СМ Черных. Тема 1 Материалы из стеклянных и других минеральных расплавов Определение, краткие исторические сведения
Скачать 3.77 Mb.
|
Тема 9. Органические вяжущие вещества 9.1. ОБЩИЕ СВЕДЕНИЯ Органические вяжущие вещества — это высокомолекулярные природные или синтетические вещества, способные: • приобретать жидковязкую консистенцию при нагревании или при действии растворителей или же имеющие жидковязкую консистенцию в исходном состоянии; • с течением времени самопроизвольно или под действием определенных факторов (температуры, УФ-облучения, веществ-отверди-телей и др.) переходить в твердое состояние. При этом как в жидком, так и в твердом состоянии большинстве этих веществ имеют хорошую адгезию к другим материалам. В зависимости от происхождения, химического и вещественногс состава органические вяжущие делят на следующие группы: • черные вяжущие (битумы и дегти); • природные смолы, клеи и полимеры; • синтетические полимерные продукты. Природные высокомолекулярные вещества применяют как в их естественном состоянии, так и после химической модификации, придающей им необходимые свойства. Например, целлюлозу применяют в виде эфиров (нитроцеллюлоза, метилцеллюлоза и т. п.). Битумы также часто подвергают модификации. Самая обширная группа органических вяжущих — синтетические полимеры. Их получают из низкомолекулярных продуктов (моно-меров) полимеризацией и поликонденсацией. Специфическая группа полимеров — каучуки и каучукоподобные полимеры, обладающие высокоэластичными свойствами — способностью к большим упругим деформациям; их также называют эластомерами. В зависимости от отношения к нагреванию и растворителям органические вяжущие делят на термопластичные и термореактивные. Термопластичными называют вещества, которые при нагревании переходят из твердого состояния в жидкое (плавятся), а при охлаждении вновь затвердевают; причем такие переходы могут повторяться много раз. Термопластичность объясняется линейным строением молекул и невысоким межмолекулярным взаимодействием. По этой же причине большинство термопластов способно растворяться в соответствующих растворителях. К термопластам относятся битумы, смолы, многие широко распространенные полимеры — полиэтилен, поливинилхлорид, полистирол и др. Термореактивными называют вещества, у которых переход из жидкого состояния в твердое происходит необратимо. При этом у них меняется молекулярная структура: линейные молекулы соединяются в пространственные сетки — гигантские макромолекулы. Такое необратимое твердение (этот процесс называют также отверждением, сшивкой, вулканизацией) происходит не только под действием нагрева (отсюда пошел термин «термореактивные вещества»), но и под действием веществ отвердителей, УФ и у-излучения и других факторов. От-вержденные термореактивные полимеры, как правило, более теплостойки, чем термопластичные. Термореактивные вяжущие поступают на строительство часто в виде вязких жидкостей, называемых не совсем правильно «смолами». В химической технологии такие продукты частичной полимеризации (с молекулярной массой менее 1000), имеющие линейное строение молекул и способные к дальнейшему укрупнению и образованию пространственных молекул, называют олигомерами. К термореактивным органическим вяжущим относятся, например, эпоксидные и полиэфирные олигомеры (смолы), олифы, каучу-ки в смеси с вулканизаторами и др. Органические вяжущие существенно отличаются от неорганических (минеральных). Адгезионные свойства многих органических вяжущих значительно выше, чем минеральных. Прочность на сжатие у них сопоставима с прочностью минеральных, а при изгибе и растяжении во много раз выше. У термопластичных вяжущих прочность быстро падает при повышении температуры из-за размягчения полимера. Органические вяжущие характеризуются низкой термостойкостью. В зависимости от состава и строения температура их размягчения составляет 80...250 °С. Все органические вяжущие — горючие вещества. 9.2. ТЕРМОПЛАСТИЧНЫЕ ПОЛИМЕРЫ Термопластичными называют полимеры, способные многократно размягчаться при нагревании и отвердевать при охлаждении. Эти и многие другие свойства термопластичных полимеров объясняются линейным строением их макромолекул. При нагревании взаимодействие между молекулами ослабевает и они могут сдвигаться одна относительно другой (как это происходит с частицами влажной глины), полимер размягчается, превращаясь при дальнейшем нагревании в вязкую жидкость. На этом свойстве базируются различные способы формования изделий из термопластов, а также соединение их сваркой. Однако на практике не все термопласты так просто можно перевести в вязкотекучее состояние, так как температура начала термического разложения некоторых полимеров ниже температуры их перехода в вязкотекучее состояние (это характерно, в частности, для поливинилхлорида, фторпластов и др.). В таком случае используют различные технологические приемы, снижающие температуру текучести (например, вводят пластификаторы) или задерживающие термодеструкцию (введением стабилизаторов, переработкой в среде инертного газа). Линейным строением молекул объясняется также способность термопластов не только набухать, но и хорошо растворяться в правильно подобранных растворителях. Тип растворителя зависит от химической природы полимера. Растворы полимеров, даже очень небольшой концентрации (2...5 %), отличаются довольно высокой вязкостью, причиной этого являются большие размеры полимерных молекул по сравнению с молекулами обычных низкомолекулярных веществ. После испарения растворителя полимер вновь переходит в твердое состояние. На этом основано использование растворов термопластов в качестве лаков, красок, клеев и вяжущего компонента в мастиках и полимеррастворах. К недостаткам термопластов относятся низкая теплостойкость (обычно не выше 80...120 °С), низкая поверхностная твердость, хрупкость при пониженных температурах и текучесть при высоких, склонность к старению под действием солнечных лучей и кислорода воздуха. Но положительные свойства пластмасс на основе термопластичных полимеров с лихвой компенсируют недостатки последних. Среди термопластов выделяют группу важнейших, называемых многотоннажными, годовое производство которых в мире достигает более 5 млн т в год (табл. 9.2). С учетом низкой плотности полимеров (почти в 8 раз ниже, чем у стали) объемы их производства сравнимы с объемами производства металлов. Таблица 9.2. Объемы производства главнейших термопластичных полимеров в мире (данные на 2001 г.)
В строительстве используется около 20...25 % производимых полимеров. Главнейшие термопластичные полимеры, применяемые в строительстве,— поливинилхлорид, полистирол, полиэтилен и полипропилен, а также поливинилацетат, полиакрилаты, полиизобути-лен и др. Кроме полимеров, получаемых из одного мономера, синтезируют сополимеры — продукты, получаемые совместной полимеризацией (сополимеризацией) двух и более мономеров. В таком случае образуются материалы с новым комплексом свойств. Так, винилацетат по-лимеризуют совместно с этиленом для получения сополимера более прочного и водостойкого, чем поливинилацетат, но сохраняющего его высокие адгезионные свойства. Широкий спектр сополимеров выпускают на базе акриловых мономеров. Полиэтилен (-СН^ — СН^ —)„ — продукт полимеризации этилена — самый распространенный в наше время полимер. Полиэтилен роговидный, жирный на ощупь, просвечивающийся материал, легко режется ножом; при поджигании горит и одновременно плавится с характерным запахом горящего парафина. При комнатной температуре полиэтилен практически не растворяется ни в одном из растворителей, но набухает в бензоле и хлорированных углеводородах; при температуре выше 70...80 °С он растворяется в указанных растворителях. Полиэтилен обладает высокой химической стойкостью, биологически инертен. Под влиянием солнечного излучения (УФ его составляющей) полиэтилен стареет, теряя эксплуатационные свойства. Впервые полиэтилен был синтезирован в 1932 г. методом высокого давления. Более эффективный метод низкого давления появился в 1953 г. В настоящее время полиэтилен синтезируют несколькими методами. При этом получают полиэтилен двух типов: высокой плотности (на изделиях из него стоит аббревиатура PEHD — Polyethilen High Dencity) и низкой плотности (PELD — Polyethilen Low Dencity), различающиеся строением молекул и физико-механическими свойствами (табл. 9.3). Полиэтилен высокой плотности с меньшей разветвленностью молекул имеет большую степень кристалличности, чем полиэтилен низкой плотности. Таблица 9.3. Физико-механические свойства полиэтилена
При нагреве до 50...60 °С полиэтилен снижает свои прочностные показатели, но при этом сохраняет эластичность до минус 60...70°С. Полиэтилен хорошо сваривается и легко перерабатывается в изделия. Из него изготавливают пленки (прозрачные и непрозрачные), трубы, электроизоляцию. Вспененный полиэтилен в виде листов и труб используется для целей теплоизоляции и герметизирующих прокладок (см. п. 16.4). Недостатки полиэтилена — низкая теплостойкость и твердость, горючесть, быстрое старение под действием солнечного света. Защищают полиэтилен от старения, вводя в него наполнители (сажу, алюминиевую пудру) и/или специальные стабилизаторы. Для повышения теплостойкости полиэтилена производят его молекулярную сшивку. Изделия из сшитого полиэтилена (РЕХ) могут работать при температуре до 95 °С и выдерживать кратковременный нагрев до 125...130 °С. При этом полиэтилен теряет способность свариваться. Сшитый полиэтилен используют при производстве труб и электрических кабелей. Полипропилен [—СН^ — СЩСН^)—]» — полимер, по составу близкий к полиэтилену. При синтезе полипропилена образуется несколько различных по строению полимеров: изотактический, атактический и синдиотактический. В основном применяется изотактический полипропилен. Он отличается от полиэтилена большей твердостью, прочностью и теплостойкостью (температура размягчения около 170°С), переход в хрупкое состояние происходит уже при минус 10...20 °С. Плотность полипропилена 920...930 кг/м ; прочность при растяжении 25...30 МПа; относительное удлинение при разрыве 200...800 %. Полипропилен плохо проводит тепло — Х = 0,15 Вт/(м • К). Максимальная температура эксплуатации для изделий из полипропилена 120...140 °С, но изделия, находящиеся в нагруженном состоянии, например трубы горячего водоснабжения, не рекомендуется использовать при температуре выше 75 °С. Применяют полипропилен практически для тех же целей, что и полиэтилен, но изделия из него более жесткие и формоустойчивые. Атактический полипропилен (АПП) получается при синтезе полипропилена как неизбежная примесь, но легко отделяется от изотакти-ческого полипропилена экстракцией (растворением в углеводородных растворителях). АПП—мягкий эластичный продукт плотностью 840...845 кг/м с температурой размягчения 30...80°С. Применяют АПП как модификатор битумных композиций в кровельных материалах (см. п. 16.2). Полиизобутилен [— СНд — С(СНз)з — СН^ —]„ — каучукоподоб-ный термопластичный полимер, подробно описанный в п. 9.5. Полистирол (поливинилбензол) [- СН^ - СЩС^Нз) —]„ — прозрачный полимер плотностью 1050...1080 кг/м ; при комнатной температуре жесткий и хрупкий, а при нагревании до 80... 100 °С размягчающийся. Прочность при растяжении (при 20 °С) 35...50 МПа. Полистирол хорошо растворяется в ароматических углеводородах (влияние бензольного кольца, входящего в состав молекул полистирола), сложных эфирах и хлорированных углеводородах. Полистирол горюч и хрупок. Для снижения хрупкости полистирол синтезируют с другими мономерами или совмещают с каучуками (ударопрочный полистирол). В строительстве полистирол применяют для изготовления теплоизоляционного материала — пенополистирола, по структуре аналогичного ячеистому бетону (плотностью 15...50 кг/м3), облицовочных плиток и мелкой фурнитуры. Раствор полистирола в органических растворителях — хороший клей. Поливинилацетат [— СНд — СЩСН^СОО) —]„ — прозрачный бесцветный жесткий при комнатной температуре полимер плотностью 1190 кг/м3. Поливинилацетат растворим в кетонах (ацетоне), сложных эфирах, хлорированных и ароматических углеводородах, набухает в воде; в алифатических и терпеновых углеводородах не растворяется. Поливинилацетат не стоек к действию кислот и щелочей; при нагреве выше 130... 150 °С он разлагается с выделением уксусной кислоты. Положительное свойство поливинилацетата — высокая адгезия к каменным материалам, стеклу, древесине. В строительстве Поливинилацетат применяют в виде поливинила-цетатной дисперсии (ПВАД) — сметанообразной массы белого или светло-кремового цвета, хорошо смешивающейся с водой. Поливи-нилацетатную дисперсию получают полимеризацией жидкого ви-нилацетата, эмульсированного в виде мельчайших частиц (до 5 мкм) в воде. Для стабилизации эмульсии винилацетата используют поливиниловый спирт [— СН^ — СН(ОН) -]„. При полимеризации капельки винилацетата превращаются в твердые частицы поливинилацетата, таким образом получается поливинилацетатная дисперсия, стабилизатором которой служит тот же поливиниловый спирт. Содержание полимера в дисперсии около 50 %. Поливинилацетатная дисперсия выпускается средней (С), низкой (Н) и высокой (В) вязкости в пластифицированном и непластифицированном виде. Пластификатором служит дибутилфталат, содержание которого указывается в марке индексом. В грубодисперс-ной ПВАД, обычно применяемой в строительстве, содержание пластификатора (% от массы полимера): 5...10 (индекс 4), 10...15 (индекс 7) и 30...35 (индекс 20). По внешнему виду пластифицированная и непластифицированная дисперсии почти не отличаются одна от другой. Поэтому, чтобы определить вид дисперсии, небольшое ее количество наносят на чистое стекло и выдерживают при комнатной температуре до высыхания. У пластифицированной дисперсии образуется прозрачная эластичная пленка, у непластифицированной — пленка ломкая, снимается со стекла с трудом, крошится. Необходимо помнить, что пластифицированная дисперсия немо-рбзостойка и при замораживании необратимо разрушается с осаждением полимера. Поэтому в зимнее время пластификатор поставляют в отдельной упаковке. Для пластификации пластификатор перемешивают с дисперсией и выдерживают 3...4 ч для его проникновения в частицы полимера. Непластифицированная дисперсия выдерживает не менее четырех циклов замораживания — оттаивания при температуре до—40 °С. Срок хранения ПВАД при температуре 5... 20 °С — бмес. Поливинилацетат широко применяют в строительстве. На его основе делают клеи, вододисперсионные краски, моющиеся обои. ПВАД применяют для устройства наливных мастичных полов и для модификации цементных растворов (полимерцементные растворы и бетоны—ем, п. 12.8). Дисперсией, разбавленной до 5...10%-ной концентрации, грунтуют бетонные поверхности перед приклеиванием облицовки на полимерных мастиках и перед нанесением полимер-цементных растворов. Недостаток материалов на основе дисперсий поливинилацета-та — чувствительность к воде: материалы набухают, и на них могут появиться высолы. Это объясняется наличием в дисперсиях заметного количества водорастворимого стабилизатора и способностью самого полимера набухать в воде. Так как дисперсия имеет слабокислую реакцию (рН 4,5...6), при нанесении на металлические изделия возможна коррозия металла. |