Главная страница
Навигация по странице:

  • ПЛАЗМОЗАМЕНЯЮЩИЕ (ФИЗИОЛОГИЧЕСКИЕ) РАСТВОРЫ Характеристика и классификация плазмозаменяющих растворов.

  • Требования, предъявляемые к плазмозаменяющим растворам.

  • Растворы-регуляторы водно-солевого и кислотно-щелочного равновесия.

  • Составыплазмозаметаюших жидкостей

  • РАСТВОРЫ ДЛЯ ИНЪЕКЦИЙ НА НЕВОДНЫХ РАСТВОРИТЕЛЯХ

  • Суспензии для инъекций.

  • Эмульсии для парентерального питания

  • ХРАНЕНИЕ И ОТПУСК ИНЪЕКЦИОННЫХ ЛЕКАРСТВЕННЫХ ФОРМ

  • СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ИНЪЕКЦИОННЫХ ЛЕКАРСТВЕННЫХ ФОРМ

  • Учебник для студентов фармацевтических вузов и факультетов Под редакцией


    Скачать 7.13 Mb.
    НазваниеУчебник для студентов фармацевтических вузов и факультетов Под редакцией
    АнкорTikhonov_Aptechnaya_tekhnologia.doc
    Дата04.02.2017
    Размер7.13 Mb.
    Формат файлаdoc
    Имя файлаTikhonov_Aptechnaya_tekhnologia.doc
    ТипУчебник
    #2263
    страница48 из 72
    1   ...   44   45   46   47   48   49   50   51   ...   72

    Технология изотонических растворов. Изотонические'растворы готовят по всем правилам приготовления растворов для инъекций. Наиболее широкое применение получил изотонический раствор натрия хлорида.

    Rp.: Solutionis Natrii chloridi 0,9 % 100 ml

    Sterilisa!

    Da. Signa. Для внутривенного введения

    Для приготовления раствора натрия хлорид предварительно нагревают в суховоздушном стерилизаторе при температуре 180 °С в течение 2 часов с целью разрушения возможных пирогенных веществ. В асептических условиях на стерильных весочках отвешивают простерилизованный натрия хлорид, помещают в стерильную мерную колбу вместимостью 100 мл и растворяют в части воды для инъекций, после растворения доводят водой для инъекций до объема 100 мл. Раствор фильтруют в стерильный флакон, контролируют качество, герметически укупоривают стерильной резиновой пробкой под обкатку металлическим колпачком. Стерилизуют в автоклаве при температуре 120 °С в течение 8 минут. После стерилизации проводят вторичный контроль качества раствора и оформляют к отпуску. Срок годности раствора, приготовленного в условиях аптек,— 1 месяц.

    ППК

    Дата № рецепта

    Natrii chloride 0,9

    Aquae pro injectionibus ad 100 ml

    Sterilis Vобщ=100 ml

    Приготовил: (подпись)

    Проверил: (подпись)
    ПЛАЗМОЗАМЕНЯЮЩИЕ (ФИЗИОЛОГИЧЕСКИЕ) РАСТВОРЫ

    Характеристика и классификация плазмозаменяющих растворов. При потере крови, нарушении водно-электролитного баланса и кислотно-щелочного состояния организма возникает необходимость введения в кровяное русло значительных объемов кровезамещаю-щих жидкостей. Простейший из них изотонический раствор натрия хлорида, введение которого оказывает благоприятное гемодинами-ческое действие. Однако этот раствор не может поддерживать постоянным ионный состав плазмы, а в некоторых случаях необходимо введение более сложных растворов, в состав которых входит ряд солей, имеющихся в плазме крови.

    Плазмозаменяющие растворы (ранее назывались физиологическими, или кровезаменяющими, жидкостями) это растворы, которые по составу растворенных веществ способны поддерживать жизнедеятельность клеток и органов и не вызывают существенных сдвигов физиологического равновесия в организме.

    На этом основании неправильно называть «физиологическим» изотонический раствор натрия хлорида, введение больших доз которого приводит к изменению соотношения между минеральными солями плазмы, вызывает болезненное состояние в виде «солевой лихорадки», а иногда «солевую гликозурию».

    В настоящее время принята классификация, которая делит плазмозаменяющие растворы на следующие группы:

    1. Регуляторы водно-солевого и кислотно-щелочного равновесия (растворы Рингера, Рингера—Локка, лактасоль, ацесоль, дисоль, трисоль, хлосоль, квартасоль и др.); солевые растворы, осмодиуретики. Осуществляют коррекцию состава крови при обезвоживании.

    2.Гемодинамические (противошоковые) кровезаменители (полиглюкин, реополиглюкин, желатиноль, декстран). Предназначены для лечения шока различного происхождения и восстановления нарушений гемодинамики, в том числе микроциркуляции, при использовании аппаратов искусственного кровообращения для разведения крови во время операций и т. д.

    3. Дезинтоксикационные кровезаменители (гемодез, полидез). Способствуют выведению токсинов при интоксикациях различной этиологии.

    4. Препараты для парентерального питания (гидролизин, аминопептид, полиамин). Служат для обеспечения энергетических ресурсов организма, доставки питательных веществ к органам и тканям.

    5. Кровезаменители с функцией переноса кислорода. Предназначены для восстановления дыхательной функции крови.

    6. Кровезаменители комплексного действия. Обладают широким диапазоном действия, могут включать несколько групп плаз-мозаменяющих растворов.

    Требования, предъявляемые к плазмозаменяющим растворам. В зависимости от назначения различают и требования к отдельным группам инфузионных растворов, но общее для них то, что они должны полностью выводиться из организма, не нарушая функций органов, обладать постоянными физико-химическими свойствами, быть нетоксичными, апирогенными, стерильными, стабильными при длительном хранении.

    Одно из основных требований к инфузионным растворам, вводимым в значительных количествах при кровопотерях,— это соблюдение физиологического соответствия между составом жидкости организма и инъекционной жидкостью.

    Такое соответствие достигается при условии, если вводимая в организм жидкость будет иметь:

    — соответствие осмотического давления вводимого раствора осмотическому давлению жидкостей организма (изотония);

    — определенную концентрацию, состав и соотношение ионов (изо-иония);

    — определенное рН раствора (изогидрия);

    — определенную вязкость.

    Таким образом, плазмозамещающими растворами называют такие растворы, которые по своему осмотическому давлению, ионному составу и значению рН близки к кровяной плазме. Их называют иногда уравновешенными или эквилибрированными растворами, а также по названию учреждения или фамилии автора, предложившего раствор.

    Изотония (см. с. 501—513).

    Изоиония. Плазмозаменяющие растворы должны содержать в своем составе ионы жизненно важных веществ в том соотношении, в котором они находятся в плазме крови (Na+, K+, Ca2+, Mg2+, PO43- и др.).

    Ионы кальция обеспечивают общее стимулирующее действие, ионы калия оказывают возбуждающее действие на блуждающий нерв и тем самым на сердечную мышцу, угнетая работу сердца. Ионы магния вызывают перистальтику кишечника, что особенно важно при полостных операциях. Плазмозамещающие растворы должны содержать взаимообезвреживающий комплекс ионов натрия, калия, кальция, магния, причем в тех же соотношениях, в каких они находятся в кровяной плазме. В настоящее время разработаны методы приготовления плазмозамещающих растворов, обогащенных микроэлементами, поскольку в крови содержится более 40 элементов, выполняющих важную физиологическую роль.

    Научные исследования показали, что для обеспечения более или менее длительной жизнедеятельности клеток в жидкость следует добавлять легкоусвояемые питательные вещества, необходимые для восполнения энергетических затрат органов. С целью обеспечения питания клеток и создания необходимого окислительно-восстановительного потенциала в физиологические растворы вводят глюкозу. В крови содержится глюкоза в количестве 5—6 моль. С ее помощью в печени, сердечной мышце и других органах осуществляется окисление различных вредных продуктов обмена веществ и превращение их в безвредные для организма продукты. Поэтому глюкоза необходима для выравнивания в физиологическом растворе восстановительного потенциала.

    Изогидрия. Изогидричными называют такие растворы, в которых рН соответствует рН плазмы крови или других жидкостей организма, в которые вводят этот раствор.

    Концентрация водородных ионов в разных жидкостях организма различна, например, кровяная сыворотка имеет слабощелочную реакцию, рН находится в пределах от 7,34 до 7,36, а спинномозговая жидкость — от 7,71 до 7,85. При напряженной мышечной работе рН в тканевой жидкости снижается до 6,6. Как уже указывалось выше, для стабильности изотонических растворов концентрация водородных ионов играет существенное значение как в роли консерванта, так и стабилизатора растворов. ГФУ рекомендует для этого при приготовлении стерильных растворов, особенно в заводском производстве, добавлять различные стабилизаторы (см. «Стабилизация растворов для инъекций» с. 490—498).

    В тех случаях, когда физиологический раствор используется в больших количествах, появляется необходимость готовить его изо-гидричным, иначе будет нарушаться концентрация водородных ионов крови. Как известно, в процессе жизнедеятельности клеток и органов образуются кислые продукты обмена, нейтрализуемые за счет буферных систем крови, таких, как карбонатный, фосфатный и др. Вот почему в инфузионные растворы стали вводить аналогичные регуляторы рН среды, в результате растворы становятся уравновешенными (эквилибрированными).

    Для поддержания определенного значения рН (равное значению рН плазмы крови) применяют:

    1. Карбонатную систему (NaHCО3 + СО2).

    2. Фосфатную систему (Na2HPО3 + NaH24).

    3. Белковые системы амфолитов (амфолиты — вещества, обладающие в водном растворе одновременно свойствами кислот и оснований).

    Для сохранения нейтральной реакции добавляют одно- и двуза-мещенные фосфаты, для кислой — смесь слабой кислоты со своей солью, например, уксусную кислоту и ацетат натрия. Наиболее часто добавляют фосфаты и гидрокарбонаты, которыми в организме регулируется определенное значение рН, например, если в организм попадает кислота, то она вступает в реакцию с гидрокарбонатом натрия (буфер): НС1 + NaHCО3 = NaCl + H2О + СО2. Кислая среда исчезает в результате образования соли, которая является составной частью кровяной сыворотки, а С02 легко выводится из организма.

    Если в крови образуется небольшое количество кислоты, то значение рН почти не изменяется при введении растворов, вследствие реакции:

    NaHCО3 + HC1 = NaCl + CО2 + Н2О

    или Na2HPО4 + HCl = NaCl + NaH24

    Кроме того, углерода диоксид дает возможность при введении в кровяное русло вызывать возбуждение дыхательных сосудодвигатель-ных центров и тем самым улучшать дыхание и кровообращение.

    Вязкость. Обычные плазмозамещающие растворы имеют существенный недостаток: их действие кратковременно и приблизительно через 2 часа этот раствор выводится из сосудов. В результате этого количество жидкости в кровяном русле резко уменьшается и артериальное давление падает.

    Проблема создания плазмозаменяющих растворов с вязкостью, близкой вязкости крови (1,5—1,6 сантипуаз), очень сложна. На основании экспериментальных исследований стало очевидным, что для обеспечения вязкости инфузионных растворов необходимо добавление специальных веществ. Такими веществами являются высокомолекулярные соединения. Они очень мало изменяют значение осмотического давления (большая молекулярная масса) и, вследствие того, что не переходят в мочу, задерживают выделение воды и растворение в ней соли. Поиски веществ, которые могли бы обеспечить жидкостям необходимую вязкость, продолжались в течение длительного времени. Так, предлагалось для этой цели использовать растворы гуммиарабика, абрикосовой камеди. Однако, эти вещества не усваиваются организмом и, оставаясь в русле крови, склеивают эритроциты. Растворы казеина, желатина, желатозы и некоторых белков, выделенных (без специальной обработки) из крови животных, также не могли быть использованы для указанных целей, так как многие из них являются чужеродными белками и вызывают анафилаксию и другие осложнения.

    В настоящее время плазмозамещающие (инфузионные) растворы с вязкостью, близкой вязкости крови, приготовляются с добавлением следующих компонентов: человеческой крови, гетерогенного белка, высокомолекулярных соединений растительного происхождения, синтетических высокополимеров. Новые и реальные возможности в решении вопроса по обеспечению вязкости инфузионных растворов появились с открытием декстрана и синтезом поливинилпирролидона.

    Декстран (предложен ЦОЛИПК) — водорастворимый высокопо-лимер глюкозы, который получают из свекловичного сахара путем ферментативного гидролиза, то есть воздействием микроорганизмов (Leuconostonmesenteroydes), превращающих в соответствующих условиях сахарозу в высокомолекулярное соединение «декстран», с молекулярной массой 50000±10000, из которого готовят поли-глюкин, реополиглюкин, рондекс, реоглюман.

    Плазмозамещающие растворы, содержащие вещества, повышающие вязкость, используют в качестве противошоковых и дезинток-сикационных.

    Растворы-регуляторы водно-солевого и кислотно-щелочного равновесия. В условиях аптек готовят, главным образом, плазмозаме-няющие растворы, относящиеся к первой группе. Это растворы Рингера, Рингера—Локка, ацесоль, дисоль, трисоль, квартасоль, хлосоль и др.

    Раствор РингераЛокка.

    Rp.: Natrii chloridi 1,8

    Kalii chloridi 0,04

    Calcii chloridi 0,04

    Natrii hydrocarbonatis 0,04

    Glucosi 0,2

    Aquae pro injectionibus ad 200 ml

    Sterilisa!

    Da. Signa. Для внутривенного введения

    Солевой физиологический раствор для внутривенного введения. При совместном присутствии натрия гидрокарбоната и кальция хлорида возможно образование осадка кальция карбоната. Поэтому готовят два раствора. При приготовлении используют стерильный 20 % -ный раствор кальция хлорида.

    В стерильной мерной колбе на 100 мл в части воды для инъекций растворяют 1,8 натрия хлорида, 0,22 глюкозы с влажностью 9%, 0,04 г калия хлорида, прибавляют 4 капли (0,2 мл) 20 %-ного раствора кальция хлорида и водой для инъекций доводят объем до 100 мл. Раствор анализируют, фильтруют во флакон, укупоривают стерильной резиновой пробкой, проводят контроль на механические примеси, обкатывают металлическим колпачком, проверяют герметичность укупорки и стерилизуют при 120 °С 8 минут, проводят вторичный контроль и оформляют к отпуску.

    В другой мерной колбе на 100 мл готовят раствор натрия гидрокарбоната (технологию см. на с. 501). Условия стерилизации аналогичны солевому раствору с глюкозой. Перед применением растворы сливают в асептических условиях.

    Приведенные выше растворы применяют при лечении больных острыми желудочно-кишечными инфекциями, сопровождающимися обезвоживанием, интоксикацией, ацидозом, дефицитом электролитов крови. В табл. 34 приведены составы наиболее часто применяющихся плазмозаменяющих жидкостей.

    Раствор «Квартасолъ». Бесцветная жидкость с рН = 8,1—8,9. Раствор готовят по общим правилам. При работе с натрия ацетатом следует использовать респиратор, резиновые перчатки, защитные очки. Во избежание потери углерода диоксида, образующегося при гидролизе натрия гидрокарбоната, растворение производят при температуре не выше 20 °С в закрытом сосуде, избегая взбалтывания. Раствор стерилизуют при 120 °С.

    Жидкость Петрова. Для получения раствора, способного задерживаться в организме на длительный срок, профессором Петровым была предложена пропись гипертонического раствора, содержащего натрия, калия, кальция хлориды, воду для инъекций и 10 % консервированной крови человека. Кровь к солевому раствору добавляют в асептических условиях перед введением больному, нагревая раствор до 38 °С. Раствор вследствие гипертонической концентрации медленно выводится почками и дольше, чем изотонические растворы, задерживается в русле крови.

    Полиглюкин — 6 % -ный раствор деполимеризованного декстрана в изотоническом растворе натрия хлорида. Препарат быстро повышает артериальное давление при острой кровопотере и длительно удерживает его на высоком уровне. Применяется как в чистом виде, так и в смеси с солевыми растворами. Выпускается в герметически укупоренных флаконах по 400 мл. Хранят при температуре от +10 до +20оС. Замерзание полиглюкина не является противопоказанием к применению.

    Таблица 34

    Составыплазмозаметаюших жидкостей



    1 Солевой инфузин ЦОЛИПК, предложенный Центральным ордена Ленина институтом переливания крови (И. А. Федоров и П. С. Васильев).

    2 ЛИПК — Ленинградский институт переливания крови (И. Р. Петков и А. М. Филатов).

    Реополиглюкин — 10 %-ный раствор частично гидролизованного декстрана в изотоническом растворе натрия хлорида. Препарат уменьшает агрегацию форменных элементов крови. Оказывает дезинтоксицирующее действие. Выпускается во флаконах по 400 мл. Хранят в сухом месте при температуре от +10 до +20 °С.

    Многие заболевания и патологические состояния сопровождаются интоксикацией организма (отравление различными ядами, инфекционные заболевания, ожоги, острая печеночная и почечная недостаточность и др.). Для их лечения необходимы целенаправленные дезинтоксикационные растворы, компоненты которых должны связываться с токсинами и быстро выводить их из организма. К таким соединениям относятся поливинилпирролидон (ПВП) и спирт поливиниловый.

    Растворы ПВП с молекулярной массой от 20 до 40 тысяч применяют как плазмозаменители в качестве компонента, обеспечивающего вязкость инфузионных растворов. Препараты с молекулярной массой выше 40 тысяч для введения в ток крови не применяются, так как длительно задерживаются в организме и могут накапливаться в селезенке, печени.

    Препараты ПВП с молекулярной массой ниже 20 тысяч быстро выводятся из организма и применяются как дезинтоксицирующие средства. Из применяемых для этой цели препаратов можно отметить гемодез — водно-солевой раствор, содержащий 6 % низкомолекулярного ПВП и хлориды Na+, K+, Ca2+, Mg2+. Это прозрачная слегка желтоватая жидкость. Применяется для дезинтоксикации организма при токсических формах желудочно-кишечных заболеваний, особенно у детей (дизентерия, диспепсия), при ожоговой болезни, скарлатине, дифтерии и других инфекционных заболеваниях. Препарат связывает токсины и быстро выводит их через почки.

    Близок по механизму действия к гемодезу полидез — 3 % -ный раствор низкомолекулярного поливинилового спирта в изотоническом растворе натрия хлорида. Вводится внутривенно капельно, являясь энергетическим средством, может вводиться с растворами глюкозы, гидролизатов белка и другими лечебными растворами.

    Плазмозамещающие растворы, содержащие белки, используют как средства для парентерального питания: раствор гидролизина, гидролизат казеина, аминопептид, аминокровин, фибриносол и др.

    К плазмозаменителям белкового происхождения относится желатинолъ — 8 % -ный раствор частично расщепленного пищевого желатина в изотоническом растворе натрия хлорида. Содержит ряд аминокислот (кроме триптофана). Это прозрачная жидкость янтарного цвета. Применяется в качестве плазмозамещающего средства при операциях, травматическом шоке, при подготовке к операции и для дезинтоксикации организма. Выпускают во флаконах разной вместимости. Хранят при температуре 4—6 °С. В случае выпадения осадка препарат применять нельзя.

    Противошоковые растворы. Введение плазмозамещающих растворов, действие которых направлено на нормализацию кровообращения, оказалось недостаточно эффективным в борьбе с шоком. Для получения противошоковых растворов к плазмозамещающим жидкостям добавляют лекарственные вещества, способствующие повышению кровяного давления, нормализации функций центральной и вегетативной нервных систем, восстановлению химизма крови и тканей. К противошоковым жидкостям относятся глюкозо-спиртовые растворы, так называемые стимуляторы, и растворы со снотворными и наркотическими веществами.

    Противошоковые жидкости можно разделить на три группы:

    — простые противошоковые растворы, содержащие соли, глюкозу и спирт этиловый;

    — сложные противошоковые растворы, содержащие глюкозу, спирт этиловый, бромиды и наркотики;

    — сложные противошоковые растворы, содержащие глюкозу, спирт этиловый, бромиды, наркотики, плазму крови.

    Спирт обладает обезболивающим, снотворным действием, а также повышает окислительно-восстановительные процессы. Лечебный эффект глюкозо-спиртовых растворов усиливается добавлением к ним натрия бромида, морфина гидрохлорида, барбитала, уретана и других снотворных и наркотических веществ. Механизм действия противошоковых жидкостей сводится к нормализации процессов возбуждения и торможения в центральной нервной системе, устранению потока нервно-болевых ощущений, что достигается введением бромидов и наркотиков. Снотворные и наркотические вещества, вызывая сон, предохраняют клетки от истощения. Противошоковые растворы с изотонической концентрацией, как правило, быстро выводятся из кровяного русла, поднимают артериальное давление и увеличивают массу циркулирующей крови на очень короткий срок. Более эффективны в этом отношении противошоковые растворы с гипертонической концентрацией.

    В соответствии с ранее приведенной классификацией к первой группе может быть отнесена противошоковая жидкость ЦОЛИПК по прописи П.А.Селъцовского, которая содержит: натрия хлорида 7,0 г, калия хлорида 0,2 г, магния сульфата 0,04 г, глюкозы 54,2 г, спирта 96 % 80 мл, жидкости Вейбеля 3,3 мл, воды до 1000 мл.

    В противошоковых жидкостях второй группы лечебная эффективность глюкозо-спиртового сочетания усилена бромидами и наркотиками. В качестве примера может быть противошоковая жидкость Асратяна, которая отпускается в виде двух растворов.

    Раствор А содержит: натрия хлорида 8,0 г, натрия бромида 0,75 г, натрия гидрокарбоната 0,6 г, воды для инъекций до 500 мл.

    Раствор Б содержит: уретана 1,2 г, барбитала 0,15 г, кальция хлорида 1,5 г, глюкозы 17,0 г, спирта 96 % 15 мл, воды до 50 мл.

    Перед употреблением оба раствора нагревают до 20—25 °С (не более) и смешивают непосредственно перед введением.

    Противошоковый раствор А. Н. Филатова аналогично раствору Асратяна содержит кальция хлорид, глюкозу, спирт и барбитал, переносит стерилизацию и сохраняется в ампулах в течение длительного времени.

    Противошоковые растворы третьей группы усложнены добавлением вязких компонентов. Например, в противошоковый раствор Белякова и Петрова входят: натрия бромид 1,0 г, кофеин 0,2 г, морфин 0,01 г, плазма 40 мл, синкол 400,0 г. Другой раствор этой группы — противошоковый раствор ЦОЛИПК содержит: спирта 96 % 50 мл, глюкозы 50,0 г, текодина 0,04 г, дефибринированной плазмы 200 мл и воды до 500 мл. Благодаря содержанию в этих растворах синкол а (6 % -ный раствор гидролизованного декстрана в изотоническом растворе натрия хлорида) или плазмы, которые продолжительное время удерживаются в сосудистом русле, увеличивается масса циркулирующей крови. Слабая сторона этой группы растворов — отсутствие в них веществ, нормализующих нарушенный объем.

    Приготовляют противошоковые растворы так же, как изотонические и плазмозамещающие растворы.

    Добавление спирта в растворы для инъекций можно проводить двумя способами:

    1. Необходимое количество спирта (в асептических условиях) добавляют к готовому простерилизованному раствору.

    2. В случае приготовления растворов в ампулах (или герметически закрываемых флаконах) спирт вводят в раствор до стерилизации.

    При приготовлении спиртовых растворов флаконы заполняются на 3/4 объема, содержимое флакона не должно соприкасаться с пробкой при стерилизации. Пробки не должны иметь проколов. Укупоренные под обкатку металлическими колпачками флаконы обязательно следует проверять на герметичность.

    Спиртовые растворы целесообразно укупоривать пробками марки ИР-21 (бежевого цвета), ИР-119 (серого цвета). При укупорке пробками марки 25П (красного цвета) необходимо подкладывать под них специально обработанную пергаментную бумагу или нелакированный целлофан.

    Жидкость Банайтиса.

    Rp.: Solutionis Glucosi 25 % 65 ml

    Natrii chloride 0,5

    Calcii chloride 0,12

    Spiritus aethylici 60 % 12 ml

    Sterilisa!

    Da. Signa. Для внутривенного введения

    Жидкость Банайтиса — это солевое плазмозамещающее средство, применяемое в легких случаях шока и при умеренной кровопотере.

    Отвешивают 16,25 г глюкозы безводной, 0,5 г натрия хлорида и 0,12 г кальция хлорида. Доводят водой для инъекций до 65 мл фильтруют, добавляют 12 мл 60 % спирта и герметично укупоривают. Стерилизуют паром под давлением при температуре 120 °С в течение 8 минут.

    Применение плазмозамещающих растворов имеет огромное значение для медицинской практики, так как их использование позволяет уменьшить количество донорской крови.
    РАСТВОРЫ ДЛЯ ИНЪЕКЦИЙ НА НЕВОДНЫХ РАСТВОРИТЕЛЯХ
    Rp.: Protargoli 2,0

    Giycermi 100,0

    Misce. Sterilisa!

    Da. Signa. Для орошения голосовых связок

    Вначале рассчитывают количество стерильной воды очищенной, необходимой для разведения «х.ч.» глицерина до плотности 1,225— 1,235. Неразведенный глицерин (98—100%) стерилизуют горячим воздухом при 150 "С в течение часа или при 140 °С — 3 часа. Протаргол растирают в ступке с небольшим количеством охлажденного глицерина, затем растворяют при перемешивании в рассчитанном объеме воды, после чего добавляют полученный раствор к стерильному глицерину в асептических условиях. При необходимости раствор процеживают.

    Rp.: Sulfuris praecipitati 1,0

    Olei Persicorum 100,0

    Misce. Sterilisa!

    Da. Signa. Для внутримышечных инъекций

    Масло персиковое (100,0 г) предварительно стерилизуют в сушильном шкафу при температуре 180 °С в течение 30 минут. В теплом масле растворяют серу очищенную (1,0 г) и раствор фильтруют в нагретом сушильном шкафу в стерильный флакон для отпуска, укупоривают и стерилизуют при 110 °С 30 минут. Раствор представляет собой прозрачную маслянистую жидкость желтого цвета.

    Rp.: Solutionis Camphorae oleosae 20 % 100,0

    Sterilisa!

    Da. Signa. По 2 мл под кожу

    Это масляный инъекционный раствор. Камфору (20,0 г) растворяют в теплом (40—45 °С) профильтрованном и стерилизованном (персиковом, абрикосовом или миндальном) масле (80,0 г). Фильтруют в нагретом сушильном шкафу в стерильный флакон для отпуска, укупоривают и стерилизуют при 110°С 30 минут.

    Суспензии для инъекций. Суспензии для инъекций должны иметь не только химическую, но и физическую стабильность. Физическая стабильность определяется способностью гетерогенных систем оставаться в высокодисперсном состоянии на протяжении установленного срока хранения. Поэтому в их состав, при необходимости, вводят стабилизаторы. Сложной технологической задачей при приготовлении суспензий для инъекций является выбор метода стерилизации, так как при высокой температуре в суспензиях может происходить укрупнение размера частиц дисперсной фазы. В связи с этим суспензии для парентерального применения, как правило, приготавливают из стерильных порошков (если они выдерживают стерилизацию) непосредственно перед введением (в асептических условиях). В промышленных условиях используют также методы стерилизации, которые обеспечивают физическую стабильность лекарственной формы. В настоящее время в виде суспензий для инъекций производятся кортизона ацетат 2,5 % во флаконах по 10 мл, гидрокортизона ацетат 2,5 % в ампулах по 2 мл и др.

    Примером экстемпоральной прописи суспензий для парентерального применения может являться следующая:

    Rp.: Streptocidi 6,0

    Olei Persicorum 30,0

    pro injectionibus

    Misce. Da. Signa. Для внутримышечных инъекций

    При нагревании взвесей происходит укрупнение дисперсной фазы. В связи с этим их готовят с использованием простерилизованных ингредиентов в асептических условиях.

    В сухой стерильный флакон фильтруют 30,0 г масла персикового и стерилизуют в сушильном шкафу при 180—200 °С в течение 15— 30 минут. В стерильной ступке тщательно растирают 6,0 г стрептоцида (предварительно простерилизованного) с 30 каплями спирта этилового (трудноизмельчаемое вещество) до максимальной мелкости и в асептических условиях смешивают с 3,0 г (половинное количество от стрептоцида) масла стерильного до получения однородной взвеси. Далее смесь разбавляют оставшимся количеством масла и переносят в стерильный флакон с притертой пробкой.

    Эмульсии для парентерального питания

    Эмульсии для парентерального питания это высокодисперсные гетерогенные системы, содержащие нейтральные жиры в водной среде.

    Эмульсии для парентерального питания играют важную роль в организме: они включаются в обменные процессы, являясь при этом богатым источником энергии. По сравнению с другими препаратами они имеют более высокую калорийность при уменьшенном объеме жидкости, осмотическую неактивность, высокое содержание полиненасыщенных жирных кислот, малую степень выведения субстрата с мочой и калом.

    Лекарственные препараты в форме жировых эмульсий не должны проявлять гемолитическую активность, токсичность и пироген-ность.

    В медицинской практике наиболее часто используются такие жировые эмульсии: «Интралипид» (Швейцария), «Венолипид» (Япония) и др. Широкое применение находят эмульсии антигемолитического действия, содержащие фосфатидил-этаноламин; эмульсии на основе фторуглеродных соединений, используемые для переноса кислорода.

    Отечественная фармацевтическая промышленность (Львовский НИИ гематологии и переливания крови) выпускает препарат «Ли-пидин», представляющий собой 20 % эмульсию подсолнечного масла, стабилизированную 1 % растительным фосфатидилхолином.

    Оптимальный размер частиц в эмульсиях для парентерального питания должен быть не более 0,8—1 мкм. Получение эмульсий с заданной величиной частиц осуществляется с помощью методов механического и ультразвукового диспергирования.

    В технологии эмульсий для парентерального питания важное значение имеет подбор количества эмульгаторов, порядок смешивания компонентов, рН системы и ее температура, выбор метода стерилизации.

    Для приготовления жировых эмульсий используют жиры животного и растительного происхождения. Предпочтительнее использовать растительные масла (соевое, хлопковое, подсолнечное, кунжутное). В качестве эмульгаторов часто используют фосфолипиды, выделенные из яичного желтка и мозга крупного рогатого скота (фосфатидилхолин, фосфатидил этанол амин, фосфатидилсерин, сфин-гомиелин). Эмульгаторы подбираются с учетом состава эмульсии и концентрации нейтральных жиров.

    Термический метод стерилизации отрицательно сказывается на стабильности и сохранности препаратов. Более приемлемым является метод стерилизации ультрафильтрацией через мембранные фильтры.

    Технологические стадии приготовления эмульсий для парентерального питания более подробно рассматриваются в курсе промышленной технологии лекарств.
    ХРАНЕНИЕ И ОТПУСК ИНЪЕКЦИОННЫХ ЛЕКАРСТВЕННЫХ ФОРМ

    Хранить приготовленные лекарственные препараты для инъекционного введения необходимо при условиях, которые исключают возможность их загрязнения. Места хранения должны быть отдалены от лифтов, санузлов, мест приема и распаковки товаров, использованной тары и оборудованные столами или стеллажами.

    Отпуск лекарственных препаратов из аптек лечебно-профилактическим учреждениям необходимо проводить только при соблюдении режимов, исключающих их загрязнение в процессе транспортировки, то есть в чистую маркированную тару (ящики, легко поддающиеся дезобработке).

    Приготовленные в аптеках растворы для инъекций, укупоренные «под обкатку» в соответствии с приказом № 96 МЗ СССР от 3.04.91 г (приложение 2), имеют срок годности от 7 до 30 суток, все остальные — не более 2 суток.

    Структурно-логическая схема технологии и контроля качества растворов для инъекций приведена на схеме 17.
    СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ИНЪЕКЦИОННЫХ ЛЕКАРСТВЕННЫХ ФОРМ

    Проводимые исследования в области совершенствования технологии инъекционных лекарственных форм направлены на повышение эффективности и качества продукции, что требует решения основных проблем, — это стабилизация, обеспечение отсутствия механических примесей в препаратах, оптимизация процесса получения и его аппаратурного оснащения.

    В настоящее время широкое распространение получил химический метод стабилизации, предусматривающий прибавление различных вспомогательных веществ-стабилизаторов к лекарственным препаратам, что не является оптимальным способом получения стабильных лекарств с биологической точки зрения. Заслуживает внимания физический, вернее технологический способ стабилизации, позволяющий получить стойкие препараты без прибавления каких-либо вспомогательных веществ-стабилизаторов. С биологической точки зрения физический способ стабилизации наиболее рациональный и требует значительного расширения исследований в этом направлении.

    Так, в США широко развивается производство замороженных ин-фузионных растворов (цефалоспориновых антибиотиков и антибиотиков других групп). Эти растворы готовят в 0,9% -ном растворе натрия хлорида или 5 % -ном растворе глюкозы и выпускают в специальных полимерных контейнерах вместимостью 50 или 100 мл.



    Срок годности таких растворов 6 месяцев при хранении при температуре не выше минус 20 °С.

    Одним из направлений совершенствования технологии инфузи-онных препаратов в отношении обеспечения стабильности является разработка методов создания водных растворов из труднорастворимых субстанций. Особое внимание привлекают комбинированные, инфузионные и полиионные препараты, требующие изучения вопросов совместимости и стабильности. Перспективным является производство концентрированных растворов (концентратов), порошков и лиофилизированных лекарственных форм для инъекций.

    Концентраты для внутривенных инъекций представляют собой стерильные растворы, предназначенные для применения после разведения до указанного объема соответствующей жидкостью. Порошки и лиофилизированные лекарственные формы при встряхивании с указанным объемом соответствующей стерильной жидкости образуют прозрачный, свободный от механических частиц раствор.

    Эти лекарственные формы должны соответствовать всем требованиям, предъявляемым к инъекционным препаратам.

    В настоящее время развивается направление применения аминокислотных инфузионных растворов в сочетании с растворами глюкозы, жировыми эмульсиями.

    Важной проблемой является оптимизация технологического процесса получения инъекционных лекарственных форм и совершенствования оборудования. Процесс получения, фильтрования, разлива во флаконы, укупорки инъекционных препаратов необходимо проводить в условиях «чистых комнат». Решение проблемы обеспечения отсутствия механических примесей в инъекционных препаратах осуществляется созданием эффективных фильтров, а также совершенствованием методов контроля качества фильтрата. Контроль фильтрата и раствора во флаконах в основном осуществляется визуально. За рубежом используются системы автоматического контроля чистоты растворов (Япония). В нашей стране разработана установка для контроля чистоты фильтрата по частичкам величиной 2—5 мкм и более.

    Комплексное решение основных проблем с учетом других факторов, влияющих на стабильность препаратов, позволит получить стабильные инъекционные лекарственные формы высокого качества.

    1   ...   44   45   46   47   48   49   50   51   ...   72


    написать администратору сайта