Главная страница
Навигация по странице:

  • 6.2. КРАТКИЕ СВЕДЕНИЯ ОБ ИСХОДНЫХ МАТЕРИАЛАХ

  • 6.3. ОСНОВЫ ПРОИЗВОДСТВА АСБЕСТОЦЕМЕНТНЫХ ИЗДЕЛИЙ

  • 6.5. ОСНОВНЫЕ СВОЙСТВА АСБЕСТОЦЕМЕНТНЫХ ИЗДЕЛИЙ

  • СМ Черных. Тема 1 Материалы из стеклянных и других минеральных расплавов Определение, краткие исторические сведения


    Скачать 3.77 Mb.
    НазваниеТема 1 Материалы из стеклянных и других минеральных расплавов Определение, краткие исторические сведения
    АнкорСМ Черных.doc
    Дата19.08.2018
    Размер3.77 Mb.
    Формат файлаdoc
    Имя файлаСМ Черных.doc
    ТипДокументы
    #23204
    страница8 из 19
    1   ...   4   5   6   7   8   9   10   11   ...   19
    Тема 6 . АСБЕСТОЦЕМЕНТНЫЕ ИЗДЕЛИЯ

    6.1. ОБЩИЕ ПОНЯТИЯ

    Асбестоцементные материалы применяются в кровле (шифер), в виде стеновых панелей, труб и декоративных изделий.

    Для изготовления асбестоцементных изделий применяют три основных компонента: цемент и воду, формирующие вяжущую часть этих конгломератных материалов; асбест, который служит активным заполняющим компонентом. Он успешно выполняет функции армирования цементного камня — матрицы. Состав и структура асбестоцемента обеспечивают изделиям в несколько раз большую прочность при растяжении и изгибе, чем их имеют цементный камень или цементный бетон. Имеются и другие положительные качественные характеристики у этого конгломе­ратного материала: повышенная сопротивляемость ударным нагрузкам, возможность выбора окраски изделий по желанию за­казчика, сравнительно малая масса стеновых панелей при исполь­зовании теплозащитных вкладышей, высокие теплофизические характеристики, высокая огнестойкость. Поэтому продукция асбестоцементной промышленности пользуется у строителей большим спросом. Кроме традиционного шифера и труб в строительстве широко применяют вентиляционные короба, электроизоляционные доски, изделия «малых форм» — подоконники, оконные сливы и др.

    6.2. КРАТКИЕ СВЕДЕНИЯ ОБ ИСХОДНЫХ МАТЕРИАЛАХ

    На действующих асбестоцементных заводах в качестве вяжуще­го используют клинкерный портландцемент марок 400 и 500. В нем не допускается содержание добавок, кроме гипса. Количество трех­кальциевого силиката (алита) должно быть не менее 52%, трехкаль­циевого алюмината — не более 8%, свободной извести — не более 1% (по массе). При автоклавном способе обработки изделий может применяться также песчанистый портландцемент, оптимальное со­держание кварцевого тонкоизмельченного песка в котором зависит от количества трехкальциевого силиката в клинкере. С повышением содержания Сз8 в клинкере портландцемента увеличивается количе­ство песка. Так, при выработке цемента с алитовым клинкером со­держание песка доводится до 45%, а при белитовом клинкере — до 30—35%. Качество добавляемого песка регулируется — должно быть не менее 87% Si02 и не более 3% оксидов калия и натрия, а ко­личество пылевидных, илистых и глинистых примесей не должно превышать 10%, в том числе не более 3—5% глинистых частиц раз­мером менее 0,005 мм. Для производства облицовочных изделий применяют белый и цветной портландцемент.

    В производстве асбестоцементных изделий в нашей стране в основном используют хризотил-асбест. Он извлекается из серпентиновых пород, в которых расположен в виде жил. Среди крупнейших Месторождений следует отметить Баженовское (Урал). Хризотил-ас­бест является водным силикатом магния — 3MgO • 2SiO2 • 2Н2О. В нем почти всегда встречаются посторонние примеси — закисное железо, карбонаты, сульфаты и сульфиды. По структуре асбест — кристаллический минерал с ярко выраженным волокнистым строе­нием. Каждое кристаллическое волокно хризотил-асбеста состоит, в свою очередь, из огромного числа параллельно расположенных тончайших элементарных кристаллов — волоконец (фибрилл). В технологии асбестоцемента пользуются механическим распушением асбе­ста до разной степени тонкости волокон. Хризотил-асбест имеет высокую прочность на разрыв по оси волокнистости (до 26,0—. 35,0 МПа) и достаточно высокую эластичность, хотя имеются также ломкие (хрупкие) разновидности, с пониженной прочностью на раз­рыв. По данным П.Н. Соколова, средние величины модулей упруго­сти волокон хризотил-асбеста колеблются в пределах от 15,8 • 104 до 21 • 104 МПа. Волокна асбеста имеют поверхностный слой из гидроксильных групп, соединенных со смежным внутренним слоем из ионов магния, что придает поверхности высокую адсорбционную способность, а с водой легко образуют суспензию. Но количество адсорбированной воды на поверхности волокон асбеста сравнитель­но невелико — до 1,5—2,0%, поэтому при дозировании асбеста этой величиной обычно пренебрегают. Теплопроводность распушенного асбеста составляет 0,05—0,075 Вт/(м-К) в зависимости от его сред­ней плотности, колеблющейся от 35 до 250 кг/м3. Асбест обладает разной длиной волокон — от долей миллиметра до 40 мм. По сред­ней длине волокна и содержанию пыли асбест разделяют на сорта:

    средняя длина повышается от низшей марки 8-го сорта к высшей марке нулевого сорта.

    Для производства асбестоцементных изделий применяют 3, 4, 5 и 6-й сорта асбеста. Более низкие сорта (7-й и 8-й) содержат очень короткие волокна (короче 1 мм), много пыли и «гали» (мелкие ку­ски руды и породы), что снижает армирующие свойства асбеста, поэтому от их применения воздерживаются. Кроме сортности ас­бест разделяют по маркам. Каждому сорту соответствует несколь­ко марок, отличающихся либо текстурой (полужесткая и мягкая в зависимости от степени расщепления или распущенности волокон в процессе обогащения), либо минимальным остатком (%) на верх­нем сите специального контрольного аппарата. Чем выше сорт ас­беста и жестче его текстура, тем выше качество изделий. Так, на­пример, 3-му сорту по текстуре соответствуют три марки асбеста с полужесткой текстурой (П-3-70; П-3-60; П-3-50) и две марки с мяг­кой текстурой (М-3-70; М-3-60); 5-му сорту соответствуют четыре марки асбеста с полужесткой и четыре марки асбеста с мягкой тек­стурами и т. д.

    Вода, используемая для распушки асбеста, промывочных работ и тем более для затворения цемента должна быть свободной от гли­нистых примесей, органических веществ или продуктов их разложе­ния, минеральных солей. Ее температура в технологическом цикле обычно составляет 30—40°С. Нередко используют рекуперацион-ную воду, которая участвовала в предыдущих циклах технологического процесса. Ее отбирают из нижней части рекуператоров. В ней ограничивают содержание взвешенных веществ (например, не более 100 мг/л), величину рН (не менее 8,5).

    Кроме трех основных компонентов в производстве асбестоце­ментных изделийприменяют добавочные вещества — пластифицирующие, уплотняющие, гидрофобизирующие и др., а также пигменты для придания изделию определенной окраски. Особенно важно добавлять вещества, повышающие фильтруемость суспензии на стадии формования листов.

    6.3. ОСНОВЫ ПРОИЗВОДСТВА АСБЕСТОЦЕМЕНТНЫХ ИЗДЕЛИЙ

    Асбестоцементные изделия изготовляют в основном по мокрому способу формования. Значительно реже используют полусухой и су­хой способы формования. Последний — при изготовлении только плоских листов и плиток.

    Мокрый способ технологии начинается с составления смески из асбеста нескольких марок, с тем чтобы при формовании обеспечить высокую фильтрующую способность, плотность и водоудержание. После этого производится распушка волокон асбеста. Распушенный асбест тщательно перемешивают с цементом в воде до получения однородной массы. Последнюю разбавляют еще дополнительным количеством воды, в результате чего получается асбестоцементная суспензия, в которую, если требуется, могут вводиться добавочные вещества (добавки). В асбестоцементной суспензии масса воды болee чем в 10 раз превышает массу цемента. Готовую суспензию на­правляют на формование асбестоцементных изделий — листов или 1руб. При этом большая часть (свыше 96%) свободной воды отфи­льтровывается и удаляется. Листам придают необходимые размеры и форму. Облицовочные листы и кровельные плитки дополнительно прессуют. Твердение вяжущей части, под влиянием которого асбестоцементные изделия приобретают требуемую механическую проч­ность, происходит на складах или в автоклавах (при песчанистом Портландцементе). Готовым изделиям путем их окраски и лицевой обработки может быть придана необходимая внешняя поверхность.

    К настоящему времени установились более или менее определен­ные составы (смески) асбеста разных месторождений при производ­стве асбестоцементных изделий. Они нормируются специальными технологическими картами.

    Операция распушивания асбеста в значительной мере обуслов­ливает качество продукции. На первой стадии механической обра­ботки на бегунах в течение 12—15 мин ослабевает связь между тончайшими волокнами асбеста. На второй стадии — в голлендере-пушителе или другом аппарате (6—8 мин) происходит разделение асбеста на тончайшие волоконца. Обычно распушка предпочтите­льнее по мокрому способу, т. е. на бегунах в присутствии воды. Голлендер, т. е. металлический резервуар, внутри которого вращается барабан, снабженный ножами, является всегда гидравлическим пушителем, так как разделение асбеста, обмятого бегунами, на тон­чайшие волоконца происходит в карманах между ножами барабана в результате воздействия быстрых вихревых движений струй воды В этом же аппарате обычно осуществляется и смешение распушен­ного асбеста с цементом в водной среде. Воду одновременно с за­грузкой цемента добавляют из нижней части рекуператора (сборни­ка отработанной воды).

    Асбестоцементная масса сравнительно быстро (за 8—10 мин) приобретает достаточную однородность, так как мельчайшие зерна цемента, несущие на поверхности высокий отрицательный электро­заряд, быстро осаждаются и прочно удерживаются на развитой по­верхности тонковолокнистого асбеста, также несущей высокий, но положительный заряд в водной и щелочной среде. Если использует­ся песчанистый цемент, то и мельчайшие частицы диспергированно­го песка также осаждаются на волокнах асбеста, хотя и при более продолжительном смешивании суспензии (12—13 мин). Для получе­ния подвижной суспензии требуется на 1 мас.ч. сухой асбестоцемен-тной смеси добавлять не менее 4—5 мас.ч. воды, что уточняется рас­четом в зависимости от сортов асбеста в смеске.

    Изготовленная асбестоцементная масса поступает в ковшовую мешалку для получения определенного запаса массы, чтобы поддер­живать непрерывность работы формовочной машины. Из мешалки масса направляется по желобу в металлические ванны, являющиеся частью листоформовочной машины. Одновременно в желоб непре­рывно поступает рекуперационная вода, отбираемая из нижней час­ти рекуператора, что позволяет поддерживать необходимую конси­стенцию массы. Асбестоцементная суспензия, поступающая в ванны сетчатых цилиндров листоформовочной машины, обычно состоит из 8—10% сухого вещества на 90—92% воды. Но имеются и другие листоформовочные машины, на которых применяют асбестоцементную суспензию более высокой концентрации, например до 40—45% сухого вещества (в нем до 15% асбеста, до 85% цемента).

    Формование листов и других асбестоцементных изделий мок­рым способом производится на круглосетчатой формовочной ма­шине (или полусухим — на фильтрующей ленте). Принцип формо­вания изделий состоит в отфильтровывании воды из слоев асбестоцементной массы под влиянием гидростатического давления до необходимого уплотнения. С этой целью в металличе­ской ванне , наполненной асбестоцементной суспензией, расположен полый каркасного типа цилиндр , обтянутый металлической сеткой (сетчатый барабан). На сетке масса осаждается тонким слоем и частично обезвоживается за счет фильтрации воды сквозь сетку. Вода из барабана отводится сначала в сгустители (рекуператоры) для отделения и возвращения в производство не осевшей части асбе­ста, а затем используется для промывки сетки и сукна и разжижения асбестоцементной массы в желобе. С поверхности барабана слой ас­бестоцементной массы снимается бесконечной суконной лентой. Пройдя на ленте вакуум-коробку (с разрежением примерно 300 мм рт.ст.), предварительно обезвоженная асбестоцементная мас­са переносится к металлическому форматному барабану, который снимает массу с ленты сукна и навивает ее на свою поверхность кон­центрическими слоями, при этом она уплотняется между вращаю­щимися металлическими цилиндрами. Когда асбестоцементный слой на барабане достигнет необходимой толщины, его разрезают по образующей цилиндра, и сырой лист снимают. Давление прессо­вой части листоформовочной машины составляет обычно 0,2— 0,4 МПа, для второго подрессовочного вала 10,0—12,0 МПа, для пресс-вала — до 40,0 МПа. В результате обжатий содержание влаги в листе значительно снижается и достигает 25%.

    При изготовлении плоских мелких изделий лист дополнительно разрезают на плитки, которые стопками прессуют под высоким дав­лением (до 40 МПа) на гидравлическом прессе. Если изготовляют волокнистые листы, то волнирование производится на специальных станках скальчатого типа периодического действия. Имеются стан­ки непрерывного действия, которые применяют во всех автоматизи­рованных линиях.

    Изделия твердеют в пропарочных камерах при температуре 50—60°С, относительной влажности 90—95% в течение 10—14 ч, а затем 5—7 сут в утепленном складе. Быстрее происходит твердение в автоклаве под действием пара давлением 0,8 МПа, что позволяет использовать песчанистый цемент и исключить выдерживание изде­лий на складе завода.

    При производстве труб принципы формования остаются теми же, но используют специальные трубоформовочные машины со съемными форматными барабанами (скалками). У трубо- и листоформовочных машин не имеется принципиальных отличий в конст­рукциях ванн сетчатых цилиндров, вакуумобезвоживающих устройств и устройств для очистки сукна.

    При окончании процесса навивания асбестоцементных слоев форматную скалку снимают и устанавливают новую. Чтобы можно было легко вынуть скалку, диаметр трубы несколько увеличивают. С этой целью сетку у концов немного растягивают с помощью ме­таллических клиньев и развальцовывают трубу на специальном ка­ландре.

    Сухой способ формования асбестоцементных листов предусмат­ривает распушку асбеста и смешивание его с цементом и песком в сухом виде. Для последующего увлажнения добавляют 12—15% воды, а уплотняют массу на конвейерной ленте катками или под прессом. Твердеют изделия, к которым в основном относятся плитки для пола и облицовочные, в автоклавах. Сухой способ по­зволяет применять коротковолокнистый асбест преимущественно 6-го сорта.

    6.4. ПРОДУКЦИЯ АСБЕСТОЦЕМЕНТНЫХ ЗАВОДОВ

    Асбестоцементные изделия находят широкое применение при устройстве кровельных покрытий, в стеновых конструкциях, тру­бопроводах и т. п. Промышленность выпускает волнистые листы, плоские листы непрессованные и прессованные, электроизоляцион­ные доски, некоторые специальные изделия — вентиляционные ко­роба, листы для градирен, детали для сводов метрополитена, пане­ли и др.

    Волокнистые листы производят различных размеров по длине, ширине, толщине, шагу и высоте волны, а используют их для крове­льных покрытий жилых, общественных и промышленных зданий. В широкой номенклатуре этих листов предусмотрены основные раз­меры: длина — в пределах от 1200 (листы ВО) до 2500 мм (листы усиленного профиля, унифицированного профиля и др.), ширина листов — от 686 до 1150 мм (в зависимости от профиля). Чем боль­ше размеры по длине и ширине, тем толще листы — от 5,5 до 7,5 мм. Высота и шаг волны листов приняты соответственно в пределах 28—54 и 115—200 мм. В настоящее время предусмотрен выпуск лис­тов пяти профилей. Имеется тенденция к дальнейшему увеличению размеров Профилированных и плоских листов, так как при их испо­льзовании снижается расход древесины на обрешетку и строитель­ные фермы, уменьшается трудоемкость и сокращаются сроки крове­льных работ.

    Плоские листы применяют для наружной и внутренней облицов­ки стен, потолков, перегородок и балконных ограждений. Их выпускают прессованными и непрессованными, с гладкой или тисненой (рельефной) поверхностью.

    Для покрытия полов в кухнях, санитарных узлах, магазинах, столовых и других изготовляют плитки размером 150х150х10 (13) мм различной окраски.

    Разработан и изготовляется ряд конструкций утепленных асбе­стоцементных плит для покрытий, например плиты АП, которые утеплены минеральной ватой, плиты АКП из двух асбестоцемент­ных листов, между которыми помещен утеплитель, и др. Разработа­ны и применяются также асбестоцементные стеновые панели с дере­вянным каркасом или бескаркасные. Их масса значительно меньше массы панелей из других материалов. Размеры и качественные пока­затели панелей и листов устанавливают соответствующие стандар­ты. Размеры крупноразмерных листов — 3600х1500; 3000х1200 мм и др., а мелкоразмерных — 1200х800 мм. Крупноразмерные листы могут выпускаться двоякой кривизны длиной до 5 м (для летних до­миков).

    Асбестоцементные трубы применяют для устройства водопровода и канализации в населенных пунктах. Безнапорные трубы используют при проведении дренажных линий, строительстве кабельных сетей и т. п. Внутренний диаметр труб (условный) составляет от 100 до 500 мм при длинах 3000 и 4000 мм (что зависит от типа трубоформовочных машин). Увеличивается выпуск труб длиной 5 и 6 м, что снижает количество стыков, расход муфт и уплотнительных колец.

    Освоено производство асбестоцементных труб с газонепроница­емыми покрытиями из полимерных материалов. Такие трубы обла­дают высокой водо-, бензо- и маслостойкостью и надежно заменяют стальные трубы.

    6.5. ОСНОВНЫЕ СВОЙСТВА АСБЕСТОЦЕМЕНТНЫХ ИЗДЕЛИЙ

    Основные свойства асбестоцемента — прочность и деформативность при воздействии статических и динамических (ударных) на­грузок. Для повышения сопротивляемости изделий воздействию ат­мосферных осадков, агрессивной внешней среды необходимо также обеспечить их достаточную плотность — водонепроницаемость, ми­нимально допустимое водопоглощение и др. Конкретные показате­ли качества асбестоцементных изделий определены в соответствую­щих стандартах. Так, например, согласно ГОСТ 16233—77 в отношении листов волнистых унифицированного профиля У В среди Других требований (формы, размеров, дефектов) предусматривает­ся, что их средняя плотность в высушенном состоянии должна быть Не менее 1,75 г/см3, что обеспечивает величину водопоглощения не более 25%. Минимальный предел прочности при изгибе волнистых Листов в поперечном к гребням волн направлении и в зависимости от толщины листа и сортности должен быть, как минимум, в преде­лах от 15,7 до 19,6 МПа, листы должны быть морозостойкими и вы­держивать в насыщенном водой состоянии не менее 25 циклов (у профиля УВ — не менее 50) попеременного замораживания и оттаи­вания без каких-либо признаков расслоения или повреждения, со­храняя после этого испытания не менее 90% первоначальной вели­чины предела прочности, чтобы при стандартном испытании они были водонепроницаемыми .

    Прочность труб оценивают в основном пределом прочности при разрыве, что определяется гидравлическим давлением. По величине максимального рабочего давления напорные водопроводные трубы разделяют на классы: до 0,6 МПа — класс ВТ6, до 0,9 МПа — класс ВТ9, до 1,2 МПа — класс ВТ12 и др. Газопроводные трубы по мак­симальному рабочему давлению разделяют на марки: для газопро­водов низкого давления (до 0,005 МПа) — марка ГАЗ-НД, для газо­проводов среднего давления (до 0,3 МПа) — марка ГАЗ-СД. Для соединения труб используют асбестоцементные муфты самоуплот­няющиеся типа САМ.

    К стандартным характеристикам качества асбестоцемента отно­сится еще ударная вязкость, т. е. сопротивляемость изделий ударной нагрузке. Этот важный показатель качества изделий выражается ра­ботой, затрачиваемой на разрушение образцов стандартных разме­ров при ударном воздействии маятника. Так, листы УВ толщиной 6—7,5 мм должны иметь ударную вязкость от 1,5 до 1,8 Дж/м2 в за­висимости от сорта.

    Из нестандартных характеристик качества асбестоцементных из­делий в ответственных конструкциях при нагрузках свыше 30—40% от разрушающих часто определяют прочность с учетом ползучести, величину модуля упругости, теплостойкость и некоторые другие по­казатели свойств.

    Ползучесть асбестоцемента по сравнению с бетонами значитель­но больше, что объясняется большим количеством геля в вяжущей части. По этой же причине величина ползучести и интенсивность ее прироста со временем уменьшаются, так как возрастает объем крис­таллизационной структуры в цементном камне и уменьшается объ­ем гелевой составляющей. Испытания показывают, что величина прогиба асбестоцементных плиток, находящихся под нагрузкой, равной 50% разрушающей, в 3—3,5 раза больше величины прогиба, возникающего под влиянием кратковременного воздействия той же нагрузки. Малозаметное проявление ползучести наблюдается при нагрузках, равных 2^—35% от разрушающих. Тем не менее проч­ность асбестоцементных изделий и конструкций всегда рассчитыва­ют с учетом ползучести.

    Модуль упругости асбестоцемента зависит от величины нагруз­ки. Если последняя не превышает 75—85% разрушающей, то модуль упругости при растяжении (асбестоцемент в основном работает на растяжение) равен: 12000 МПа — у непрессованного асбестоцемента со средней плотностью до 1,7 кг/м3, изготовленного на 5-м и 6-м сортах асбеста; 18000 МПа — у прессованного асбестоцемента с объемной массой до 1,9 г/см3, изготовленного на 3-м и 4-м сортах асбеста. При напряжениях, больших чем 75—85% разрушающего, пропорциональность между направлением и деформацией наруша­ется, так как удлинение образцов растет быстрее соответствующих напряжений.

    Модуль упругости увеличивается по мере повышения плотности и возраста асбестоцементных изделий, а также содержания асбеста.

    Теплостойкость — способность асбестоцемента выдерживать без потери прочности высокие температуры. Исследования показы­вают, что с началом дегидратации гидросиликатов кальция при температуре 300°С начинается понижение прочности асбестоцемен­та. При температуре 400°С снижение прочности достигает уже за­метной величины — до 10—15%. При дальнейшем повышении тем­пературы создаются условия для дегидратации гидрата оксида кальция с новой потерей прочности асбестоцемента (до 45%), поэто­му предельной температурой допустимого нагрева обычного асбе­стоцемента может быть принята температура 500°С, что и является его теплостойкостью.

    В целях экономии асбеста, являющегося сравнительно дефицит­ным природным материалом, предпринимались попытки заменить часть его другими компонентами, сходными в той или иной мере с тонковолокнистой структурой асбеста.

    В этом направлении проводились опыты по замене части асбеста стекловолокном, но они показали, что необходимо использовать щелочестойкое стекловолокно, так как обычное оказалось недолговечным и в эксплуатационный период асбестоцемент с добавлением нещелочестойкого стекловолокна быстро разрушался. В настоящее время изучена возможность использования для этих целей мергелевого и базальтового стекловолокна.

    На протяжении многих лет в ряде стран до 10—12% асбеста в производстве асбестоцементных изделий заменялись базальтовой минеральной ватой, которая обладает щелочестойкостью, сравни­тельно высокой коррозиестойкостью. Предпринимались положите­льные попытки заменять часть асбеста органическими заполните­лями, например целлюлозой, кострой (отход от переработки льна и конопли), что при условии их предварительной минерализации, например обработкой раствором хлористого кальция, дает эффект снижения расхода асбеста без заметного снижения качества асбе­стоцемента, особенно при сухой технологии изготовления изделий. Заменой асбестового волокна стремились также понизить опас­ность применения асбеста в связи с подозрениями на его концерогенность. Как установлено в настоящее время, такая опасность была сильно преувеличена и практически она весьма мала с безу­словным сохранением асбеста как ценного сырья в производстве строительных материалов и изделий. Для повышения химической стойкости стекловолокна в зарубежных предложениях рекоменду­ется вводить оксиды циркония, а также новые составы стеклово­локна.

    Тема 7 Лакокрасочные материалы
    1   ...   4   5   6   7   8   9   10   11   ...   19


    написать администратору сайта