Главная страница
Навигация по странице:

  • Кумароноинденовые полимеры

  • 9.3. ТЕРМОРЕАКТИВНЫЕ ПОЛИМЕРЫ

  • Фенолоальдегидные полимеры

  • 9.4. КАУЧУКИ И КАУЧУКОПОДОБНЫЕ ПОЛИМЕРЫ

  • Бутадиен -стирольные каучуки

  • СМ Черных. Тема 1 Материалы из стеклянных и других минеральных расплавов Определение, краткие исторические сведения


    Скачать 3.77 Mb.
    НазваниеТема 1 Материалы из стеклянных и других минеральных расплавов Определение, краткие исторические сведения
    АнкорСМ Черных.doc
    Дата19.08.2018
    Размер3.77 Mb.
    Формат файлаdoc
    Имя файлаСМ Черных.doc
    ТипДокументы
    #23204
    страница16 из 19
    1   ...   11   12   13   14   15   16   17   18   19

    Поливинилхлорид (—СН^ — СНС1—)„ — самый распространен­ный в строительстве полимер — представляет собой твердый матери­ал без запаха и вкуса, бесцветный или желтоватый (при переработке в результате термодеструкции может приобрести светло-коричне­вый цвет). Плотность поливинилхлорида 1400 кг/м3; предел прочно­сти при растяжении 40...60 МПа. КЛТРполивинилхлорида 50 • lO"6^1, теплопроводность — 0,22 Вт/(м • К). Температура текучести поливи­нилхлорида 180...200 °С, но уже при нагревании выше 160 °С он начи­нает разлагаться с выделением НС1. Это обстоятельство затрудняет переработку поливинилхлорида в изделия.

    Поливинилхлорид хорошо совмещается с пластификаторами. Это облегчает переработку и позволяет получать пластмассы с самы­ми разнообразными свойствами: жесткие листы и трубы, эластичные погонажные изделия, мягкие пленки. Поливинилхлорид хорошо сва­ривается; склеивается он только некоторыми видами клеев, напри­мер перхлорвиниловым. Положительное качество поливинилхлори­да — высокие химическая стойкость, диэлектрические показатели и низкая горючесть.

    В строительстве Поливинилхлорид применяют для изготовления материалов для полов (различные виды линолеума, плитки), труб, погонажных изделий (поручни, плинтусы сайдинг и т. п.) и отделоч­ных декоративных пленок и пенопластов.

    Перхлорвинил — продукт хлорирования поливинилхлорида, со­держащий 62,5...64,5 % (по массе) хлора, вместо 56 % в поливинил-хлориде. Плотность перхлорвинила около 1550...1580 кг/м . Он ха­рактеризуется очень высокой химической стойкостью (к кислотам, щелочам, окислителям); трудносгораем. В отличие от поливинилхло­рида перхлорвинил легко растворяется в хлорированных углеводоро­дах, ацетоне, этилацетате, толуоле, ксилоле и других растворителях. Положительное качество перхлорвинила — высокая адгезия к метал­лу, бетону, древесине, коже и поливинилхлориду. Сочетание высо­кой адгезии и хорошей растворимости позволяет использовать перхлорвинил в клеях и окрасочных составах. Перхлорвиниловые краски благодаря высокой стойкости этого полимера используют для отделки фасадов зданий (см. п. 18.2 и 18.5). Перхлорвинил — трудно-сгораемый материал.

    После работы с составами, содержащими перхлорвиниловый по­лимер, необходимо тщательно вымыть руки горячей водой с мылом и смазать их жирным кремом (вазелином, ланолином и т. п.). При силь­ном загрязнении рук их предварительно вытирают ветошью, смочен­ной в уайт-спирите (применять для этой цели бензол, толуол, этилированный бензин запрещается).

    Поликарбонаты — сравнительно новая для строительства группа полимеров — сложных эфиров угольной кислоты. Наибольший инте­рес представляютлинейные ароматические поликарбонаты с молеку­лярной массой (30...35) • 103, отличающиеся высокой температурой плавления (250 ± 20) °С и относящиеся к самозатухающим вещест­вам. Они отличаются высокими физико-механическими показателя­ми, мало изменяющимися в интервале температур от— 100до+ 150°С. Плотность поликарбонатов 1200 кг/м ; прочность при растяжении 65 ± 10 МПа при относительном удлинении 50...100 %; у них высокая ударопрочность и твердость (НВ 15...16 МПа).

    Перерабатывают поликарбонат в изделия экструзией, литьем под давлением горячим прессованием и др. Он легко обрабатывается ме­ханическими методами, сваривается горячим воздухом и склеивается с помощью растворителей. Поликарбонаты оптически прозрачны, устойчивы к атмосферным воздействиям, в том числе и к УФ-облуче-нию. Их широко применяют для электротехнических изделий (розе­ток, вилок, телефонных аппаратов и т.п.). В строительстве листовой поликарбонат и пустотелые (сотовые) панели используют для свето-прозрачных ограждений.

    Кумароноинденовые полимеры — полимеры, получаемые полиме­ризацией смеси кумарона и индена, содержащихся в каменноуголь­ной смоле и продуктах пиролиза нефти. Кумароноинденовый полимер имеет небольшую молекулярную массу (менее 3000) и в за­висимости от ее значения может быть каучукоподобным или твердым хрупким материалом. Снизить хрупкость кумароноинденовых поли­меров можно совмещая их с каучуками, фенолформальдегидными смолами и другими полимерами. Эти полимеры хорошо растворяют­ся в бензоле, скипидаре, ацетоне, растительных и минеральных мас­лах. Кумароноинденовые полимеры в расплавленном или растворен­ном виде хорошо смачивают другие материалы, а после затвердевания сохраняют адгезию к материалу, на который были нанесены. Они входят в состав плиток для полов, лакокрасочных материалов и при­клеивающих мастик.

    9.3. ТЕРМОРЕАКТИВНЫЕ ПОЛИМЕРЫ

    Молекулы термореактивных полимеров до их отверждения имеют линейное строение, такое же, как молекулы термопластичных поли­меров, но размер молекул реактопластов в этом состоянии сущест­венно меньше, чем у термопластов (как уже говорилось, такие продукты называют олигомерами).

    В отличие от термопластов, у которых молекулы химически инер­тны и не способны соединяться друг с другом, молекулы термореак­тивных олигомеров химически активны. Они либо содержат двойные (ненасыщенные) связи, либо химически активные группы. Поэтому при определенных условиях (при нагревании, облучении или добав­лении веществ-отвердителей) молекулы термореактивных олигоме­ров соединяются друг с другом, образуя сплошную пространственную сетку, как бы одну гигантскую макромолекулу.

    После отверждения свойства полимеров существенно изменяют­ся: они перестают размягчаться при нагревании, не растворяются, а только набухают в растворителях, становятся более прочными, твер­дыми и термостойкими.

    К термореактивным полимерам, используемым в строительстве, относятся: фенолоальдегидные, карбамидные, полиэфирные, эпок-сидные и полиуретановые.

    Фенолоальдегидные полимеры — первые синтетические полиме­ры, выпуск которых начался в начале XX в.

    Фенолоформальдегидные полимеры — наи­более распространенный полимер этого класса. Их получают поли­конденсацией фенола и формальдегида. Характерная особенность этих полимеров — коричневый цвет. В зависимости от соотношения сырьевых компонентов можно синтезировать новолачные и резоль-ные олигомерные смолы.

    Новолачные смолы (утверждаются только при добавлении ве-ществ-отвердителей (например, уротропина), а без них ведут себя как термопластичные полимеры (при нагревании плавятся и затвердева­ют при охлаждении).

    Резольные смолы при нагревании без добавления отвердителей плавятся, а потом в расплавленном состоянии густеют и постепенно необратимо затвердевают.

    До отверждения фенолоформальдегидные смолы хорошо раство­ряются в спиртах, ацетоне и других полярных растворителях. Фено­лоформальдегидные полимеры имеют хорошую адгезию к тканям, древесине и другим материалам и хорошо совмещаются с напол­нителями. Отвержденные полимеры обладают высокой химиче­ской стойкостью; они прочны, но хрупки. Для повышения эластичности и улучшения клеящих свойств их модифицируют дру­гими полимерами. Например, совмещая фенолоформальдегидную смолу резольного типа с поливинилбутиралем, получают водостой­кие и прочные клеи типа БФ (БФ-2, БФ-3, БФ-6). Такие клеи могут склеивать материалы при обычной температуре, но при горячем от-верждении прочность склейки повышается.

    Резорцинформальдегидные смолы аналогич­ны по свойствам фенолформальдегидным. Так как резорцин значи­тельно активнее фенола, то отверждение резорцинформальдегидных смол может происходить без нагревания. Поэтому резорциновые смолы используют для получения замазок, мастик и клеев холодного отверждения. Твердость, тепло- и химическая стойкость резорцин­формальдегидных полимеров выше, чем фенолоформальдегидных.

    Фенолоальдегидные полимеры в неотвержденном состоянии ток­сичны, поэтому при работе с ними необходимо соблюдать правила техники безопасности.

    Карбамидные полимеры — продукты поликонденсации мочевины и ее производных с формальдегидом; к ним относятся мочевинофор-мальдегидные и меламиноформальдегидные полимеры. По своим свойствам карбамидные полимеры имеют много общего с феноло-формальдегидными. Особенностью карбамидных полимеров являет­ся их бесцветность, светостойкость, отсутствие запаха и меньшая токсичность в исходном состоянии.

    Мочевиноформальдегидные п олимеры — один из самых дешевых полимеров, что объясняется доступностью сырья и простотой синтеза. В строительстве мочевиноформальде-гидные полимеры широко применяют в качестве полимерного связующего. Для этих целей используют главным образом водные растворы мочевиноформальдегидных смол. Отверждение смол про­изводится кислотными отвердителями при обычной температуре или при нагревании.

    Недостаток мочевиноформальдегидных полимеров — большая усадка при отверждении и недостаточная водостойкость отвержденно-го полимера. Для получения более водостойких материалов мочевино-формальдегидные полимеры модифицируют высшими спиртами, получая этерифицированные полимеры, растворимые в спиртах.

    В основном мочевиноформальдегидные полимеры используют для склеивания древесины и изготовления древесно-стружечных плит.

    Меламиноформальдегидные полимеры бо­лее дорогие, так как для их синтеза применяют более дорогое сы­рье — меламин. В отвержденном состоянии они имеют лучшие, чем мочевиноформальдегидные полимеры, свойства. Они характеризу­ются высокой твердостью и водостойкостью. Часто применяют сме­шанные мочевино- и меламиноформальдегидные полимеры.

    Из меламиноформальдегидных полимеров получают клеи для склеивания древесины, бумаги. Пример материала, получаемого на таких клеях,— декоративный бумажно-слоистый пластик, имеющий гладкую твердую поверхность, с довольно высокой термостойкостью, и ламинированные покрытия для полов (ламинат) .

    Большое количество карбамидных полимеров после соответству­ющей модификации используют для получения высококачественных лаков и красок, например для окраски автомашин.

    Ненасыщенные полиэфиры — олигомерные продукты в виде вяз­ких жидкостей, способные переходить в твердое состояние при вве­дении отвердителей. В строительстве применяют смолы двух типов:

    полиэфирмалеинаты и полиэфиракрилаты.

    Полиэфирмалеинатные смолы представляют собой раствор ненасыщенного, т. е. способного к сшивке, полиэфира в сти­роле. При введении в смолу инициирующей пары: перекисный ини­циатор (например, гипериз) и ускоритель разложения перекиси (например, нафтенат кобальта) — перекись, распадаясь, инициирует химическую активность стирола, и он сшивает молекулы полиэфира по ненасыщенным связям в пространственную сетку. При этом жид­кая смола превращается в твердый прочный материал. Обычно при­нимают соотношение смолы, инициатора и ускорителя 100 : 3 : 8. При 20 °С процесс отверждения длится 20...60 ч, но смола теряет те­ку честь (желируется) через 0,5... 2 ч.

    Полиэфиракрилаты — олигомерные смолы, не содер­жащие стирола и отверждаемые перекисными отвердителями в соче­тании с ускорителями.

    В отвержденном виде полиэфирные полимеры характеризуются высокой прочностью и химической стойкостью. Для снижения хруп­кости и получения высокопрочных конструкционных материалов их армируют стекловолокном. Такие материалы называют стеклопла­стиками.

    В строительных отделочных работах полиэфирные смолы исполь­зуют для устройства наливных бесшовных полов, изготовления зама­зок и шпатлевок. Большое количество полиэфирных смол применяют для лакирования древесины.

    Эпоксидные полимеры — большая группа олигомерных продуктов (от низковязких жидкостей до твердых смол), получивших свое назва­ние по эпоксидным группам, входящим в молекулу олигомеров. По этим эпоксидным группам линейные молекулы олигомерных смол можно сшивать отвердителями, главным образом аминами (например, полиэтиленполиамином ПЭПА). Благодаря высоким эксплуатацион­ным свойствам эпоксидные полимеры нашли широкое применение в различных областях техники.

    Характерные особенности эпоксидных полимеров — высокая ад-гезия к большинству материалов, универсальная химическая стой­кость, водостойкость и водонепроницаемость. Прочность отвержден-ных эпоксидных смол высокая —до 100...150 МПа.

    В строительстве чаще применяют эпоксидные смолы марок ЭД-16, ЭД-20, представляющие собой жидкости желтого цвета раз­личной вязкости. При введении отвердителя уже при нормальной температуре смола через 2...4 ч желируется, а через 8...12 ч необрати­мо затвердевает. Нагревание ускоряет твердение и увеличивает сте­пень отверждения. Положительное качество эпоксидных смол — малая усадка при твердении, что повышает прочность и трещино-стойкость изделий на их основе. Для повышения эластичности в смо­лы можно вводить пластификаторы.

    Эпоксидные полимеры применяют для устройства наливных бес­шовных полов высокой износо- и химической стойкости, изготовле­ния конструкционных строительных клеев (для склеивания и ремонта бетонных и металлических конструкций), применяют также в красках и шпатлевочных составах, в герметиках и полимеррастворах специального назначения.

    Полиуретановые полимеры в главной цепи макромолекулы содер­жат уретановую группу [— NH — (С—О) — О —]. Промышленное производство полиуретанов с каждым годом увеличивается благодаря большому разнообразию полиуретановых полимеров, обладающих ценными свойствами. Полиуретаны отличаются высокой прочно­стью, очень высокой стойкостью к истиранию и действию УФ излучения. Поэтому их применяют при изготовлении шин, конвей­ерных лент, подошв для обуви, покрытий полов общественных и про­мышленных зданий и спортивных площадок.

    Большое количество полиуретанов используют для получения пе-, нопластов: эластичных — поролона и жестких строительных пено-пластов. Одна из интереснейших разновидностей полиуретанов -пенополиуретаны, наносимые напылением: жидкую полиуретано-вую смолу разбрызгивают из распылителя на изолируемую поверх­ность, на которой в течение 10...30 с полиуретан вспенивается и отвердевает. Отвердителем одного из типов полиуретановых смол служит вода, поэтому лаками на этих смолах можно покрывать и влажные поверхности. Полиуретанами также покрывают металлоче­репицу (марка покрытия «полур»), для обеспечения высокой долго­вечности.

    При работе с олигомерными продуктами, в особенности фе­нол ьными и полиуретановыми, необходимо строго соблюдать технику безопасности, так как эти продукты раздражающе дей­ствуют на кожу и слизистые оболочки, а также являются силь­ными аллергенами. Рабочие места должны иметь хорошую вентиляцию, а работающие — снабжены средствами индивиду­альной защиты (перчатками, очками, респираторами).

    9.4. КАУЧУКИ И КАУЧУКОПОДОБНЫЕ ПОЛИМЕРЫ

    Каучук и каучукоподобные полимеры в отличие от обыкновен­ных полимеров при приложении растягивающей силы могут удли­няться в 2... 10 раз, а при прекращении действия этой силы восстанавливать свои первоначальные размеры. Это свойство объяс­няется особенностью строения каучуков: во-первых, их молекулы не вытянуты в линию, а как бы свернуты в спираль; во-вторых, взаимо­действие между молекулами существенно ниже, чем внутримолеку­лярные связи, и, в-третьих, молекулы соединены («сшиты») между собой в небольшом количестве мест.

    Большинство каучуков из-за больших размеров молекул довольно плохо растворяются, но сильно набухают в органических растворите­лях. Улучшить растворимость каучуков можно с помощью термоме­ханической деструкции их молекул, интенсивно перемешивая или перетирая материал на валках при повышенной температуре.

    При сшивке молекул каучука (этот процесс называют вулканиза­цией) число связей между молекулами увеличивается. У образовав­шегося продукта — резины — по сравнению с каучуком снижается эластичность и совершенно пропадает способность растворяться. При очень большом количестве сшивок образуется твердый проч­ный материал — эбонит. Сшивка обычно производится с помощью серы и инициирующей процесс системы.

    Слово «каучук» произошло от индейских слов «кау» — дерево и «учу» — течь, плакать, и первым каучуком, с которым познакомились люди, был натуральный каучук, получаемый из сока южно-амери­канского дерева — гевеи. Ценные свойства каучука и быстро расши­ряющиеся области его применения поставили задачу синтеза искус­ственного каучука. В начале нашего века благодаря усилиям химиков (большой вклад в это внесли русские химики — С. В. Лебедев и его школа) начался выпуск синтетических каучуков (СК). Современная химическая промышленность выпускает большое количество синте­тических каучуков с самыми разнообразными свойствами, в ряде слу­чаев превосходящими по свойствам натуральный.

    Каучуки выпускают в виде твердого эластичного продукта, вязкой жидкости (жидкие каучуки), водных дисперсий — каучуковых латек-сов. Латексы содержат 30...60 % каучука в виде мельчайших частиц средним диаметром 0,1...0,5 мкм, взвешенных в воде. Слиянию час­тиц препятствует находящаяся на их поверхности тончайшая оболоч­ка из поверхностно-активных веществ — стабилизаторов. С точки зрения строителя латексы имеют преимущества перед другими фор­мами СК: они относительно легко совмещаются с другими материа­лами (цементом, наполнителями), легко распределяются на поверхности тонкой пленкой, абсолютно не горючи и в них отсутст­вуют дорогостоящие и токсичные органические растворители.

    В строительстве каучук и каучукоподобные полимеры использу­ют главным образом для изготовления эластичных клеев и мастик, для модификации битумных и полимерных материалов, изготовле­ния материалов для полов и герметикой, а также для модификации бетонов (в последнем случае применяют латексы каучуков).

    Широко применяют в строительстве бутадиен-стирольный, по-лихлоропреновый, тиоколовый и бутилкаучук; кроме того, использу­ют каучукоподобные полимеры — полиизобутилен, атактический полипропилен и хлорсульфированный полиэтилен.

    Бутадиен -стирольные каучуки (каучук СКС) получают обычно со­вместной полимеризацией дивинила (бутадиена) со стиролом. Это основной вид синтетических каучуков, на его долю приходится более половины производимых синтетических каучуков. Выпускают боль-шое число марок бутадиен-стирольных каучуков с различным соот­ношением стирола и бутадиена: от СКС-10 до СКС-65 (цифра показывает процентное содержание по массе стирола в каучуке).

    Больше всего выпускают каучуки марки СКС-30. Он хорошо рас­творяется в бензине, бензоле и хлорированных углеводородах. Клея­щая способность каучуков СКС невысокая. Для ее повышения в каучуки добавляют канифоль, кумароноинденовую смолу или при­родный каучук. Бутадиен-стирольные каучуки достаточно морозо­стойки и атмосферостойки.

    В строительстве широко применяют бутадиен-стирольные латек-сы. Чаще других применяют латекс СКС-65. Содержание каучука в латексе около 47 %. При смешивании с цементом и другими мине­ральными порошками латекс СКС-65 может коагулировать. Поэтому для строительных целей промышленность выпускает стабилизиро­ванный латекс СКС-65Б. Обычный латекс можно стабилизировать, добавив около 10 % стабилизатора — поверхностно-активного ве­щества ОП-7 (ОП-10) или смеси ОП-7 (ОП-10)с казеинатом аммо­ния (1 : 1).

    На основе латекса СКС-65 получают клеящие мастики (напри­мер, клей «Бустилат»), латексно-цементные краски, составы для на­ливных полов. Латексом модифицируют строительные растворы.
    1   ...   11   12   13   14   15   16   17   18   19


    написать администратору сайта