Учебник для студентов фармацевтических вузов и факультетов Под редакцией
Скачать 7.13 Mb.
|
Химические методы стерилизации. Для изделий из резины, полимерных материалов, стекла, коррозиестойких металлов в настоящее время применяют химические методы стерилизации газами и растворами. Для газовой стерилизации используют этилена оксид чистый или с различными флегматизаторами (бромистый метил, углерода диоксид, фреоны и др.). Стерилизацию осуществляют в газовых стерилизаторах. Эффективность стерилизации этим методом зависит от дозы стерилизующего агента, температуры, относительной влажности воздуха. Стерилизуемые объекты предварительно упаковывают в пакеты из полиэтиленовой пленки или пергаментную бумагу. Изделия, про-стерилизованные газовым методом, выдерживают в вентилируемом помещении в течение одних или нескольких суток в зависимости от вида изделий и их назначения. Стерилизацию газами можно также применять и для стерилизации воздуха в боксах, вспомогательных материалов (особенно термолабильных), посуды, пробок; перевязочного материала, предметов ухода за больными и т. д. Газы легко проникают через упаковочные материалы (бумагу, целлофан, полиэтилен), а после стерилизации легко улетучиваются. Необходимо помнить об их ядовитости, раздражающем действии и при работе с ними соблюдать меры защиты (специальная одежда, маски и др.). В зарубежных странах широкое применение для стерилизации воздуха находят аэрозольные препараты, представляющие собой жидкие физико-химические системы, приготовленные на сжиженных газах (фтортрихлорметан, трифтортрихлорэтан, углерода диоксид и др.). Аэрозоли могут находиться длительное время в воздухе, оказывая дезинфицирующее действие. Для стерилизации воздуха используют аэрозоли этиленгликоля и полиэтиленгликолей. Наиболее эффективным считают аэрозоль триэтиленгликоля, при распылении которого полная стерильность воздуха в помещении достигается за несколько минут. Изучается также использование газовой стерилизации для лекарственных веществ и растворов (атропина сульфата, промедола, кордиамина, кофеин-бензоата натрия и др.). В этом случае необходимо прежде всего выяснить возможность взаимодействия газов с лекарственными веществами. В зарубежной литературе имеются сообщения о возможности стерилизации газами антибиотиков, панкреатина и некоторых других веществ. Для стерилизации растворов можно применять Р-пропилолактон, который представляет собой жидкость, кипящую при 153 °С. Растворяясь в воде, он гидролизуется до (3-оксипропионовой кислоты. Р-пропилолактон применяют в концентрации 0,2 % по объему и инкубируют при 37 °С в течение 2 секунд. Для химической стерилизации растворами используют 6 % -ный раствор водорода пероксида и надкислоты (дезоксон-1). Стерилизацию производят в закрытых емкостях из стекла, пластмассы или покрытых эмалью. Эффективность стерилизации этим методом зависит от концентрации стерилизующего агента, времени стерилизации и температуры стерилизующегося раствора. При химической стерилизации изделие полностью погружают в раствор, выдерживают в нем определенное время, а затем промывают стерильной водой в асептических условиях. Одной из разновидностей химической стерилизации является консервирование лекарственных форм, то есть предохранение лекарственных препаратов от микробной порчи в процессе их использования путем добавления к ним различных химических веществ. К консервантам предъявляется ряд требований: фармакологическая индифферентность в используемой концентрации (отсутствие общетоксического и местнораздражающего действия); широкий антимикробный спектр; отсутствие химического взаимодействия с лекарственными веществами и другими компонентами лекарственных препаратов; отсутствие влияния на органолептические свойства лекарств; устойчивость при хранении; поддержание стерильности лекарственных форм в течение всего времени их применения, то есть надежная антимикробная активность. Консервирующие вещества применяются только в крайне необходимых случаях, когда нельзя писпользовать стерилизацию или другие приемы для сохранения стерильности из-за сложной физико-химической структуры лекарственных препаратов или из-за невозможности создания упаковок с одноразовыми дозами. Консерванты применяют также для сохранения стерильности при многократном использовании. Проблема консервирования лекарственных препаратов особенно важна для стерильных и асептически приготовляемых лекарственных форм. Поэтому характеристика консервантов представлена в данной главе (эти вещества могут также применяться в технологии водных извлечений, эмульсий, мазей, приготовленных на гидрофильных и эмульсионных основах, и др.). Консервирующие вещества прибавляются к растворам для инъекций, содержащих вещества, разлагающиеся при нагревании. Консерванты должны быть указаны в рецепте или в частных статьях. Их наименование и количество пишется в ППК. Лекарственные средства для внутриполостных, внутрисердечных, внутриглазных и инъекций, имеющих доступ к спинномозговой жидкости, а также при разовой дозе, превышающей 15 мл, не должны содержать консервантов. Необходимость консервирования лекарственных форм в настоящее время возрастает еще больше в связи с расширением ассортимента готовых лекарственных форм, требующих длительного хранения. Ю. И. Зеликсоном предложено наиболее часто используемые консерванты классифицировать следующим образом: — неорганические соединения; — металлоорганические соединения; — органические соединения: спирты, кислоты, эфиры, соли четвертичных аммониевых соединений. Неорганические соединения (препараты серебра, серебряная вода и др.) — это в основном соли тяжелых металлов, которые оказывают олигодинамическое действие, то есть вызывают гибель микроорганизмов при очень больших разведениях (1 —10 мкг/л). Применяют главным образом для консервирования глазных капель. Серебряная вода используется для обеззараживания питьевой воды на судах и в других специальных условиях в США, Франции, Великобритании и других странах. Металлоорганические соединения — органические соединения ртути, обладают большой антимикробной активностью и в малых дозах нетоксичны для человека. К таким веществам относятся: мертиолат (в концентрации 0,001— 0,02 %), метафен (1:2500), фенилртутные соли (0,001—0,002 %). М'ертиолат (Merthiolatum, Thoomersal) — натриевая соль этилсалици-лата. Порошок кремового цвета, устойчивый на воздухе, хорошо растворимый в воде, спирте. Мертиолат применяют для консервирования инъекционных растворов (0,001 %), глазных капель (0,005 %), мазей (0,02—0,1 %) и эмульсий. Метафен (Metaphenum, Monosept) — порошок желтого цвета без вкуса и запаха, нерастворимый в воде, растворимый в щелочах. Применяется для консервирования глазных капель в концентрации 1:2500. Применение метафена и мертиолата в глазных каплях ограничивает то обстоятельство, что они устойчивы только в щелочной среде, в то время как большинство алкалоидов, применяемых в офтальмологии, наиболее стабильно при низком значении рН. Фенилртутные соли. Фенилртути ацетат представляет собой белый кристаллический порошок, растворимый в 600 мл воды, спирте. Для консервирования лекарственных форм пригодны и другие фенилртутные соли: борат, бензоат, хлорид, глюконат и салицилат. Из солей фенилртути наиболее широкое применение имеет фенилртути нитрат для консервирования инъекционных растворов в концентрации 0,001— 0,002 % , для глазных капель — 0,004 %, эмульсионных мазей — 0,007—0,01 % . Эта группа соединений — надежные консерванты. Их действие на микроорганизмы основано на блокировании сульфгидрильных групп ферментов. Органические соединения ртути эффективны против патогенных микроорганизмов, обычно встречающихся в глазных растворах. Некоторые авторы считают нежелательным применение этих веществ в офтальмологии, так как, по их мнению, они вызывают аллергические реакции при продолжительном применении. Органические соединения. Этиловый спирт используется для консервирования новогаленовых препаратов в концентрации до 20 %, а также в количестве 10—12 % от водной фазы для консервирования эмульсий. Однако наибольшими антисептическими свойствами обладает 70 % этиловый спирт, поэтому, присутствуя в галеновых препаратах до 20 %, он оказывает слабый консервирующий эффект. Фенилэтиловый спирт представляет собой жидкость с запахом розы. Растворяется в воде при встряхивании до 2 %, образует прозрачный раствор в 50 % спирте (1:1). Рекомендуется, главным образом, для консервирования глазных капель в концентрации 0,3 %. В качестве консерванта глазных капель он принят рядом стран (Англия, США и др.). Недостаток в том, что он неэффективен против многих граммположительных микроорганизмов. Бензиловый спирт — жидкость с приятным ароматным запахом и жгучим вкусом. Растворяется в воде (1:25), в 50 % спирте (1:1), смешивается с хлороформом. В концентрации 0,5 % применяется для консервирования 15 %-но-го инъекционного раствора нембутала и препаратов радиоактивных изотопов; в концентрации 0,9 % — для глазных капель со стероидными препаратами. Хлорбутанолгидрат представляет собой бесцветные кристаллы с запахом камфоры, малорастворимые в воде (1:250), легкорастворимые в 90 % спирте, хлороформе, жирных и вазелиновом маслах, глицерине. Широко используется в разных странах, в том числе и у нас, для консервирования инъекционных растворов, глазных капель (0,5 %) и др., так как он обладает довольно широким спектром антимикробного действия и незначительной сенсибилизирующей способностью. Хлорбутанолгидрат совместим со многими лекарственными веществами, эффективен в растворах с кислым значением рН. Однако консервант полностью инактивируется в нейтральной и щелочной средах, несовместим с серебра нитратом, натрия сульфатиазолом и некоторыми другими веществами. Фенолы. Раствор фенола (0,25; 0,3; 0,5 %) весьма эффективен для консервирования парентеральных растворов (инсулиновых препаратов, вакцин и сывороток). Как консервант фармацевтических препаратов фенол почти не применяется. Недостаток его в том, что он обладает высокой токсичностью и иногда вызывает боль и жжение при инъекциях, а также аллергические состояния. Плохая растворимость в воде не позволяет использовать его для консервирования водных растворов. Хлоркрезол — бесцветные кристаллы с характерным запахом. Растворим в 250 г воды (лучше в горячей), этаноле, жирных маслах. Хлоркрезол в 10—13 раз активнее фенола в отношении бактерий и грибов, в то же время менее токсичен. Применяется для консервирования глазных капель в концентрации 0,05 % , инъекционных растворов — 0,1 %, мазей — 0,1—0,2 %. Бензойная кислота — белое кристаллическое вещество со слабым характерным запахом. 1,0 г кислоты растворим в 350 мл воды, 3 мл спирта, 8 мл хлороформа. Бензойная кислота — известный консервант. Наиболее часто она применяется в виде натриевой соли, хорошо растворимой в воде (1,0 г в 1 мл воды). Бензойную кислоту и ее соли в количестве 0,1—0,2 % в большинстве стран мира используют в качестве пищевых консервантов, которые оказывают сильное действие на дрожжи, особенно в кислой среде. В качестве консервантов лекарственных препаратов бензойная кислота и ее натриевая соль используются для сахарного и лекарственных сиропов, эмульсий рыбьего жира и вазелинового масла, суспензий с антибиотиками и др. Эти консерванты вводятся в массу для желатиновых капсул. В основном они используются при приготовлении лекарственных форм для внутреннего применения. Сорбиновая кислота представляет собой белый мелкокристаллический порошок со слабым раздражающим запахом и слабокислым вкусом, плохо растворим в воде (0,15 %), хорошо растворим в маслах (0,6—1 %) и спирте. Впервые сорбиновая кислота получена в 1859 г. в результате щелочного гидролиза полисахаридов, выделенных из плодов рябины — SorbusaucupariaL — отсюда и ее название. В плодах рябины кислота находится в форме Ь-лактона, названного парасорбиновой кислотой, содержание которого составляет приблизительно 1 %. В настоящее время сорбиновую кислоту синтезируют чаще всего путем взаимодействия кротонового альдегида с малоновой кислотой в присутствии тугидина. Сорбиновая кислота разрешена в ряде стран мира для консервирования пищевых продуктов. Она менее токсична, чем обычно применяемые кислоты-консерванты, и безвредна для человека даже в больших количествах. Способствует повышению иммунобиологической активности организма, обладает сильной фунгицидной активностью. Используется для консервирования растворов (0,1 %), сахарного и других сиропов (0,7 %) иногда в сочетании с натрия бензоатом. Разрешена к применению для консервирования гидрофильных и эмульсионных основ (0,2 %). В настоящее время, помимо сорбиновой кислоты, промышленностью выпускаются ее калиевая и кальциевая соли. Кальциевая соль (в отличие от калиевой) плохо растворима в воде. Сложные эфиры параоксибензойной кислоты (парабены). В медицинской практике наибольшее применение получили метиловый (нипа-гин) и пропиловый (нипазол) эфиры, принятые в качестве консервантов многими зарубежными фармакопеями (США, Швеции, Великобритании, Германии и др.)- Они обладают значительно меньшей токсичностью, чем многие другие консерванты. Это белые кристаллические вещества без запаха и вкуса. Парабены плохо растворимы в воде, растворимы в маслах и очень хорошо — в органических растворителях. Вследствие лучшей растворимости метиловый эфир (нипа-гин) чаще применяется в водных растворах, а бутиловый (бутабен) — в масляных. Пропиловый эфир (нипазол) весьма ценен тем, что одинаково растворим в воде и маслах и имеет большую активность при меньшей токсичности по сравнению с другими эфирами. Нипагин применяется для консервирования инъекционных растворов, сиропа сахарного (0,01 %). Чаще всего используют сочетание нипагина-нипазола (1:3) для консервирования глазных капель, мазей, эмульсий и др. Однако парабены имеют существенные недостатки: небольшая растворимость в воде, инактивация большим количеством веществ (например, неионогенными поверхностно-активными веществами), слабое спороцидное действие. Парабены нередко оказывают раздражающее и аллергизирующее действие на кожу (особенно у людей, реагирующих на параароматические соединения). Тем не менее, парабены благодаря целому ряду положительных свойств широко применяются в косметической, пищевой и фармацевтической промышленности нашей страны и за рубежом. Соли четвертичных аммониевых соединений (ЧАС) — это синтетические вещества с высокой поверхностной активностью и бактерицидным действием. Из этой группы веществ за рубежом наиболее широко применяется бензалкония хлорид, который представляет смесь хлоридов алкилдиметил-бензиламмония. Бензалкония хлорид — кристаллическое вещество белого цвета, очень хорошо растворим в воде; водные растворы его бесцветны, устойчивы к изменениям температуры, рН среды. В концентрации 1:10000 применяют в настоящее время почти во всех зарубежных странах преимущественно для консервирования глазных капель, капель для носа, где требуется отсутствие раздражающего действия и быстрый бактерицидный эффект. Этот консервант совместим со многими лекарственными веществами, за исключением серебра нитрата, сульфатиазола натрия, кислоты борной. Он обладает значительной бактериостатической и фунгистатичес-кой активностью. Из других производных четвертичных аммониевых соединений используют бензэтония хлорид в концентрации 1:4000 для консервирования глазных капель и в концентрации 1:10000 — 1:20000 для инъекционных растворов, а также цетилпиридиния хлорид для консервирования глазных капель (1:5000). Соединением этой группы, представляющим значительный интерес, является отечественный препарат — додецилдиметилбензиламмония хлорид (ДМДБАХ), который в отличие от зарубежного препарата представляет собой индивидуальное вещество с додециловым радикалом (С12Н25). По безвредности, антимикробной активности и стабильности ДМДБАХ значительно превосходит бензалкония хлорид. Это желтовато-белый порошок с ароматическим запахом, очень хорошо растворимый в воде, спирте, ацетоне; в концентрации 0,01 % разрешен для консервирования мазевых основ. При консервировании глазных капель ДМДБАХ выдерживает стерилизацию (100 и 120 °С) и сохраняет активность более полутора лет. Таким образом, в качестве химических консервантов для лекарственных форм могут применяться разнообразные вещества. Однако универсального кон-: серванта, который мог бы использоваться для любых фармацевтических продуктов, не существует. При решении вопроса о том, какой же консервант пригоден для данного лекарственного препарата, следует учитывать совместимость его с остальными компонентами, проверять его активность именно в этом лекарственном препарате, а также учитывать все остальные требования, которые предъявляются к консервирующим веществам. Необходимо отметить, что растворы лекарственных веществ, которые обладают сильным бактерицидным действием, не нуждаются в стерилизации. К таким веществам относятся: гексаметилентетрамин, аминазин, дипразин, колларгол, протаргол, имизин, ртути дихлорид, калия перманганат (0,1 % и более) и др. ТЕХНОЛОГИЯ РАСТВОРОВ ДЛЯ ИНЪЕКЦИЙ И КОНТРОЛЬ ИХ КАЧЕСТВА Растворы для инъекций готовят в соответствии с требованиями ГФУ, приказов МЗ, инструкций. Технологический процесс приготовления растворов для инъекций состоит из следующих стадий: 1.Подготовительные работы. 2.Приготовление раствора (стабилизация, изотонирование при необходимости). 3.Фильтрование и фасовка раствора. 4.Стерилизация раствора. 5.Контроль готовой продукции. 6.Оформление. Подготовительные работы(подготовка персонала, подготовка асептического блока, организация работы в асептических условиях; подготовка посуды и вспомогательных материалов; подготовка растворителей и препаратов) Рассмотрим стадии непосредственного приготовления растворов для инъекций. Приготовление раствора. Приготовление растворов для инъекций может производиться только в аптеках, имеющих на это разрешение, выдаваемое уполномоченным на то органом. Не разрешается готовить растворы для инъекций при отсутствии методик их полного химического анализа, режима стерилизации, данных о химической совместимости входящих ингредиентов и технологии. Персональная ответственность за организацию работы асептических блоков и приготовление растворов для инъекций возлагается на заведующих аптеками. Они обязаны проводить ежегодный инструктаж и проверку знаний работников асептических блоков по правилам приготовления растворов для инъекций, а также при приеме или переводе их на работу в асептическом блоке. Лица, не владеющие технологией растворов для инъекций, к работе в асептическом блоке не допускаются. В связи с весьма ответственным способом применения и большой опасностью ошибок, которые могут быть допущены во время работы, приготовление инъекционных растворов нуждается в строгой регламентации и неукоснительном соблюдении технологии. Не допускается одновременное приготовление нескольких инъекционных растворов, включающих различные ингредиенты или одни и те же, но в разных концентрациях. На рабочем месте во время приготовления инъекционных растворов не должны быть штангласы с лекарственными веществами, которые не имеют отношения к этим растворам. Приготовление инъекционных растворов производится массо-объемным методом, при котором лекарственное вещество берется по массе, а растворитель — до получения определенного объема раствора. Необходимость приготовления растворов в массо-объемной концентрации объясняется тем, что при введении с помощью шприца лекарственный препарат дозируется по объему. Технологическая стадия «Приготовление раствора» включает три технологические операции: подготовка сырья (проведение расчетов, отвешивание веществ и отмеривание растворителя), непосредственно приготовление раствора (растворение веществ, если необходимо — добавление стабилизатора, получение нужного объема) и первичный анализ. Взятое по массе лекарственное вещество помещают в стерильную мерную колбу, растворяют в небольшом количестве растворителя, а затем доводят до определенного объема. При отсутствии мерной посуды количество растворителя, необходимое для приготовления раствора, определяют расчетным способом, пользуясь величиной плотности раствора данной концентрации или коэффициентом увеличения объема. Объем, занимаемый стабилизаторами, входит в общий объем раствора, поэтому они добавляются одновременно с лекарственными веществами (принцип стабилизации растворов для инъекций). При укрупненном приготовлении растворов для инъекций требуются емкости вместимостью от 10л и более. В крупных межбольничных и больничных хозрасчетных аптеках растворение лекарственных препаратов производится в стеклянных 20-литровых реакторах, оборудованных электроподогревом и электромешалками. В средних по мощности производства межбольничных аптеках процесс перемешивания жидкости механизирован с помощью мешалок различного вида. Немедленно после приготовления раствора проводят опросный контроль. Далее приготовленный раствор для инъекции подвергают полному первичному химическому контролю, который заключается в определении подлинности (качественный анализ) и количественного содержания (количественный анализ) действующих веществ и стабилизатора. Результаты полного химического контроля растворов для инъекций регистрируются в журнале по установленной форме. В случае удовлетворительного результата приступают к фильтрованию и фасовке. Фильтрование и фасовка растворов для инъекций. Одним из требований, предъявляемых к лекарственным формам для инъекций, является отсутствие механических включений. Инъекционные растворы не должны содержать видимых невооруженным глазом частиц, то есть частиц размером 10 мкм и более. Однако представляется целесообразным довести эффективность фильтров до 5 мкм, то есть инъекционные растворы не должны содержать частицы размером больше диаметра форменных элементов крови (5—9 мкм). Наличие взвешенных частиц недопустимо, то есть при внутрисосудис-том введении возможна эмболия. Освобождение инъекционных растворов от механических примесей осуществляется путем фильтрования. Степень очистки дисперсных систем наряду с другими факторами обусловливается способностью взвешенных частиц «прилипать» к фильтрующему слою. При этом частицы задерживаются в том случае, если силы их адгезии к фильтрующему материалу больше сил отрыва, возникающих при гидродинамическом воздействии потока. В аптечной практике наиболее распространенные два способа фильтрования: самотеком и с помощью вакуума. Основной метод фильтрования растворов для инъекций при крупносерийном приготовлении в аптеках вакуумный, который заключается в том, что в приемном сосуде создается разрежение. Под воздействием разности давления жидкость, проходя через фильтры, заполняет приемный сосуд. Для создания разрежения применяют вакуумные насосы различных типов, например, отсасыватель хирургический или компрессорно-вакуумные аппараты. Чистота растворов во многом зависит от выбора фильтра. Поэтому выбор оптимального фильтра — ответственный момент в технологии инъекционных растворов. Для фильтрования инъекционных растворов используют беззольные фильтры из фильтровальной бумаги марки ФО (вида М — мед-леннофильтрующая), задерживающей мелкодисперсные осадки. Беззольные фильтры других марок непригодны для фильтрования инъекционных растворов. Необеззоленная фильтровальная бумага содержит соли кальция, железа, магния и при фильтровании через такую бумагу происходит изменение свойств некоторых растворов. Широко применяются стеклянные фильтры № 3 и № 4. Характеристика фильтрующих материалов и стеклянных фильтров подробно представлена в главе «Жидкие лекарственные формы» Современным способом очистки инъекционных растворов является мембранная микрофильтрация — процесс мембранного разделения микровзвесей под давлением, позволяющий получить растворы, свободные от механических частиц (размером 0,02 мкм), видимых и невидимых при визуальном контроле, включая микроорганизмы (см. «Механические методы стерилизации»). Так, для фильтрования под вакуумом или давлением инъекционных растворов предложен полипропилен. Используется он в виде пластин в различных фильтрах дисковой конструкции, разных пресс-фильтрах в фильтродержателях типа «Миллипор». Инъекционные растворы фильтруют через 5—7 слоев простери-лизованного полипропилена, все другие — через трехслойный фильтр. Пластины из полипропилена могут быть также использованы в качестве предфильтров при мембранной фильтрации. Возможно повторное использование фильтров из полипропилена. Фильтры из полипропилена позволяют получить чистые растворы при высокой производительности процесса фильтрации (для пя-тислойного фильтра) в среднем 2—5 л/ч на 1 см2 фильтрующей поверхности. Перспективно также применение пористых фильтрующих элементов из прессованных титановых порошков для тонкой очистки инъекционных растворов. В комплексе с фильтроэлементами должны выпускаться фильтро-держатели из металлических или пластических материалов, разрешенных для применения в контакте с жидкими лекарственными формами. Фильтродержатели могут быть погружного или проходного типа. С их помощью можно проводить фильтрование жидких лекарственных форм под давлением сжатого воздуха или под вакуумом. Для фильтрования жидких лекарственных форм под вакуумом должны быть дополнительно использованы серийно выпускаемые и широко применяемые в аптеках средства механизации. Фильтрование растворов сочетают с одновременным их разливом в подготовленные стерильные флаконы. Отклонение от объема, указанного на этикетке (номинального), допускается в пределах ±10 % для флаконов вместимостью до 50 мл, ±5 % — для посуды вместимостью свыше 50 мл. Для упаковки инъекционных лекарственных форм используется два вида тары: ампулы и флаконы из стекла, полиэтилена или другого материала, который не изменяет свойств лекарственных веществ (см. главу 8, с. 95). Ампулы — более совершенная форма упаковки, так как позволяют сохранять стерильность лекарственного препарата вплоть до момента его применения. Это заводская форма упаковки, поэтому их производство рассматривается в курсе технологии лекарств заводского производства. Из аптек лечебных учреждений в отделение больницы принят отпуск стерильных растворов в широкогорлых стандартных (могут быть градуированные) флаконах разной емкости со стандартной каучуковой пробкой, закрепляемой обжатым алюминиевым колпачком (подобно флаконам с антибиотиками). Для закатки алюминиевых колпачков, а также их снятия предложены различные приспособления, описанные в главе 10. Профильтрованные растворы для инъекций после разлива их во флаконы проверяют визуально на отсутствие механических включений. Для визуального контроля чистоты применяется устройство УК-2 (см. главу 10). Растворы просматриваются невооруженным глазом. Расстояние глаз контролирующего должно быть в пределах 25 см от флакона. Контролирующий должен иметь остроту зрения 1 (компенсируется очками). В стерильных растворах для инъекций не должно обнаруживаться видимых механических загрязнений. При обнаружении механических включений растворы повторно фильтруют, вновь просматривают, укупоривают (проверяют герметичность), маркируют и стерилизуют. Флаконы с растворами для инъекций маркируются путем надписи или штамповки на крышке, использования металлических жетонов или другими методами. Стерилизация растворов для инъекций должна осуществляться не позднее трех часов от начала приготовления под контролем специально выделенного специалиста (см. «Стерилизация», с. 467). Контроль готовой продукции. После стерилизации проводят вторичный контроль на отсутствие механических включений, качественный и количественный анализ. Для анализа отбирают один флакон раствора от каждой серии (за одну серию раствора считают продукцию, полученную в одной емкости от одной загрузки лекарственного вещества). Одновременно проводится проверка качества укупорки флаконов (алюминиевый колпачок не должен прокручиваться при повороте вручную) и объем наполнения флаконов (±5 %). Контроль растворов для инъекций на стерильность и пирогенные вещества осуществляется в соответствии с требованиями действующих инструкций. Таким образом, контроль качества растворов для инъекций должен охватывать все стадии их приготовления. Результаты постадий-ного контроля приготовления растворов для инъекций регистрируются в специальном журнале по установленной форме. |