Главная страница
Навигация по странице:

  • 34 .Закономерности развития зародыша. Регулярный тип развития (эмбриональная индукция).

  • 35.Молекулярные основы механизмов эмбрионального развития. Понятие о морфогенах и гомеозисных генах.

  • 36.Понятие об эпигенетической изменчивости.

  • 37.Молекулярные механизмы развития зародыша. Метилирование цитозина в ДНК – регуляция генной активности.

  • 39.Классификация тератогенов.

  • 40.Периоды онтогенеза человека (постнатальное развитие).

  • 41.Стволовые клетки и их использование в медицине.

  • Содержание 14. А


    Скачать 3.72 Mb.
    НазваниеСодержание 14. А
    Анкорbiologia_ekz.doc
    Дата07.05.2017
    Размер3.72 Mb.
    Формат файлаdoc
    Имя файлаbiologia_ekz.doc
    ТипДокументы
    #7199
    страница20 из 31
    1   ...   16   17   18   19   20   21   22   23   ...   31

    Мозаицизм, ограниченный плацентой


    Как уже отмечалось выше, ПД хромосомных аномалий проводится по клеткам либо плода, либо провизорных органов. Для интерпретации результатов ПД особенности происхождения анализируемого материала могут иметь принципиальное значение. Так, цитотрофобласт хориона, будучи производным трофэктодермы, атакже мезодермальная строма ворсин хориона/плаценты обособляются от внутренней клеточной массы на стадии бластоцисты, т.е. имеютэк-страэмбриональное происхождение. Амнион, формирующийся из первичной эктодермы, является эмбриональной структурой. Эмбриональное происхождение имеют все эпителиальные клетки АЖ, а также лимфоциты пуповинной крови.

    На постимплантационных стадиях развития человека хромосомный набор в клетках плодных оболочек, как правило, соответствует кариотипу плода. Однако в некоторых случаях возможна дискордантность кариотипов в клетках экстраэмбриональных тканей и плода. При этом несоответствие хромосомных наборов может быть полным или иметь мозаичную форму. Клеточные линии с аномальным кариотипом могут быть локализованы в тканях как внезародышевых оболочек, так и плода. Присутствие аномального клеточного клона в тканях плода при его наличии в плаценте (т.е. истинный или генерализованный мозаицизм) подтверждается в 10% случаев плацентарного мозаицизма, или составляет 0,1% от всех развивающихся беременностей. По обобщенным результатам ПД, случаи мозаичной анеуплоидии в тканях плода, имеющего нормальный кариотип в клетках провизорных органов, единичны. Приблизительно в 2% случаев прогрессирующих беременностей цитогенетические аномалии, чаще мозаичные трисомии, ограничены плацентой.

    Классификация типов ограниченного плацентой мозаицизма приведена в табл. Предполагается, что плацентарный мозаицизм является неблагоприятным фактором для развития плода. Риск внутриутробной задержки развития плода, самопроизвольного выкидыша, антенатальной гибели или преждевременных родов характерен для случаев плацентарного мозаицизма с достаточно высокой долей анеуплоидных клеток в цитотрофобласте, в экстраэмбриональной мезодерме или сразу во всех тканях плаценты (типы 1, 2 и 3 плацентарного мозаицизма соответственно). Однако различные подходы к оценке акушерско-клинических проявлений плацентарного мозаицизма не позволяют в настоящее время считать его влияние на развитие плода абсолютно доказанным.

    Очевидно, что принципиально вопрос о типе мозаицизма может быть решен только в случае параллельного анализа цитотрофобласта и мезодермы, т.е. комбинировании прямого метода приготовления препаратов с культивированием образцов хориона или плаценты. Необходимыми этапами диагностики в случаях мозаицизма должны быть также установление происхождения трисомной линии (стадия и механизм возникновения), а также исключение однородительскойдисомии. Эти исследования особенно важны, когда в мозаицизм вовлечены хромосомы, для которых установлен феномен хромосомного импринтинта.

    34 .Закономерности развития зародыша. Регулярный тип развития (эмбриональная индукция).

    Эмбриональная индукция — взаимодействие между частями развивающегося организма у многоклеточных беспозвоночных и всех хордовых.

    Согласно этой гипотезе, существуют определенные клетки, которые действуют как организаторы на другие, подходящие для этого клетки. В условиях отсутствия клеток-организаторов такие клетки пойдут по другому пути развития, отличном от того, в котором они развивались бы в условиях присутствия организаторов. Проиллюстрировать это можно тем самым экспериментом 1924-го года, показавшим, что дифференцировка в значительной степени контролируется влиянием цитоплазмы клеток одного типа на клетки другого типа.

    35.Молекулярные основы механизмов эмбрионального развития. Понятие о морфогенах и гомеозисных генах.

    Морфогены - биологически активные вещества. Гипотетическое вещество, концентрация которого прочитывается клетками и позволяет им определить расстояние относительно неких ориентиров, называется морфогеном.

    Показано, что поведение клетки меняется в зависимости от ее расположения в составе зародыша. Это означает, что клетки способны воспринимать и запоминать позиционную информацию. Позиционная информация - это какие-то сигналы, которые сообщают клетке о ее положении в зародыше. Чаще всего, видимо, такими сигналами служит концентрация морфогенов.

    Во многих развивающихся системах небольшие участки ткани способны приобретать какие - либо особые свойства, превращающие их в источник сигнала, который распространяется через прилежащие участки ткани и может контролировать их поведение. В частности, сигналом могут служить диффундирующие молекулы, секретируемые сигнализирующим участком. Предположим, что по мере диффузии сигнального вещества через соседние ткани происходит его разрушение. В этом случае наивысшая концентрация сигнального вещества будет вблизи источника, а с увеличением расстояния от него концентрация сигнального вещества будет уменьшаться, т.е. возникнет концентрационный градиент. На разном расстоянии от источника сигнала клетки будут подвергаться различному действию этого вещества в зависимости от его концентрации и благодаря этому приобретут разные свойства. Известным морфогеном является  Ретиноевая кислота  

    При наличии плавного градиента концентрации морфогена можно ожидать, что и свойства клеток в разных участках будут изменяться постепенно. Такие слабо выраженные различия дествительно встречаются в некоторых тканях. Но наибольший интерес вызывает возникновение резких качественных различий, например, между хрящевыми и мышечными клетками, не имеющими переходных форм. Это объясняется тем, что в популяции исходно однородных клеток благодаря разному порогу реакции на плавно изменяющийся сигнал могут возникать резкие различия между клетками: в каждой из реагирующих клеток эффект небольшого приращения сигнала может быть усилен по принципу положительной обратной связи.

    Гомеозисные гены — детерминируют процессы роста и дифференцировки. Гомеозисные гены кодируют транскрипционные факторы, контролирующие программы формирования органов и тканей.

    Мутации в гомеозисных генах могут вызвать превращение одной части тела в другую. Гомеозисными мутантами называются такие организмы, у которых на месте органа развивается орган другого типа. Например, у дрозофилы при мутации antennapedia формируется конечность на месте антены.

    Гомеозисные гены контролируют работу других генов и определяют превращение внешне неразличимых участков зародыша или определённого органа (ткани, участка тела). В частности, гомеозисные гены контролируют превращение сегментов многоклеточных животных в раннем эмбриональном развитии. У насекомых гомеозисные гены играют ключевую роль в определении особенностей строения эмбриональных сегментов и структур на них (ноги, антенны, крылья, глаза).

    Гомеозисные гены животных относятся к семейству Hox-генов. Однако, не все гены этого семейства являются гомеозисными. Так, у дрозофилы к Hox-генам комплекса Antennapedia относятся гены zerknullt, zerknullt2, bicoid и fushi tarazu, которые не являются гомеозисными.[1]

    У растительных организмов также известны процессы, которые контролируются гомеозисными генами: филлотаксис, развитие цветков и соцветий.




    36.Понятие об эпигенетической изменчивости.

    Эпигенетическим наследованием называют наследуемые изменения в фенотипе или экспрессии генов, вызываемые механизмами, отличными от изменения последовательности ДНК (приставка эпи- означает в дополнение). Такие изменения могут оставаться видимыми в течение нескольких клеточных поколений или даже нескольких поколений живых существ.

    В случае эпигенетического наследования не происходит изменения последовательности ДНК, но другие генетические факторы регулируют активность генов. Лучшим примером эпигенетических изменений для эукариот является процесс дифференцировки клеток. В течение морфогенеза тотипотентные стволовые клетки становятся плюрипотентными линиями клеток, которые в тканях эмбриона затем превращаются в полностью дифференцированные клетки. Единственная клетка — зигота — оплодотворенная яйцеклетка дифференцируется в различные типы клеток: нейроны, мышечные клетки, эпителиальные клетки, клетки кровеносных сосудов и многие другие. В процессе дифференцировки активируются одни гены и инактивируются другие.

    37.Молекулярные механизмы развития зародыша. Метилирование цитозина в ДНК – регуляция генной активности.

    Шпора на тлф фото №129

    38. Введение в тератологию. Понятие о критических периодах.

    ТЕРАТОЛО́ГИЯ [тэратология], тератологии, мн. нет, жен. (греч. teras - чудовище и logos - учение).

    1. Наука, изучающая врожденные уродства отдельных органов и целых организмов.

    2. Стиль средневекового графического искусства (в орнаменте, заставках, инициалах и т.п.), основанный на нагромождении чудовищно-фантастических образов, то же, что звериный стиль Тератология в древнерусских рукописях.

    Множество стало рождаться двуликих существ и двугрудых,

    Твари бычачьей природы с лицом человека являлись,

    Люди с бычачьими лбами, создание смешанных плодов;

    Женской породы мужчины, с бесплодными членами твари.

    (Эмпедокл)

    В этом четверостишье содержатся указания на рождение сросшихся близнецов, обезображивающие пороки лица и двуполость.

    В России начало исследований пороков развития человека и животных связано с именем императора Петра I,который в 1718 году издал Указ о создании в Петербурге «Музея уродливостей». Музей был размещён в специальном здании, названом Кунсткамерой.

    Основу «Музея уродливостей» составляла коллекция анатомических препаратов, в том числе и уродов. В соответствии с Указом Петра I музей стал пополняться редкими препаратами уродств человека и животных.

    Следует отметить, что первые научные исследования коллекции человеческих уродств в Кунсткамере стали проводиться выдающимися отечественными учёными — академиками К.Бером, К.Вольфом, П.А. Загорским. К этому времени накопились научные сведения по эмбриологии (наука о зародышевом развитии человека), сравнительной анатомии (науки о сравнительном строении тела различных видов животных) и нормальной анатомии (науки о строении тела человека).

    В ХХ веке были точно установлены причины многих уродств. Так в 1941 году было обнаружено тератогенное действие вируса коревой краснухи, в 1962 году — тератогенное (производящее уродства) действие фармакологического препарата (снотворного) — талидомида. В 70-х годах ХХ столетия была открыта хромосомная (генетическая) природа многих врожденных пороков развития, связанная с наследственной патологией и лишь 3-5 % пороков индуцировано непосредственно тератогенными факторами. В настоящее время в мире успешно работают многочисленные медико-генетические лаборатории, а в ряде ведущих стран - научно-исследовательские тератологические центры.

    39.Классификация тератогенов.

    В классификации пороков у ребенка выделяют несколько групп пороков. В зависимости от времени воздействия вредных факторов и объекта поражения выделяют следующие формы пороков развития.

    1.Гаметопатии – патологические изменения в половых клетках, произошедшие до оплодотворения и приводящие к спонтанному прерыванию беременности, врожденным порокам развития, наследственным заболеваниям. Это наследственно обусловленные врожденные пороки, в основе которых лежат спорадические мутации в половых клетках родителей или унаследованные мутации у более отдаленных предков. 2.Бластопатии – это повреждения зиготы в первые 2 недели после оплодотворения (до момента завершения дифференциации зародышевых листков и начала маточно-плацентарного кровообращения), вызывающие гибель зародыша, внематочную беременность, пороки развития с нарушением формирования оси зародыша (симметричные, асимметричные и неполностью разделившиеся близнецы, циклопия, аплазия почек и др.). 3.Эмбриопатии – согласно классификация пороков у ребенка - это поражения зародыша от момента прикрепления его к стенке матки (15-й день после оплодотворения) до сформирования плаценты (75-й день внутриутробной жизни), проявляющиеся пороками развития отдельных органов и систем, прерыванием беременности. Поскольку в эмбриональный период происходит формирование основных морфологических структур органов, то естественно, что большинство врожденных пороков образуется именно в этот период.Наличие критических периодов, т.е. стадий интенсивной дифференцировки органов, когда они наиболее легко повреждаются, определяет существование временной специфичности для различных органов. Так, воздействие повреждающего фактора на 4-6-й неделе внутриутробного развития часто ведет к формированию у плода порока сердца, на 12-14-й неделе – порока развития половых органов и т.д. Локализация дефекта также зависит от интенсивности повреждающего воздействия. 4.Фетопатии – общее название болезней плода, возникающих под воздействием неблагоприятных факторов с 11-й недели внутриутробной жизни до начала родов. Важнейшая роль в формировании фетопатии принадлежит состоянию плацентарного комплекса. Признаками фетопатии становятся: задержка внутриутробного развития; врожденные пороки в результате обратного развития зародышевых структур (кишечный свищ, открытые артериальный проток или овальное окно) или эмбриональных щелей (расщелины губы, неба, позвоночника, уретры); сохранение первоначального расположения органов (крипторхизм); гипоплазии и дисплазии отдельных органов и тканей (дисплазия почек, микроцефалия, гидроцефалия и др.); избыточное разрастание соединительной и других тканей при инфекциях (катаракта и др.); врожденные болезни (гемолитическая болезнь новорожденных, гепатиты, циррозы, пневмонии, миокардиты, энцефалиты и др.). Фетопатии нередко приводят к преждевременным родам, асфиксии при рождении, метаболическим и другим нарушениям адаптации новорожденных к внеутробной жизни и являются наиболее частыми причинами неонатальных болезней и смертности. К врожденным порокам относятся следующие нарушения развития. 1.Агенезия – полное врожденное отсутствие органа. 2.Аплазия – врожденное отсутствие органа или выраженное его недоразвитие. Отсутствие некоторых частей органа называется термином, включающим в себя греч. слово olygos («малый») и название пораженного органа. Например, олигодактилия – отсутствие одного или нескольких пальцев. 3.Гипоплазия – недоразвитие органа, проявляющееся дефицитом относительной массы или размеров органа. 4.Гипотрофия – уменьшенная масса тела новорожденного или плода. 5.Гиперплазия (гипертрофия) – повышенная относительная масса (или размеры) органа за счет увеличения количества (гиперплазия) или объема (гипертрофия) клеток. 6.Макросомия (гигантизм) – увеличенные длина и масса тела. Термины «макросомия» и «микросомия» нередко применяются для обозначения соответствующих изменений отдельных органов. 7.Гетеротопия – расположение клеток, тканей либо целых участков органа в другом органе или в тех зонах того же органа, где их быть не должно. 8.Гетероплазия – расстройство разграничения некоторых видов ткани. Гетероплазии следует дифференцировать от метаплазий – вторичного изменения разграничения тканей, которое связывают с хроническим воспалением. 9.Эктопия – смещение органа, т.е. локализация его в несвойственном ему месте. Например, наличие почки в тазу, сердца – вне грудной клетки. Удвоение и увеличение в числе того или иного органа или части его. 10.Атрезия – полное отсутствие канала или естественного отверстия. 11.Стеноз – сужение канала или отверстия. 12.Неразделение (слияние) органов двух симметрично или асимметрично развитых однояйцевых близнецов. Название пороков, определяющих неразделение конечностей или их частей, начинается с греч. приставки syn («вместе»)– синдактилия, симподия (соответственно – неразделение пальцев и нижних конечностей). 13.Персистированиеобратное развитие морфологических структур, которые в норме исчезают к определенному периоду развития (артериальный проток или овальное окно у ребенка в возрасте старше 3 месяцев). Одной из форм персистирования является дизрафия (арафия)– незаращение эмбриональной щели (расщелины губы, неба, позвоночника и т.д.). 14.Дисхрония – нарушение темпов (ускорение или замедление) развития. Процесс может касаться клеток, тканей, органов или всего организма. Врожденные пороки могут проявляться и другими изменениями органов. Например, нарушением лобуляции (увеличение или уменьшение долей легкого или печени), образованием врожденных водянок (гидроцефалия, гидронефроз), инверсией – обратным (зеркальным) расположением органов.К неклассифицированным комплексам относят пороки, проявления которых не укладываются ни в один из известных синдромов.1)изменением наследственных структур (мутациями); 2)воздействием тератогенных факторов;3)воздействием и мутаций, и тератогенных факторов (пороки мультифакториального генеза).Среди пороков центральной нервной системы (ЦНС) различают пороки конечного мозга, обонятельного анализатора, стволовых отделов, мозжечка, спинного мозга и позвоночника, вентрикулярной системы и субарахноидального пространства.Наиболее распространенной классификацией пороков у ребенка является классификация, в основу которой положен анатомо-физиологический принцип деления тела человека на системы органов (ВОЗ, 1995г.).А. Врожденные пороки развития органов и систем:пороки ЦНС и органов чувств, ороки лица и шеи, пороки сердечно-сосудистой системы, пороки дыхательной системы, пороки органов пищеварения, пороки костно-мышечной системы, пороки мочевой системы, пороки половых органов, пороки эндокринных желез, пороки кожи и ее придатков ,пороки последа..Б. Множественные врожденные пороки: Хромосомные синдромы. Генные синдромы. Синдромы, обусловленные экзогенными факторами. Синдромы неустановленной этиологии. Множественные неуточненные пороки.

    40.Периоды онтогенеза человека (постнатальное развитие).

    После рождения развитие, конечно, не прекращается. Зубы и половые органы у новорожденного сформированы еще не полностью и пропорции тела сильно отличаются от пропорций взрослого человека. Голова на ранних стадиях развития относительно больше, чем у взрослого; у двухмесячного плода она составляет около половины тела, но рост ее заканчивается в раннем детстве, так что у взрослого человека ее относительные размеры меньше, чем у новорожденного. Руки достигают пропорциональной величины вскоре после рождения, ноги же — лишь примерно к 10 годам. Последними достигают зрелости наружные половые органы, которые начинают быстро расти только в период между 12-м и 14-м годами.
       Степень зрелости и самостоятельности только что вылупившегося птенца или новорожденного детеныша весьма различна у разных видов. Цыплята и утята сразу после вылупления начинают бегать и есть твердую пищу, а у малиновки только что вылупившиеся птенцы слепые, перьев на них очень мало и они не могут стоять. Новорожденные морские свинки покрыты шерстью, имеют зубы и могут есть твердую пищу. Напротив, новорожденные крысята и мышата, так же как и человеческое дитя, совершенно беспомощны и целиком зависят от родителей. Процессы развития, происходящие после рождения, отчасти представляют собой размножение и дифференцировку клеток, но значительную роль в них играет и рост клеток, образовавшихся ранее. Вес и размеры растущего животного или растения изменяются во времени по S-образной кривой, которая поразительно сходна с кривой роста целой популяции особей. Но если биологи уже могут указать некоторые факторы (элементы «сопротивления среды»), стабилизирующие численность популяции на определенном уровне, то о факторах, приводящих к прекращению деления и роста клеток, известно очень немногое. Некоторые растения и животные вообще никогда не перестают расти, хотя рост их со временем замедляется.
       Яйцо человека имеет диаметр около 100 мкм, его лишь с трудом можно увидеть невооруженным глазом. Длина тела новорожденного ребенка составляет уже около 50 см, что примерно в 5000 раз больше размеров яйца. В период от рождения до взрослого состояния рост увеличивается всего в три с половиной раза, достигая примерно 175 см. С наибольшей скоростью рост в длину происходит на 4-й месяц утробной жизни. Некоторое ускорение роста отмечается также в начале периода полового созревания; оно достигает максимума в возрасте около 12 лет у девочек и около 14 лет у мальчиков.
       Каждой части организма свойственна определенная кривая роста. Кривую роста каждого органа можно отнести к одному из четырех основных типов. Кривая для скелета аналогична кривой роста всего тела. Головной и спинной мозг растут сравнительно быстро в раннем детстве и к 10 годам достигают почти окончательных размеров. Кривая роста лимфоидной ткани принадлежит к третьему типу: количество ее достигает максимума к 12 годам, а затем уменьшается и примерно к 20 годам устанавливается на уровне, свойственном взрослому человеку. Четвертый тип роста характерен для органов размножения, которые до 12 лет (или около того) растут очень медленно, а затем, в период созревания, начинают быстро развиваться.

    41.Стволовые клетки и их использование в медицине.

    Я знаю писать не буду

    42.Иерапевтическое клонирование. Понятие о стволовых клетках.
    1   ...   16   17   18   19   20   21   22   23   ...   31


    написать администратору сайта