Главная страница
Навигация по странице:

  • 9.2. ТЕРМОПЛАСТИЧНЫЕ ПОЛИМЕРЫ

  • Таблица 9.2. Объемы производства главнейших термопластичных полимеров в мире (данные на 2001 г.)

  • Таблица 9.3. Физико-механические свойства полиэтилена

  • Полипропилен

  • Полиизобутилен

  • Поливинилацетат

  • СМ Черных. Тема 1 Материалы из стеклянных и других минеральных расплавов Определение, краткие исторические сведения


    Скачать 3.77 Mb.
    НазваниеТема 1 Материалы из стеклянных и других минеральных расплавов Определение, краткие исторические сведения
    АнкорСМ Черных.doc
    Дата19.08.2018
    Размер3.77 Mb.
    Формат файлаdoc
    Имя файлаСМ Черных.doc
    ТипДокументы
    #23204
    страница12 из 19
    1   ...   8   9   10   11   12   13   14   15   ...   19
    Тема 9. Органические вяжущие вещества

    9.1. ОБЩИЕ СВЕДЕНИЯ

    Органические вяжущие вещества — это высокомолекулярные природные или синтетические вещества, способные:

    • приобретать жидковязкую консистенцию при нагревании или при действии растворителей или же имеющие жидковязкую конси­стенцию в исходном состоянии;

    • с течением времени самопроизвольно или под действием опре­деленных факторов (температуры, УФ-облучения, веществ-отверди-телей и др.) переходить в твердое состояние.

    При этом как в жидком, так и в твердом состоянии большинстве этих веществ имеют хорошую адгезию к другим материалам.

    В зависимости от происхождения, химического и вещественногс состава органические вяжущие делят на следующие группы:

    • черные вяжущие (битумы и дегти);

    • природные смолы, клеи и полимеры;

    • синтетические полимерные продукты.

    Природные высокомолекулярные вещества применяют как в их естественном состоянии, так и после химической модификации, придающей им необходимые свойства. Например, целлюлозу приме­няют в виде эфиров (нитроцеллюлоза, метилцеллюлоза и т. п.). Биту­мы также часто подвергают модификации.

    Самая обширная группа органических вяжущих — синтетиче­ские полимеры. Их получают из низкомолекулярных продуктов (моно-меров) полимеризацией и поликонденсацией. Специфическая группа полимеров — каучуки и каучукоподобные полимеры, обладающие высокоэластичными свойствами — способностью к большим упру­гим деформациям; их также называют эластомерами.

    В зависимости от отношения к нагреванию и растворителям орга­нические вяжущие делят на термопластичные и термореактивные.

    Термопластичными называют вещества, которые при нагревании переходят из твердого состояния в жидкое (плавятся), а при охлажде­нии вновь затвердевают; причем такие переходы могут повторяться много раз. Термопластичность объясняется линейным строением молекул и невысоким межмолекулярным взаимодействием. По этой же причине большинство термопластов способно растворяться в со­ответствующих растворителях. К термопластам относятся битумы, смолы, многие широко распространенные полимеры — полиэтилен, поливинилхлорид, полистирол и др.

    Термореактивными называют вещества, у которых переход из жидкого состояния в твердое происходит необратимо. При этом у них меняется молекулярная структура: линейные молекулы соединяются в пространственные сетки — гигантские макромолекулы. Такое не­обратимое твердение (этот процесс называют также отверждением, сшивкой, вулканизацией) происходит не только под действием нагрева (отсюда пошел термин «термореактивные вещества»), но и под дейст­вием веществ отвердителей, УФ и у-излучения и других факторов. От-вержденные термореактивные полимеры, как правило, более теплостойки, чем термопластичные.

    Термореактивные вяжущие поступают на строительство часто в виде вязких жидкостей, называемых не совсем правильно «смолами». В химической технологии такие продукты частичной полимеризации (с молекулярной массой менее 1000), имеющие линейное строение молекул и способные к дальнейшему укрупнению и образованию пространственных молекул, называют олигомерами.

    К термореактивным органическим вяжущим относятся, напри­мер, эпоксидные и полиэфирные олигомеры (смолы), олифы, каучу-ки в смеси с вулканизаторами и др.

    Органические вяжущие существенно отличаются от неорганиче­ских (минеральных). Адгезионные свойства многих органических вяжущих значительно выше, чем минеральных. Прочность на сжа­тие у них сопоставима с прочностью минеральных, а при изгибе и растяжении во много раз выше. У термопластичных вяжущих проч­ность быстро падает при повышении температуры из-за размягче­ния полимера. Органические вяжущие характеризуются низкой термостойкостью. В зависимости от состава и строения температура их размягчения составляет 80...250 °С. Все органические вяжущие — горючие вещества.

    9.2. ТЕРМОПЛАСТИЧНЫЕ ПОЛИМЕРЫ

    Термопластичными называют полимеры, способные много­кратно размягчаться при нагревании и отвердевать при охлаждении. Эти и многие другие свойства термопластичных полимеров объяс­няются линейным строением их макромолекул. При нагревании взаимодействие между молекулами ослабевает и они могут сдви­гаться одна относительно другой (как это происходит с частицами влажной глины), полимер размягчается, превращаясь при дальней­шем нагревании в вязкую жидкость. На этом свойстве базируются различные способы формования изделий из термопластов, а также соединение их сваркой.

    Однако на практике не все термопласты так просто можно переве­сти в вязкотекучее состояние, так как температура начала термиче­ского разложения некоторых полимеров ниже температуры их перехода в вязкотекучее состояние (это характерно, в частности, для поливинилхлорида, фторпластов и др.). В таком случае используют различные технологические приемы, снижающие температуру теку­чести (например, вводят пластификаторы) или задерживающие тер­модеструкцию (введением стабилизаторов, переработкой в среде инертного газа).

    Линейным строением молекул объясняется также способность термопластов не только набухать, но и хорошо растворяться в пра­вильно подобранных растворителях. Тип растворителя зависит от хи­мической природы полимера. Растворы полимеров, даже очень небольшой концентрации (2...5 %), отличаются довольно высокой вязкостью, причиной этого являются большие размеры полимерных молекул по сравнению с молекулами обычных низкомолекулярных веществ. После испарения растворителя полимер вновь переходит в твердое состояние. На этом основано использование растворов тер­мопластов в качестве лаков, красок, клеев и вяжущего компонента в мастиках и полимеррастворах.

    К недостаткам термопластов относятся низкая теплостойкость (обычно не выше 80...120 °С), низкая поверхностная твердость, хруп­кость при пониженных температурах и текучесть при высоких, склонность к старению под действием солнечных лучей и кислорода воздуха.

    Но положительные свойства пластмасс на основе термопластич­ных полимеров с лихвой компенсируют недостатки по­следних. Среди термопластов выделяют группу важнейших, называе­мых многотоннажными, годовое производство которых в мире достигает более 5 млн т в год (табл. 9.2). С учетом низкой плотности полимеров (почти в 8 раз ниже, чем у стали) объемы их производства сравнимы с объемами производства металлов.

    Таблица 9.2. Объемы производства главнейших термопластичных полимеров в мире (данные на 2001 г.)

    Полимер

    Годовое производство

    млн т

    %

    Полиэтилен

    51,0

    42,0

    Полипропилен

    28,5

    23,2

    Поливинилхлорид

    22,5

    18,3

    Полистирол

    13,5

    11,0

    Полиэтилентерефталат

    6,75

    5,5


    В строительстве используется около 20...25 % производимых по­лимеров. Главнейшие термопластичные полимеры, применяемые в строительстве,— поливинилхлорид, полистирол, полиэтилен и по­липропилен, а также поливинилацетат, полиакрилаты, полиизобути-лен и др.

    Кроме полимеров, получаемых из одного мономера, синтезируют сополимеры — продукты, получаемые совместной полимеризацией (сополимеризацией) двух и более мономеров. В таком случае образу­ются материалы с новым комплексом свойств. Так, винилацетат по-лимеризуют совместно с этиленом для получения сополимера более прочного и водостойкого, чем поливинилацетат, но сохраняющего его высокие адгезионные свойства. Широкий спектр сополимеров выпускают на базе акриловых мономеров.

    Полиэтилен (-СН^ — СН^ —)„ — продукт полимеризации этиле­на — самый распространенный в наше время полимер. Полиэтилен роговидный, жирный на ощупь, просвечивающийся материал, легко режется ножом; при поджигании горит и одновременно плавится с ха­рактерным запахом горящего парафина. При комнатной температуре полиэтилен практически не растворяется ни в одном из растворите­лей, но набухает в бензоле и хлорированных углеводородах; при тем­пературе выше 70...80 °С он растворяется в указанных растворителях.

    Полиэтилен обладает высокой химической стойкостью, биологи­чески инертен. Под влиянием солнечного излучения (УФ его состав­ляющей) полиэтилен стареет, теряя эксплуатационные свойства.

    Впервые полиэтилен был синтезирован в 1932 г. методом высоко­го давления. Более эффективный метод низкого давления появился в 1953 г. В настоящее время полиэтилен синтезируют несколькими ме­тодами. При этом получают полиэтилен двух типов: высокой плотно­сти (на изделиях из него стоит аббревиатура PEHD — Polyethilen High Dencity) и низкой плотности (PELD — Polyethilen Low Dencity), различающиеся строением молекул и физико-механиче­скими свойствами (табл. 9.3). Полиэтилен высокой плотности с меньшей разветвленностью молекул имеет большую степень кри­сталличности, чем полиэтилен низкой плотности.

    Таблица 9.3. Физико-механические свойства полиэтилена

    Показатель

    Тип полиэтилена

    низкой плотности (LD)

    высокой плотности (HD)

    Плотность, кг/м3

    910...930

    930...970

    Температура плавления, °С

    103...110

    120...137

    Теплопроводность, Вт/м • К

    0,33...0,36

    0,42...0,52

    Предел прочности при растя­жении, МПа

    10...17

    18...45

    Предел текучести при растя­жении, МПа

    9...16

    12...30

    Относительное удлинение, %

    100...800

    200...1200

    Твердость по Бринеллю, МПа

    17...25

    50...68


    При нагреве до 50...60 °С полиэтилен снижает свои прочностные показатели, но при этом сохраняет эластичность до минус 60...70°С. Полиэтилен хорошо сваривается и легко перерабатывается в изделия. Из него изготавливают пленки (прозрачные и непрозрачные), трубы, электроизоляцию. Вспененный полиэтилен в виде листов и труб ис­пользуется для целей теплоизоляции и герметизирующих прокладок (см. п. 16.4).

    Недостатки полиэтилена — низкая теплостойкость и твер­дость, горючесть, быстрое старение под действием солнечного света. Защищают полиэтилен от старения, вводя в него напол­нители (сажу, алюминиевую пудру) и/или специальные стаби­лизаторы.

    Для повышения теплостойкости полиэтилена производят его мо­лекулярную сшивку. Изделия из сшитого полиэтилена (РЕХ) могут работать при температуре до 95 °С и выдерживать кратковременный нагрев до 125...130 °С. При этом полиэтилен теряет способность сва­риваться. Сшитый полиэтилен используют при производстве труб и электрических кабелей.

    Полипропилен [—СН^ — СЩСН^)—]» — полимер, по составу близ­кий к полиэтилену. При синтезе полипропилена образуется несколь­ко различных по строению полимеров: изотактический, атактический и синдиотактический.

    В основном применяется изотактический полипропилен. Он от­личается от полиэтилена большей твердостью, прочностью и тепло­стойкостью (температура размягчения около 170°С), переход в хрупкое состояние происходит уже при минус 10...20 °С. Плотность полипропилена 920...930 кг/м ; прочность при растяжении 25...30 МПа; относительное удлинение при разрыве 200...800 %. Полипро­пилен плохо проводит тепло — Х = 0,15 Вт/(м • К).

    Максимальная температура эксплуатации для изделий из поли­пропилена 120...140 °С, но изделия, находящиеся в нагруженном со­стоянии, например трубы горячего водоснабжения, не рекомендуется использовать при температуре выше 75 °С.

    Применяют полипропилен практически для тех же целей, что и полиэтилен, но изделия из него более жесткие и формоустойчивые.

    Атактический полипропилен (АПП) получается при синтезе поли­пропилена как неизбежная примесь, но легко отделяется от изотакти-ческого полипропилена экстракцией (растворением в углеводородных растворителях). АПП—мягкий эластичный продукт плотностью 840...845 кг/м с температурой размягчения 30...80°С. Применяют АПП как модификатор битумных композиций в кровельных матери­алах (см. п. 16.2).

    Полиизобутилен [— СНд — С(СНз)з — СН^ —]„ — каучукоподоб-ный термопластичный полимер, подробно описанный в п. 9.5.

    Полистирол (поливинилбензол) [- СН^ - СЩС^Нз) —]„ — проз­рачный полимер плотностью 1050...1080 кг/м ; при комнатной тем­пературе жесткий и хрупкий, а при нагревании до 80... 100 °С размяг­чающийся. Прочность при растяжении (при 20 °С) 35...50 МПа. Полистирол хорошо растворяется в ароматических углеводородах (влияние бензольного кольца, входящего в состав молекул полисти­рола), сложных эфирах и хлорированных углеводородах. Полистирол горюч и хрупок. Для снижения хрупкости полистирол синтезируют с другими мономерами или совмещают с каучуками (ударопрочный полистирол).

    В строительстве полистирол применяют для изготовления теп­лоизоляционного материала — пенополистирола, по структуре анало­гичного ячеистому бетону (плотностью 15...50 кг/м3), облицовочных плиток и мелкой фурнитуры. Раствор полистирола в органических растворителях — хороший клей.

    Поливинилацетат [— СНд — СЩСН^СОО) —]„ — прозрачный бес­цветный жесткий при комнатной температуре полимер плотностью 1190 кг/м3. Поливинилацетат растворим в кетонах (ацетоне), слож­ных эфирах, хлорированных и ароматических углеводородах, набуха­ет в воде; в алифатических и терпеновых углеводородах не растворяется. Поливинилацетат не стоек к действию кислот и щело­чей; при нагреве выше 130... 150 °С он разлагается с выделением ук­сусной кислоты. Положительное свойство поливинилацетата — высокая адгезия к каменным материалам, стеклу, древесине.

    В строительстве Поливинилацетат применяют в виде поливинила-цетатной дисперсии (ПВАД) — сметанообразной массы белого или светло-кремового цвета, хорошо смешивающейся с водой. Поливи-нилацетатную дисперсию получают полимеризацией жидкого ви-нилацетата, эмульсированного в виде мельчайших частиц (до 5 мкм) в воде. Для стабилизации эмульсии винилацетата используют поливи­ниловый спирт [— СН^ — СН(ОН) -]„. При полимеризации капельки винилацетата превращаются в твердые частицы поливинилацетата, таким образом получается поливинилацетатная дисперсия, стабили­затором которой служит тот же поливиниловый спирт. Содержание полимера в дисперсии около 50 %.

    Поливинилацетатная дисперсия выпускается средней (С), низ­кой (Н) и высокой (В) вязкости в пластифицированном и непласти­фицированном виде. Пластификатором служит дибутилфталат, содержание которого указывается в марке индексом. В грубодисперс-ной ПВАД, обычно применяемой в строительстве, содержание пласти­фикатора (% от массы полимера): 5...10 (индекс 4), 10...15 (индекс 7) и 30...35 (индекс 20).

    По внешнему виду пластифицированная и непластифицирован­ная дисперсии почти не отличаются одна от другой. Поэтому, чтобы определить вид дисперсии, небольшое ее количество наносят на чис­тое стекло и выдерживают при комнатной температуре до высыхания. У пластифицированной дисперсии образуется прозрачная эластич­ная пленка, у непластифицированной — пленка ломкая, снимается со стекла с трудом, крошится.

    Необходимо помнить, что пластифицированная дисперсия немо-рбзостойка и при замораживании необратимо разрушается с осажде­нием полимера. Поэтому в зимнее время пластификатор поставляют в отдельной упаковке. Для пластификации пластификатор перемешива­ют с дисперсией и выдерживают 3...4 ч для его проникновения в части­цы полимера. Непластифицированная дисперсия выдерживает не менее четырех циклов замораживания — оттаивания при температуре до—40 °С. Срок хранения ПВАД при температуре 5... 20 °С — бмес.

    Поливинилацетат широко применяют в строительстве. На его ос­нове делают клеи, вододисперсионные краски, моющиеся обои. ПВАД применяют для устройства наливных мастичных полов и для модификации цементных растворов (полимерцементные растворы и бетоны—ем, п. 12.8). Дисперсией, разбавленной до 5...10%-ной концентрации, грунтуют бетонные поверхности перед приклеивани­ем облицовки на полимерных мастиках и перед нанесением полимер-цементных растворов.

    Недостаток материалов на основе дисперсий поливинилацета-та — чувствительность к воде: материалы набухают, и на них могут появиться высолы. Это объясняется наличием в дисперсиях заметно­го количества водорастворимого стабилизатора и способностью са­мого полимера набухать в воде. Так как дисперсия имеет слабокислую реакцию (рН 4,5...6), при нанесении на металлические изделия возможна коррозия металла.
    1   ...   8   9   10   11   12   13   14   15   ...   19


    написать администратору сайта