги мы подробнее остановимся на интенсивности перегрузки, так как она составляет один из наиболее важных принципов набора формы.

     

    Принцип САУТ: специфической адаптации к устанавливаемым требованиям
    Сам процесс воздействия нагрузкой (или перегрузкой), которая требуется для вызывания адаптивной реакции в соответствующих мышечных механизмах, включает такие факторы, как число повторений и подходов, скорость движения при повторении, величина поднимаемого веса, тип выбранного упражнения и частота упражнения. Несомненно, весь режим выполнения упражнений должен быть так скомпонован, чтобы добиться максимальной отдачи в области физической готовности, представляющей особую важность. Мышца высоко избирательно реагирует на характер прилагаемого воздействия. Не следует, например, ожидать укрепления силы, выполняя движения, рассчитанные на выработку выносливости. Точно также нельзя добиться больших результатов в выработке выносливости, тренируя силу. Хотя данные рассуждения выглядят вполне простыми, для получения максимального эффекта следует подробно рассмотреть и вникнуть во множество весьма специфических и сложных факторов. Вместе с принципом перегрузки принцип САУТ является одним из наиболее важных в наборе физических кондиций. Подробнее об этом мы расскажем в контексте всей нашей книги. Фактически, именно благодаря принципу САУТ вместе со множеством рассуждений о технике выполнения упражнений, первая глава книги является такой важной - понимание физиологии мышцы является ключом к правильному применению нагрузки для получения желаемых результатов.

     

    Некоторые основные характеристики мышцы
    Большинство атлетов в то или иное время отведывали какие-нибудь мясные блюда. Вспомните, как выглядит сырое мясо. На куске говядины отчетливо видны мелкие белые мышцы, разделяющие мышечные волокна в пучки. Соединительная ткань, образующая каждый пучок, в конечном итоге сужается и переходит в сухожилие, прикрепляющее мышцу к кости. Сила, генерируемая сокращающимися мышечными волокнами, передается через соединительную ткань и сухожилия на скелетные кости, вызывая тем самым движение.


    Рис.1.1 Строение мышечного среза. Каждое отдельное мышечное волокно содержит множество фибрилл, а пучок мышечных волокон состоит из множества волокон. Мышца является комплексом из множества составляющих. (Взято из книги Зигмунда Гроллмана "Человеческое тело", издание 2-е, перепечатано с разрешения Издательства Макмиллан, авторское право Зигмунда Гроллмана, 1974г.)



     
    В зависимости от характера среза на мясе вы могли заметить, различия в наборе мышечных волокон. На некоторых срезах эти волокна короткие, наподобие твидовых нитей, в то время как на других - длинные и бороздчатые. Вывод, касающийся тренировочной техники, отсюда получается такой: некоторые мышцы обладают более короткой сократительной протяженностью, чем другие, они значительно сильнее и требуют более высокой нагрузки для вызывания адаптивной реакции.


    Рис. 1.2. На диаграмме показаны типы расположения волокон скелетных мышц: А - веретенообразное; Б - одноперьевое; В - двуперьевое; Г - многоперьевое.

    Используется с разрешения компании Ли и Фебиджер, Инк. Взято из книги Раска и Бурке "Кинезиология и прикладная анатомия", издание 6-е, 1978г.
    Вы, несомненно, замечали, что куриное мясо бывает и светлым, и темным. Грудные мышцы, используемые при взмахе крыльев, состоят из белых мышечных волокон, в то время как мышцы ног - из красных. Такое отличие мышечных волокон характерно для большинства животных, включая человека, хотя и не в такой заметной степени. У людей белые и красные волокна как правило перемешаны, но красные волокна преобладают в антигравитационных мышцах, а белые - в конечностях. Это отличие очень важно и его следует учитывать в тренировочной технике атлета. Об этом будет подробно рассказано в последующих главах. В заключительной части данной главы мы рассмотрим физиологические отличия между белыми и красными мышечными волокнами, обращая при этом особое внимание на методику приложения стресса к каждому из этих двух типов волокон.

    Внутри мышечного волокна имеется множество механизмов и веществ, участвующих в функционировании клетки. Все мышечные волокна обладают этими характеристиками в различной степени, в зависимости от наследственных факторов и тренировочного воздействия. Все эти характеристики будут рассмотрены в соответствующих разделах и будет отмечена их важность при выборе тренировочной методики.

    Рис. 1.3. Электромикрофотография среза человеческой скелетной мышцы. На фото ясно обозначены три типа мышечных волокон в мышце человека: S - медленно сокращающееся волокно (красное волокно), F - быстро сокращающееся волокно (белое волокно), I - промежуточное волокно. Мышца подготовлена с использованием техники окрашивания АТФ. Быстро сокращающееся волокно служит для выполнения взрывных движений, но оно быстро утомляется. Медленно сокращающееся волокно служит для выполнения действий, требующих выносливости. А промежуточное волокно выполняет как быстрые сокращения, так и те, что требуют больших затрат кислорода (с высоким окислением). (С любезного разрешения У.К. Бирна взято из его книги «Сравнительный анализ обменных процессов при вдыхании насыщенного кислородом воздуха и при вдыхании нормальных газовых смесей в процессе выполнения длительных физических упражнений». Из неопубликованной докторской диссертации. Университет штата Висконсин, лаборатория биодинамики 1978г.)

     

    Факторы, влияющие на выработку силы
    Каждая мышечная клетка состоит прежде всего из мышечных фибрилл (волоконец), которые являются сократительными элементами клетки. Как видно на прилагаемой диаграмме мышечной клетки, мышечные фибриллы представляют собой длинные пряди, состоящие из различных белков. Под электронным микроскопом эти фибриллы оказываются состоящими из чередующихся связок толстых и тонких мышечных нитей. Примечательно, как резко отличаются друг от друга эти мышечные фибриллы. Толстые нити состоят из белка миозина, а так же из белка актина.

     



    Рис. 1.4. Схематическая диаграмма элементов микрофибриллы мышечной клетки. Использована с разрешения Ли н Фебиджер, Инк, из книги Раска и Бурке "Кинезиология и прикладная анатомия". Ли и Фебиджер, 1978 (6-с издание)

     

    Мельчайшие волосовидные отростки между этими мышечными нитями, которые традиционно называются перекрестными мостиками, под воздействием импульса асинхронно прикрепляются к противоположной мышечной нити, сокращаются, отцепляются, вновь прикрепляются, сокращаются, отцепляются и так далее до тех пор, пока актиновая и миозиновая нити не натянутся одна вдоль другой до состояния максимального сокращения. Таким образом, в мгновение ока мышечное волокно сокращается вполовину, от своей длины в состоянии покоя, в результате действия вышеупомянутых перекрестных мостиков, заставляющих актиновую и миозиновую нити скручиваться. Действие сокращения по длине называется концентрическим сокращением. Примером такого сокращения будет сокращение бицепса при подъеме гантели вверх по радиусу с центром в локтевом суставе. Чтобы постепенно опустить гантелю вниз, некоторые мышечные волокна "отключаются" (как бы отпускаем педаль газа в вашей машине), а в результате немногочисленные "неотключенные" мышечные волокна, которые остаются в сокращенном состоянии, борются с силой притяжения, уступают в борьбе, и вес опускается. Механика этой операции очень важна в тренировке по поднятию тяжестей. Это отрицательное сокращение, называемое эксцентрическим, длительное время находилось в центре споров и противоречий при его учете в технике тренировок. Так как количество перекрестных мостиков, старающихся сократить мышцу недостаточно, они буквально "продираются" сквозь мостики соединений нити, стараясь вызвать концентрическое сокращение. Однако сцепиться, как следует им не удается, они срываются и повреждаются. Эти действия, очень напоминающие протаскивание щетины одной зубной щетки через другую, сопровождаются сильным трением, и мышечные нити разрушаются.

     



     

    Рис. 1.5. Электромикрофотография продольного среза сердечной мышцы человека. Обратите внимание на бороздчатость, отмечающую линии Z, зоны Н и т.д. (смотри рис. 1.4, на котором дана диаграмма мышечного волокна). Четко видны также мышечные нити. Крупные овальные тела, расположенные параллельно волокнам - митохондрии. Хотя скелетные мышцы человека почти идентичны сердечной мышце в основе своего строения, в нормальном состоянии они не обладают такой огромной митохондриальной массой, как сердечная мышца. (С любезного разрешения биодинамической лаборатории Университета штата Висконсин. Кафедра физического воспитания, Мэдисон, 1980г.)

     

    После этого в течение нескольких дней в мышцах наблюдаются сильные болевые ощущения. Хотя отрицательный тренинг, как показывает опыт, дает увеличение силы: сопровождающая его болезненность ощущений и необходимость длительное время отдыхать при такой методике почти сводит на нет эффект от таких тренировок.

    Легко заметить, что одним из очень важных факторов, задействованных в выработке силы, является наличие того или иного количества мышечных нитей в волокнах. Это может показаться таким же простым, как усиление одной из команд по перетягиванию каната добавлением нескольких новых участников. Однако есть более важные факторы, определяющие сократительную силу мышцы, нежели простой подсчет мышечных фибрилл или мышечных клеток.


     

    Рис. 1.6. Типы сокращения. Два типа изотонического сокращения: 1) концентрическое (сила преодолевает сопротивление) 2) эксцентрическое или отрицательное (сопротивление одерживает верх над силой). Изометрическое сокращение (противоборствующие силы равны) имеет место, когда мышца пытается сократиться, противостоя неподдающейся равнодействующей силе.

    Внутри каждой мышечной клетки имеется множество субклеточных веществ энзимов (ферментов), чья совокупная обязанность - производство энергии для мышечных сокращений. Эффективная деятельность энзимов становится важным фактором увеличения силы. Выясняется, что сокращение высокого напряжения (то есть, высокого сопротивления) вырабатывает такую эффективность, так как оно вызывает увеличение числа фибрильных элементов внутри каждого мышечного волокна.

    Однако имеется еще один важный фактор в тренировке по выработке силы. Исследование показывает нам, что важную роль в производстве максимального сокращения крупной мышцы играет нервный импульс. Каждая мышца состоит из моторных единиц. Моторная единица может содержать от одного до сотни мышечных волокон, связанных с нею. Таким образом, один нейрон, его длинный аксон (нервное волокно), все мелкие отростки и волокна, к каждому из которых прикрепляется "веточка", представляет собой одну моторную единицу. Каждая моторная единица стимулируется к сокращению согласно ее порога возбудимости. То есть все моторные единицы, чей порог возбудимости равен или ниже десяти милливольт, сократятся под воздействием импульса в десять милливольт, генерируемого центральной нервной системой (мозгом) или через рефлекторное действие (которое имеет место на уровне спинного мозга). Именно активизация деятельности мозга - это та область, которая представляет особый интерес для атлетов, так как моментальной генерации максимального нервного импульса можно "обучаться" в весьма широких пределах. Чем сильнее нервный импульс, тем многочисленнее сокращающиеся моторные единицы. Это, конечно же, связано с силой сокращения мышц, того или иного атлета.

     



    Рис. 1.7. Схематическая диаграмма нейрона. Обратите внимание, что один нейрон обслуживает множество мышечных волокон. Примечательно, что нейрон, его аксон, отростки и все обслуживаемые им волокна объединены одним названием, "моторная единица". Все волокна одной моторной единицы сокращаются вместе при достижении или превышении порога возбуждения. Из книги Моргана и Стеллара "Физиологическая психология". Авторские права от 1950 компании Макгро-Килл Бук. Использована по разрешению.


    Рис. 1.8. Рефлекс растяжения мышцы и обратный рефлекс в качестве "аутогенных руководителей" движения коленного сустава. Обратите внимание, что надостное воздействие, как содействующее, так и тормозящее оказывается на гамма центробежный нейрон. Таким образом устанавливается наклон веретена. Подробно о важности этого рефлекса говорится в главе 6. Из книги Де Врие "Физиология упражнения", издание 2--е Ум.К. Браун и Ко, 1974г. Использовано по разрешению.
    Степень обучаемости силе будет подробнее рассмотрена в последующих разделах книги. 3десь же достаточно будет сказать, что можно научиться не только стимуляции как можно 6ольшего числа моторных единиц, но также и отодвиганию защитного барьера, мешающего этому. Этот барьер устанавливается действием определенных проприорецепторов, находящихся в мышцах и сухожилиях. Эти проприорецепторы действуют как защитный механизм, обеспечивающий безопасность действия силы сокращения и предохраняющий мышцы и сухожилия от травм. Имеются веские доказательства, что этот защитный механизм вступает в действие слишком рано, и что его можно отодвинуть путем выполнения различных тренировочных приемов.

    Сила также определяется отношением между красными и белыми мышечными волокнами, задействованными в сокращении, о котором говорилось выше. Белые мышечные волокна видятся белыми при исследовании микроскопом из-за недостатка двух компонентов - миоглобина и капилляров. Миоглобин является красным пигментом в клетке, который отвечает за обеспечение достаточным количеством кислорода, с тем, чтобы митохондрия могла эффективно выполнять свою функцию. Митохондрии - мельчайшие органеллы, рассредоточенные по всей мышце, выполняют окислительную функцию клетки. Капилляры, конечно же, поставляют обогащенную кислородом кровь к клетке и через них удаляются продукты метаболического распада, происходящего во время упражнения. Так как в белых волокнах мало капилляров, то волокна обладают относительно низким уровнем выносливости - они не предназначены для эффективного усвоения кислорода и быстро устают. Таким образом, белые волокна мышц имеют еще одно название - волокна с низким уровнем окисления. Однако белые мышечные волокна обладают гораздо более высоким уровнем энзимного равновесия для производства сильного сокращения, нежели красные волокна. Они также обладают, более надежной и обширной нервной связью, что позволяет им совершать более частые "подергивания" в секунду. В то время как белые мышечные волокна обладают способностью непрерывно сжиматься и разжиматься 100 раз в секунду, красные волокна при максимальной стимуляции обычно совершают подобные подергивания меньше 20 раз в секунду. Чем больше мышца подергивается в секунду, тем сильнее сокращения. К. тому же имеются исследования, указывающие на то, что белые волокна обладают более высокой способностью увеличиваться в размере, чем красные. Это свойство ассоциируется с увеличением числа мышечных фибрилл внутри мышечного волокна.

    Таким образом, мы затронули базовые моменты, касающиеся природы силы. Сила зависит: 1) от расположения мышечных волокон (то есть веретенообразного или перьевого); 2) числа моторных единиц, подвергающихся одновременной стимуляции; 3) присутствия должной концентрации энзимов в клетке; 4) относительного положения защитного барьера, определяемого чувствительностью проприорецепторов мышцы и сухожилия; 5) соотношения белых и красных мышечных волокон; 6) действия скелетно-мышечного рычага; и 7) координации действия синергистов и стабилизаторов.

    Обладание относительно длинным силовым плечом в сравнении с плечом сопротивления, занятым в движении скелетно-мышечного рычага, относится к наследственным характеристикам. Обратите внимание, например, на иллюстрацию, приводимую здесь. Можно увидеть, что чем ниже по предплечью закреплен бицепс, тем длиннее силовое плечо и тем мощнее будет сила, действующая на сопротивление на конце рычага. Этот пример можно перенести на совокупные телесные движения и на действие одиночного рычага, такого, как рука. При приседании, жиме и мертвой тяге относительная длина рычагов будет иметь важное значение в определении величины поднимаемого веса, а, следовательно, будет очень важным фактором в выборе правильной соревновательной техники трех движений. Подробнее об этом будет сказано в последующей главе.

     



    F = ось рычага
    I = место присоединения мышцы
    R = сопротивление (20-ти фунтовая гантель)
    FI = плечо силы (2 дюйма)
    RF = плечо сопротивления (14 дюймов)

    Сила х FI= R x RF
    Сила х 2 = 20 х 14
    Сила х 2 = 280
    Сила = 140 фунтов
    Если бы FI равнялась 3 дюймам, тогда

    Сила х 3 = 280
    Сила - 93 ⅓ фунтов

    Таким образом, требуется меньшая сила (усилие), чтобы поднять тот же самый вес, если точка присоединения мышцы I располагается дальше в сторону ладони

      Рис. 1.9. Иллюстрация того, как длина рычага влияет на уровень прилагаемой мышечной силы
    Согласование действия малых синергистов ("вспомогательных" мышц) и стабилизаторов (мышц, которые сокращаются статически, чтобы поддерживать конечность или часть тела в сильной позиции) с действием основного двигателя (наиболее важной в данном движении тела мышцы) также имеет очень большое значение при рассмотрении общей величины силы, которую может проявить атлет при воздействии на такой внешний объект, как штанга. Определение мышц - основных двигателей, синергистов и стабилизаторов является основой выбора упражнений для любого атлета. Выбор упражнений должен определяться путем внимательного анализа техники атлета, определения слабых мест и приложения нагрузки нужной величины. В последующей главе концепция отбора упражнений будет раскрыта в деталях.

     

    Методика увеличения силы
    Обладая вышеизложенными знаниями об источниках мышечной силы, атлет должен разумно проанализировать свою технику в троеборье. Чрезвычайно важны два фактора: 1) тот факт, что подъем тяжестей длится очень недолго во времени, делает затруднительным вовлечение в действие максимально возможного числа моторных единиц, и 2) то, что белые (быстрого подергивания) волокна являются наиболее важными, но очень быстро утомляются. Таким образом, мы должны решить прежде всего эти две проблемы, так как к их решению неизбежно сводятся все усилия, связанные с увеличением соревновательной подъемной мощности. Мощность является ключом. Всегда помните, что наш вид спорта называется Пауэрлифтинг (пауэр - мощность, лифтинг - подъем). Мощность - есть способность моментально привлечь к работе максимальное число моторных единиц в данном движении. Функциональное определение мощности выглядит как сила со скоростью. Определение физиков будет: мощность = fd/t, еде f - сила, d - расстояние, на которое передвигается объект, а t - время, потраченное на передвижение, объекта на данное расстояние. Сила, как таковая, имеет ограниченную ценность для действительно талантливого атлета[1]. Когда отягощения велики, в дело вступают быстро утомляющиеся белые волокна, с тем чтобы выполнить основную часть работы. Если атлет тратит слишком много времени на выполнение жима, эти волокна начинают уставать и попытка срывается. Кроме того, если в результате неправильных тренировок атлет не способен мобилизовать максимальное количество моторных единиц в мгновение, жим будет уже завершен к тому времени, когда еще не все моторные единицы оказались стимулированными. Это, конечно же, приведет к неспособности поднимать большие тяжести. С другой стороны, если вес велик, а моментальная мобилизация не имеет места, те моторные единицы, которые участвуют и работе, придут в состояние усталости до того, как эта мобилизация произойдет. В результате вес не будет взят. Абсолютно необходимо, чтобы атлет добивался максимальной мобилизации моментально, если он желает добиться хороших результатов в подъеме действительно больших тяжестей.

    Используя обычное определение мощности как силы, помноженной на скорость, давайте посмотрим, как можно добиться увеличения мощности. Скорость - это быстрота, с которой может быть приложено усилие, в то время как сила - это то, что производит усилие. Таким образом, имеются три метода увеличения мощности: 1) увеличение скорости; 2) увеличение силы и 3) увеличение сразу того и другого. Как отмечалось выше, понятие скорости включает умение координировать работу мышц, занятых в движении, и способность достигать максимальной мобилизации соответствующих волокон. Результат такого научения, при соответствующих условиях тренировок, может прийти довольно быстро. Координационный аспект скорости обычно осваивается в течение нескольких недель, в то время как достижение максимальной мобилизации белых волокон отнимает больше времени и увеличения поднимаемого веса не на столько впечатляюще, как на начальном этапе. Единственным наиболее эффективным методом достижения максимальной мобилизации, который я сам испытывал на опыте, является метод использования изокинетической тренировки, правильное применение которой может привести к достижению искомого результата в течение двух-трех месяцев. Подробнее об изокинетической тренировке мы будем говорить в главе, посвященной тренировочным системам.

    Куда более важным моментом для атлета или атлетки является способность увеличивать силу. Никто еще не приблизился к тому, чтобы реализовать свой действительный силовой потенциал, и нужно потратить уйму времени на тренировки, чтобы добиться максимально возможного. Принимая во внимание то, что мы мало что можем сделать для увеличения нашего скелетно-мышечного рычага (разве что изменить технику поднятия) точно также, как и для изменения наследственного фактора, определяющего соотношение белых и красных волокон, атлет должен сконцентрировать все усилия на увеличении числа мышечных фибрилл в клетке, на изменении концентрации энзимов, отодвигании защитного барьера мышцы и на координации работы всех мышц, занятых в подъеме снаряда.

    Ключом к запуску всех этих физиологических изменений внутри мышечной клетки является напряжение. Исследования показывают, что уровень нагрузки, который заставляет работать эти адаптивные процессы, должен быть выше двух третей максимальной способности, но ниже 95% от нее. Большая часть исследований на эту тему показывает, что наиболее оптимальным уровнем напряжений под нагрузкой является уровень между 80% и 90%. Эти цифры имеют объективную причинную обусловленность.


    Рис. 1.10. Методика определения примерного числа повторений за подход, выполняемых для каждой общей цели, указанной в вертикальном столбце, а также определения примерной величины веca, используемого в подходе. Возможны отклонения в зависимости от индивидуальных различий в силе и уровне выносливости. Во всех случаях последнее повторение в каждом подходе должно выполняться почти на пределе сил. Число, подходов в зависимости от цели определяется тем, может ли атлет переносить нагрузки на уровне рекомендуемой интенсивности. Как только выясняется, что атлет не справляется с данным уровнем, следует прекратить работу.

     

    Энергия для мышечного сокращения возникает при расщеплении молекул аденозинтрифосфата (АТФ), органического соединения, производимого митохондрией мышечной клетки. Так как запасы АТФ ограничены, они быстро истощаются при максимальном усилии, и работа прекращается из-за усталости. Работа на уровне 80% от максимального уровня позволяет легко пополнить эти запасы АТФ за счет комбинации еще одного органического соединения креатинфосфата (КФ) с продуктами распада АТФ. Затем происходит разложение гликогена с получением энергии для обратного синтеза КФ, запасы которого тоже ограничены. И конечным продуктом этого процесса является молочная кислота. Так как человеческий организм может переносить только минимальные уровни снижения рН крови[2], молочная кислота вынуждает мышцы прекратить сокращения, это состояние мы испытываем в конце подхода - усталость или "перегрев". Цель всего этого подробного описания в том, чтобы показать, что процесс истощения является одним из важнейших механизмов, вызывающих адаптационный процесс в мышце.

    Слишком небольшое число повторений, как например, выполнение одиночных подъемов или дублей (сдвоенных повторений), не приведет к максимальному увеличению силы в результате внутриклеточных процессов[3], а слишком большое число повторений позволяет мышце восполнить запас АТФ даже во время подхода. Вывод таков - следует использовать такой вес, с которым вы сможете выполнять желаемое упражнение, делая от 4 до 8 повторений. Такой режим работы обеспечит уровень интенсивности в пределах 80% - 90% от максимальной возможности. Большее число повторений увеличит местную мышечную выносливость в большей мере, нежели силу, а меньшее число повторений становится полезным при достижении пика в цикле, когда работа идет над мобилизацией моторных единиц.

     
    1   2   3   4   5   6   7   8   9   ...   23


    написать администратору сайта