Главная страница
Навигация по странице:

  • 15.6.2. Процессы с введением извес­ти в порошкообразном виде.

  • Рис. 15.29.

  • 15.7. КОНВЕРТЕРНЫЙ ПРОЦЕСС С ИСПОЛЬЗОВАНИЕМ В ШИХТЕ БОЛЬШИХ КОЛИЧЕСТВ МЕТАЛЛИЧЕСКОГО ЛОМА

  • 15.8. ПРОДУВКА В КОНВЕРТЕРЕ С ЦИКЛИЧЕСКИМ РАСХОДОМ КИСЛОРОДА

  • 15.9. ПРИМЕНЕНИЕ ПУЛЬСИРУЮЩЕГО ДУТЬЯ

  • 15.10. КОНВЕРТЕР — АГРЕГАТ ДЛЯ НОВЫХ ПРОЦЕССОВ

  • 15.10.1. Вакуумный конвертер.

  • 15.10.2. Конвертер-электропечь.

  • Рис. 15,37.

  • 15.10.3. Конвертер-газогенератор.

  • 15.10.4. Конвертер — агрегат жидко-фазного восстановления.

  • 15.11. КОНТРОЛЬ И АВТОМАТИЗАЦИЯ КОНВЕРТЕРНОГО ПРОЦЕССА

  • 16. ПРОИЗВОДСТВО СТАЛИ В МАРТЕНОВСКИХ ПЕЧАХ 16.1. ИСТОРИЯ РАЗВИТИЯ

  • 16.2. КОНСТРУКЦИЯ И РАБОТА МАРТЕНОВСКОЙ ПЕЧИ

  • 16.2.1. Рабочее пространство марте­новской печи

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница39 из 88
    1   ...   35   36   37   38   39   40   41   42   ...   88


    15.6.1. Технология Роmреу-процесса, разработанного в 1957г. во Фран­ции на заводе «Pompey»: на шлак пре­дыдущей плавки (-15 % от массы ме­талла) заливают чугун, содержащий, %: С 3,6, Si 0,5, Мп 0,4, Р

    1,85. Загру­жают известь (4 %) и начинают про­дувку. Во время продувки фурму пери­одически приподнимают для ускорения разжижения и формирования шлака. В момент интенсивного окис­ления углерода продувку прекращают. Металл в этот момент содержит 1,0— 1,5 % С, 0,25 % Мп и 0,2 % Р. Темпе­ратура металла составляет 1550— 1650 °С. К этому моменту в шлак успе­вает перейти -80 % фосфора, содержа­щегося в чугуне.

    Поскольку продувку прекращают при высокой температуре ванны в мо­мент интенсивного обезуглерожива­ния, в шлаке всего 8—12 % FeO (низ­кие потери железа). Полученный та­ким образом маложелезистый высоко­фосфористый (20-25 % Р205) шлак скачивают, после чего в конвертер загружают лом (или железную руду) и известь (7 %) и продолжают продув­ку. В конце продувки получают сталь требуемой марки с низким содержа­нием фосфора и шлак, состоящий в основном из FeO (25—30 %) и СаО и содержащий мало фосфора. Этот шлак оставляют в конвертере для сле­дующей плавки. Ниже приведена при­мерная продолжительность отдельных операций:

    мин

    Загрузка шихты и извести 7

    Первая продувка 13

    Скачивание шлака, отбор проб

    и загрузка лома 9

    Вторая продувка 8

    Замер температуры и отбор проб 2

    Выпуск металла и заделка летки 6

    Общая продолжительность плавки составляет 45 мин. Ротреу-процесс характеризуется малыми потерями же­леза с первым шлаком (15 кг/т) и с от­ходящими газами в виде плавильной пыли (10 кг/т). Окисляется элементов 62 кг/т; общий выход 913 кг/т (без уче­та использования лома и железной руды). Расход извести составляет 110 кг/т. Данный метод ведения плавки получил некоторое распрост­ранение в основном на конвертерах небольшой вместимости.

    15.6.2. Процессы с введением извес­ти в порошкообразном виде. В 1958 г. почти одновременно были опублико­ваны результаты разработок во Фран­ции, в Бельгии и Люксембурге про­цессов получения стали из высоко­фосфористого чугуна путем подачи в ванну в струе кислорода тонкоизмельченной извести. В зарубежной литера­туре наряду с названием этого метода «OLP1-процесс» используют название «LD—АС2-процесс». Для соблюдения технологии необходимо последова­тельное выполнение следующих ста­дий плавки:

    1. Использование (оставленного в конвертере) конечного железисто-из­весткового шлака предыдущей плав­ки.

    2. Заливка чугуна на уже «готовый» шлак.

    3. Вдувание через фурму извести в струе кислорода (рис. 15.29). Положе­ние фурмы по ходу продувки изменя­ется: вначале высокое (>2 м над уров­нем спокойной ванны) — для ускоре­ния шлакообразования и соответ­ственно максимального удаления фосфора, затем низкое (1м) —для организации обезуглероживания. Продолжительность этого периода продувки обычно 14-16 мин.

    4. Первая повалка конвертера, от­бор проб металла и шлака и скачива­ние шлака. Содержание углерода в ме­талле в этот момент составляет обыч­но -1,0 %, фосфора-0,11-0,13%, температура металла 1600°С. Состав шлака, %: -55 СаО, 20-25 SiO2, 23 Р205 и очень мало (6-8) FeO.

    5. Загрузка лома (или железной руды) и вторая продувка (также кис­лородно-известковой смесью) продол­жительностью 6-8 мин.

    6. Вторая повалка конвертера и от­бор проб металла и шлака (рис. 15.30). Металл в конце операции содержит 0,04-0,05 96 С и 0,015-0,017 % Р, в шлаке много (-25 %) FeO. Общий рас­ход порошкообразной извести 100-125 кг/т чугуна.

    При повышенном расходе извести в конце первого периода можно полу­чить высокую степень дефосфорации. При уменьшении расхода (экономии) извести малое содержание фосфора в металле (высокую степень дефосфора­ции) можно получить лишь в резуль­тате повышения содержания в шлаке железа, т. е. потерь железа со скачива­емым шлаком. Низкую концентрацию фосфора в конечном металле также можно получить при большем расходе извести. Однако при этом возрастает масса шлака и при той же концентра­ции в шлаке FeO увеличиваются поте­ри железа в шлаке, соответственно снижается выход металла. Таким об­разом, при переработке высокофос­фористых чугунов стремление полу­чить в конце плавки очень низкие концентрации фосфора в металле свя­зано с увеличением потерь железа со шлаком. Однако эти потери заметно уменьшатся, если конечные шлаки ис­пользовать повторно для следующей плавки. При этом, чтобы конечный шлак не попал при выпуске вместе со сталью в ковш, широко используют прием загущения шлака, для чего после окончания продувки на поверхность шлака набрасывается известковая ме­лочь или доломитовый порошок. По­лучение такого искусственно загущен­ного шлака затрудняет быстрое фор­мирование шлака на следующей плав­ке, однако почти полностью пред­отвращает выход шлака из летки при выпуске металла и уменьшает возмож­ность рефосфорации в ковше. При правильно проведенной плавке и хо­рошо организованной отсечке шлака готовая сталь содержит <0,02 % Р.



    Рис. 15.29. Схема OLP-процесса



    Рис. 15.30. Технология OLP-процесса:

    a —изменение состава металла; б— содержание фосфора в момент скачивания шлака в конце 1-го периода продувки при разной окисленности шлака (РеО)0бЩ и расходе извести в 1-й период продувки, кг/т: 1-50; 2-65; 3-85; 4— 115
    Быстрое формирование высокоос­новного шлака позволяет также обес­печить достаточно хорошую десульфурацию металла. В готовом металле обычно содержится 0,010—0,015 % S. Ниже приведена примерная продол­жительность отдельных периодов плавки при OLP-процессе:

    мин

    Заливка чугуна (и завалка лома) 2-6

    Первая продувка 14—16

    Скачивание шлака 4—5

    Отбор пробы, замер температуры 2-3

    Загрузка лома, железной руды 2—3

    Вторая продувка 6—8

    Отбор пробы и замер температуры 2—3

    Выпуск 2—4

    Общая продолжительность плавки от выпуска до выпуска составляет 45 мин. Несмотря на сравнительную сложность оборудования для размола извести и транспортировки порошка, OLP-процесс получил определенное распространение на конвертерах раз­личной вместимости, в том числе вме­стимостью >100т, так как подача из­вести в порошкообразном виде позво­ляет быстро наводить шлак большой массы.

    15.6.3. КалДо-процесс. Название данного процесса происходит от пер­вых слогов фамилии изобретателя (шведского профессора Каллинга) и названия города Домнарвет (Швеция), где 30-т конвентер начал работать в 1954г. (рис. 15.31).

    Процесс организуется следующим образом: в вертикально установлен­ный конвертер с оставленным от пре­дыдущей плавки загущенным извест-ково-железистым шлаком загружают необходимые количества извести, руды и флюсующих материалов. Пос­ле этого конвертер поворачивают в го­ризонтальное положение и загружают



    Рис. 15.31. Конвертер КалДо:

    1 — положения при загрузке шихты; 2— подача из­вести и руды; 3 — подача порошкообразных матери­алов через фурму; 4— подвижной газоотвод; 5— по­ложение конвертера при выпуске стали; 6— стале-разливочный ковш
    вначале металлический лом, а затем заливают жидкий чугун, после чего конвертер поворачивают в положение продувки. Угол наклона оси конверте­ра к горизонту 16-20°. Устье горлови­ны плотно присоединяют к подвиж­ному водоохлаждаемому газоотводу, через который в конвертер вводят кислородную фурму под углом гори­зонта 22-30°. Имеются механизмы для покачивания фурмы или сообщения ей колебательного движения (если это требуется). После начала продувки конвертеру сообщают вращательное движение. Примерно через 18-20 мин после начала продувки производят первое скачивание шлака. При пере­работке фосфористого (1,7-2,0 % Р) чугуна содержание Р2О5 в первом ска­чиваемом шлаке составляет 16-20 %. После скачивания первого шлака в конвертер загружают следующую пор­цию извести и железную руду в коли­честве, достаточном для корректиров­ки конечной температуры металла, и возобновляют продувку и вращение конвертера.

    Если из высокофосфористой ших­ты необходимо получить сталь с особо низким содержанием фосфора, через 5-7 мин продувки проводят второе скачивание шлака. Второй скачанный шлак содержит обычно 12-14% Р,О<; и 18-20 % Fe.

    К достоинствам КалДо-процесса относятся:

    1. Возможность дожигания боль­шей части образующегося при продув­ке СО и в результате возможность по­вышения расхода лома до 40—50 %.

    2. Гибкость управления, возмож­ность переработки чугунов любого со­става.

    3. Получение стали с очень низким содержанием вредных примесей.

    4. Высокий выход металла, неболь­шие потери железа в шлаке и в отходя­щих газах и соответствующее умень­шение расходов на улавливание пла­вильной пыли.

    К недостаткам КалДо-процесса от­носятся:

    1. Значительная продолжитель­ность плавки (почти вдвое выше, чем в LD-конвертере).

    2. Невысокая стойкость футеровки (5—100 плавок, т. е. почти в 10 раз ниже, чем стойкость футеровки LD-конвертеров) вследствие динамичес­ких нагрузок при вращении конверте­ра и от воздействия шлака.

    3. Сложность и громоздкость меха­нического оборудования вращающе­гося конвертера.

    Перечисленные недостатки опре­делили ограниченное распростране­ние процесса. Вместе с тем перечис­ленные достоинства КалДо-процесса существенны; возможно, в будущем будут созданы агрегаты и технологии, в которых опыт работы конвертеров КалДо будет востребован и использо­ван.


    15.7. КОНВЕРТЕРНЫЙ ПРОЦЕСС

    С ИСПОЛЬЗОВАНИЕМ В ШИХТЕ БОЛЬШИХ КОЛИЧЕСТВ МЕТАЛЛИЧЕСКОГО ЛОМА

    Интенсивное распространение кон­вертерных процессов с применением кислорода сопровождалось выводом из эксплуатации мартеновских пе­чей, использовавших для своей рабо­ты гораздо меньшее количество чугу­на (чем конвертеры). Во многих странах создалась ситуация «дефицита» чугуна, результатом чего было появление ряда технологий перера­ботки в конвертерах больших масс металлолома.

    Исходя из теплового баланса кон­вертерной операции, в этом агрегате можно перерабатывать в зависимости от состава (главным образом от со­держания кремния) и температуры чугуна лишь 20—30 % металлического лома. При соприкосновении с холод­ным металлоломом жидкого чугуна последний охлаждается и возможно его полное или частичное затвердева­ние. Таким образом, начальная ста­дия продувки осуществляется в усло­виях, когда струя кислорода попадает на вязкую твердожидкую массу ме­талла.

    Количественную оценку явления затвердевания чугуна на поверхностях загруженного металлолома и влияния этого фактора на процесс (рис. 15.32) дал проф. Б. Н. Окороков, который предложил параметр, характеризую­щий начальное количество затвердев­шего чугуна:

    где Л и Ч—количество лома и чугуна в за­валке, кг; t — температура чугуна, °С; kко­эффициент пропорциональности; п — число совков лома (величина, косвенно характери­зующая поверхность лома).
    Для процесса плавления затвердев­шего чугуна справедливо математи ческое выражение вида

    - =k (qж - qч )S,
    где — коэффициент теплопередачи, Вт/(м2 -К); Sповерхность контакта затвер­девшей массы с расплавом, м2; qжи qчудельная теплота жидкой и затвердевшей ча­стей ванны.


    Рис. 15.32. Изменение количества затвердев­шего (от соприкосновения с ломом) чугуна Gч, в ванне 350-т конвертера:

    / — два совка лома; 2 — три совка лома; 3 — четыре совка лома (расчеты МИСиС по данным НЛМК)
    Следуя этому выражению, наи­большие колебания может иметь вели­чина а, практически зависящая от мощности перемешивания. В случае работы конвертера только с верхней продувкой мощность перемешивания складывается из мощностей переме­шивания за счет энергии струи и пу­зырей СО. В случае продувки ванны снизу величина а существенно возрас­тает, поэтому процесс расплавления чугуна при донной (или комбиниро­ванной) продувке заканчивается через несколько минут после заливки чугу­на. В случае продувки только сверху процесс плавления может закончиться лишь через 8—10 мин продувки. Если по условиям производства или эконо­мической целесообразности (сто­имость металлолома ниже стоимости чугуна) необходимо уменьшить долю жидкого чугуна в шихте (и соответ­ственно увеличить долю лома), то не­обходимо либо подогреть до момента заливки загружаемый в конвертер ме­таллолом, либо увеличить приходную часть теплового баланса за счет допол­нительного введения теплоносителя, либо организовать дожигание в полос­ти конвертера СО до СО2.

    Дополнительная подача теплоно­сителя обычно осуществляется: 1) ис­пользованием донных фурм в качестве горелок для предварительного подо­грева металлолома в результате сжига­ния газообразного или жидкого топ­лива; 2) вдуванием в расплав через донные фурмы порошкообразного угля или кокса; 3) завалкой в конвер­тер в нижние слои шихты порции угля и сжиганием его в струях кислорода, подаваемых снизу. Приведем несколь­ко примеров.

    На рис. 15.33 показана схема про­цесса KMS. Конвертер KMS (по на­званиям немецких заводов и фирм: Kldckner, Maxhiitte и слова Stahl-



    Рис. 15.33. Схема KMS-процесса:

    1 — шлакообразующие; 2— кислород; 3 — сжатый воздух; 4— азот или аргон; 5— углеводород; 6— кокс или уголь
    hersteelung) оборудован фурмой для подачи снизу порошка угля или кокса, газообразных или жидких углеводоро­дов, кислорода, сжатого воздуха, арго­на, азота, а также извести. Для подачи в ванну порошкообразных реагентов (угля или извести) используют фурмы типа труба в трубе с углеводородной защитой. Процесс KMS включает сле­дующие стадии: 1) нагрев загруженно­го в конвертер лома топливом, подава­емым совместно с кислородом через донные фурмы; 2) дожигание (частич­ное) в полости конвертера выделяю­щейся из ванны СО до СО2 путем по­дачи кислорода через верхнюю или через дополнительные боковые фур­мы; 3) вдувание в расплав теплоноси­теля (коксовой или угольной пыли). Одновременные инжекция в расплав твердого топлива и перемешивание ванны инертным газом обеспечивают высокую эффективность теплообмена. Интенсивное перемешивание металла со шлаком и большая площадь поверх­ности контакта извести с расплавом обеспечивают хорошие условия де-сульфурации и дефосфорации.

    Фирма Sumitomo Metal Ind. (Япо­ния) разрабатывает процесс, назван­ный PSM (Process-Scrap-Melting): на слой кускового кокса загружается скрап (рис. 15.34). Получают чугун, содержащий -4,5 % С и менее 0,03 % S. Отходящие газы, нагревая скрап, ох­лаждаются.

    Сотрудниками ДМетИ, ЦНИИЧМ и НПО «Тулачермет» разработан про­цесс передела в конвертерах большой массы лома, включающий следующие элементы: 1) подогрев металлолома в конвертере до 600-800 °С путем пода­чи через донные, боковые и верхнюю фурмы кислорода (воздуха) и природ­ного газа, а также сжигания природ ного газа и твердого кускового угле-родсодержащего топлива; 2) последу­ющую продувку жидкой ванны кисло­родом через днище и верхнюю фурму с частичным дожиганием СО до СО2 при помощи верхней фурмы; 3) про­дувку металла нейтральным газом (ар­гоном или азотом) через донные фур­мы перед выпуском.


    Рис. 15.34. Схема PSM-процесса
    При рассмотрении всех аспектов решения проблемы переработки в конвертерах больших масс лома необ­ходимо учитывать следующие сложно­сти:

    1. Локальный перегрев, расплавле­ние и испарение шихты при подаче кислородных струй на поверхность нагретой до высоких температур твер­дой металлошихты. При этом возрас­тают угар и пылевынос, ухудшаются условия службы огнеупоров. Возмож­ны также выбросы вредных соедине­ний.

    2. Содержание в угле серы и азота при использовании в качестве тепло­носителя угля.

    3. Чистота выплавляемой в конвер­тере стали в значительной мере опре­деляется чистотой лома, прежде всего по содержанию примесей цветных ме­таллов.

    4. Продолжительность плавки при предварительном подогреве лома за­метно возрастает.

    Расчеты и накопленный опыт по­казывают, что при введении в состав завалки или при вдувании по ходу плавки таких теплоносителей, как ка­менный уголь, коксик, антрацит и т. п., расход лома без снижения произ­водительности может быть увеличен до 30-35 %. При большем увеличении необходимо изменение конструкции агрегата и его производительности. Если это оправдано экономическими расчетами, то возможна работа и на 100% твердой шихты. Например, не­мецкая фирма Кшрр разработала тех­нологию COIN (Coal-Oxygen-Injection), также основанную на вдувании в кон­вертер угля и использовании кислоро­да для продувки и дожигания СО. По расчетным данным, при 100 % лома в шихте расход угольной пыли может составлять 180-200 кг/т стали, расход кислорода — 230—240 м3/т стали.

    Для переработки лома можно использовать другие агрегаты, более приспособленные для этого, прежде всего шахтного типа (металлургичес­кие вагранки, доменные печи). Так, например, на одном из заводов Фран­ции использован процесс, названный SIFF1, который предусматривает вы­плавку в доменной печи чугуна из ме­таллолома и продувку этого чугуна в конвертере комбинированного дутья. При плавке на шихте из металлолома расход кокса и флюсов невысок, к. п. д. шахтной печи высокий, степень усво­ения железа шихты также велика, чу­гун, выплавленный из металлолома, характеризуется повышенным содер­жанием таких примесей, как никель, медь, олово, молибден.

    До сих пор для переработки боль­ших масс металлолома использовали дуговые и мартеновские печи. Эффек­тивность использования конвертера для переработки лома еще точно не установлена.

    1 Sacilor-IRSID-Fusion-Ferrailles, т. е. пе­реплав металлолома по методу Sacilor-IRSID. такого дыхания является
    15.8. ПРОДУВКА В КОНВЕРТЕРЕ С ЦИКЛИЧЕСКИМ РАСХОДОМ КИСЛОРОДА
    Если для продувки металла кислоро­дом используются только верхние фурмы, то вследствие недостаточного перемешивания образуются локаль­ные зоны переокисленного металла. Это вызывает периодическое вскипа­ние ванны, сопровождающееся иногда выбросами и всплесками. Переокис­ление локального участка ванны, ло­кальный перегрев металла приводят к интенсивному обезуглероживанию металла в локальном объеме. При этом развивается интенсивное пере­мешивание металла, захватывающее другие, менее нагретые зоны, приво­дящее к снижению температуры ме­талла, выделению значительного объе­ма СО в относительно малом объеме металла и снижению окисленности ванны в результате расходования на­копленного кислорода на окисление углерода. Далее циклы повторяются. Конвертер при верхнем дутье как бы дышит. Своеобразным индикатором

    скорость окисления углерода. Приборы четко регистрируют периодические (каждые 15—30с) пики ускорения процесса обезуглероживания, что, в свою оче­редь, вызывает периодическое увели­чение количества газов. Степень ис­пользования подаваемого на продувку кислорода в момент этого «выхода» снижается.

    На основе совместных разработок НЛМК и МИСиСа внедрена так назы­ваемая циклическая продувка, идея которой сводится к уменьшению по­дачи кислорода в момент начала ак­тивного газовыделения из конвертера (рис. 15.35). Уменьшение (на 15-20 %) расхода газообразного кислорода в мо­мент активного взаимодействия угле­рода с переокисленной зоной ванны приводит к уменьшению окисленности ванны, снижению общего расхода кис­лорода и уменьшению выбросов и вы­носа пыли. При этом возрастает выход металла и увеличивается стойкость фу­теровки. Как видно из рис. 15.35, в ре­зультате перехода на циклическую про­дувку снимаются резкие колебания скорости обезуглероживания в началь­ный период плавки.

    Для предотвращения резкого вски­пания ванны и возможных выбросов служат специально созданные систе­мы контроля.



    Рис. 15.35. Изменение расхода кислорода РЪ2 и скорости окисления углерода Fc при цик­лическом расходе кислорода для продувки 350-т конвертера НЛМК
    На заводе фирмы Sumitomo Metal Industries (Япония) разработана систе­ма прогнозирования и предотвраще­ния выбросов шлака и металла при конвертерной плавке. Система содержит математическую модель металлургичес­ких реакций с оценкой свойств шлака и использует датчик состояния вспенен­ного шлака в процессе продувки.

    Система прогнозирования выбро­сов содержит три структурных компо­нента (рис. 15.36): 1) виброметр на кислородной фурме, регистрирующий вибрацию фурмы, отражающую изме­нение уровня кинетической энергии



    Рис. 15.36. Система прогнозирования выбросов
    фурмы в процессе вспенивания шла­ка; 2) шумомер, регистрирующий сни­жение шума кислородной струи вслед­ствие вспенивания шлака; 3) модель металлургических реакций, которая служит для определения физических свойств шлака и оценки его склоннос­ти к вспениванию на основе информа­ции о процессе продувки.

    На основе статистической обработ­ки информации этих трех компонен­тов осуществляется комплексная оценка вероятности возникновения выброса.

    Соответственно времени, когда ве­роятность выброса превышает некото­рое пороговое значение, и величине этой вероятности в автоматическом режиме осуществляется выбор одного из нескольких параметров управле­ния. В число этих параметров входят: высота подъема фурмы; расход кисло­рода на верхнюю продувку; расход газа на донную продувку, масса загру­жаемых материалов.

    15.9. ПРИМЕНЕНИЕ ПУЛЬСИРУЮЩЕГО ДУТЬЯ
    Идея организации дутья в пульсаци-онном режиме заключается в предпо­ложении, что скорость взаимодей­ствия газов и сталеплавильной ванны может быть увеличена в результате пе­риодического изменения газодинами­ческой структуры потоков, участвую­щих в процессе. Практически это дос­тигается в результате прерывания по­токов газа с высокой частотой, т. е. обеспечения пульсаций скоростей по­тока. Работу в этом направлении ведет группа сотрудников МИСиС под ру­ководством проф. А. В. Явойского. Создан ряд конструкций дутьевых уст­ройств, успешно опробованных НПО «Тулачермет», НТМК, ЗСМК и др.

    В пульсирующем потоке газов уменьшается неперемешиваемый га­зовый слой, покрывающий тела при смывании в потоке газа; при этом уве­личивается интенсивность массо- и теплообменных процессов. Образую­щиеся при пульсациях газа каверны облегчают условия образования новой фазы, интенсифицируют процесс пе­ремешивания ванны. Процесс шлакообразования, связанный с использова­нием извести, сопровождается образо­ванием тугоплавкого моносиликата кальция (СаО)2 • SiO2, слой которого толщиной до 0,1 мм препятствует рас­творению извести в шлаке. При про­дувке ванны пульсирующим потоком кислорода резкие знакопеременные перемещения шлака относительно кусков извести способствуют разру­шению этого слоя и, следовательно, ускорению шлакообразования.

    С первых же минут продувки при использовании пульсирующего дутья в шлаке отмечают более высокую кон­центрацию растворившегося СаО, бо­лее высокую концентрацию Р2О5 и бо­лее низкую — оксидов железа. Пере­ход на пульсирующее дутье особенно эффективен в случаях, когда важно интенсифицировать процессы на меж­фазной границе. Это особенно четко проявилось в случае переработки ва-надийсодержащих чугунов. Особен­ность переработки таких чугунов сво­дится к тому, чтобы в первый же мо­мент продувки обеспечить максималь­ный переход (окисление) ванадия из чугуна в шлак при минимальном оста­точном содержании ванадия в метал­ле. Количество шлака при этом долж­но быть минимальным для получения возможно более высокого содержания в шлаке оксидов ванадия, что важно при последующей его переработке для получения феррованадия. В присут­ствии углерода ванадий становится поверхностно-активным. При продув­ке металла пульсирующим дутьем ос­таточное содержание ванадия в метал­ле уменьшается до 0,01—0,02 % (при обычном дутье 0,03-0,04 %), а содер­жание V2O5 в шлаке возрастает до 22,4-25,2 % (против обычных 19,3-22,0 %).

    Положительные результаты полу­чены также при переработке низко-марганцовистых чугунов, так как при­менение пульсирующего дутья приво­дит к ускорению шлакообразования.

    Накопленный опыт применения пульсирующего дутья в конвертерном процессе показал, что при переходе на этот режим: 1) ускоряется шлакообра­зование и более полно используются вводимые шлакообразующие; 2) умень­шаются пылеобразование и потери

    221 железа с пылью; 3) более полно ис­пользуется кислород и возрастает ско­рость окисления примесей; 4) наблю­дается более полное и глубокое извле­чение таких примесей, как ванадий; 5) в результате улучшения условий шлакообразования обеспечивается бо­лее ранний и полный переход фосфо­ра в шлак; 6) ускоряется процесс обез­углероживания.

    15.10. КОНВЕРТЕР — АГРЕГАТ ДЛЯ НОВЫХ ПРОЦЕССОВ
    Созданная около 150 лет назад конст­рукция конвертера оказалась очень «живучей». Эта конструкция исполь­зуется в ряде технологий, разработан­ных в последние годы. Приведем не­сколько примеров.

    15.10.1. Вакуумный конвертер. Про­блема сочетания конвертера с вакуум­ной установкой решена при вакуумном кислородном обезуглероживании в конвертере. Процесс назван VODK1. Конвертер (рис. 15.37) оборудован ва­куум-плотной крышкой, через ваку­умное уплотнение которой вводится кислородная фурма. В днище конвер­тера асимметрично установлено сопло для подачи аргона с целью дополни­тельного перемешивания. Вакуум-провод от конвертера вмонтирован непосредственно в камеру внепечного вакуумирования. После заливки полу­продукта наводят шлак (присадками извести и плавикового шпата). Во все периоды плавки через подовую фурму подают аргон. Подачу кислорода пре­кращают при концентрации углерода 0,1-0,2%, затем понижают давление. Кислород, необходимый для окисле­ния углерода, поступает в первую оче­редь из шлака. Снижается окислен-ность ванны, понижается концентра­ция газов в металле.

    Технологию и агрегат используют главным образом при производстве низкоуглеродистых марок нержавею­щей стали.
    1 От нем. Vacuum-Oxygen-Decarburi-sation-Konverter, или VODC (от англ converter).
    15.10.2. Конвертер-электропечь. Со­четание преимуществ конвертерного и

    электросталеплавильного производств получено при использовании Агсоп-процесса, разработанного фирмой Concast Standard AG, Швейцария. Arcon (Arc in converter) — двухкорпус-ный агрегат, состоящий из конвертера с верхней кислородной продувкой и одноэлектродной дуговой печи посто­янного тока (рис. 15.38). В каждом из корпусов кислородная фурма может быть заменена общим графитизиро- ' ванным электродом и наоборот. Раз­меры корпусов отвечают размерам ти­пового конвертера. Днище каждого корпуса выполнено из электропровод­ных периклазографитовых огнеупоров и имеет подовый пластинчатый мед­ный электрод. Для футеровки стен корпуса использованы периклазографитовые огнеупоры. Выпускное от­верстие расположено в периферийной части токопроводящей подины.

    Чугун заливают через горловину корпуса или через желоб в боковое окно в футеровке корпуса. Окно при работе корпуса по режиму дуговой печи используют как для ввода фурм (с целью вдувания извести, угля и кис­лорода), манипулятора, так и для спуска шлака. Общий для обоих кор­пусов графитизированный электрод крепится на электрододержателе, рас­положенном между корпусами со сто­роны выпускного отверстия. Кисло­родные фурмы, отдельные для каждо­го из корпусов, имеют дополнитель­ные боковые сопла для вдувания кислорода на дожигание СО техноло­гических газов.



    Рис. 15,37. Вакуумный конвертер



    Рис. 15.38. Конвертер-электропечь:

    о —схема двухкорпусного агрегата Arcon; б — технологические операции и их продолжительность по ходу плавки в агрегате Arcon (7 —отвод электрода; 2— выпуск плавки; 3 — текущий ремонт; 4— заливка чугуна; 5— кислородная продувка; б—дуговой нагрев; 7— рафинирование; 8— поворот электрода к корпусу № 2; '

    9— поворот электрода к корпусу № I)
    Электрическое питание агрегата осуществляют с использованием шес-типульсного выпрямительного блока, обеспечивающего подвод тока силой до 80 кА. Подстанция с печным транс­форматором и выпрямительным бло­ком расположена рядом с агрегатом. Помещение для управления работой корпусов общее, однако каждый кор­пус оснащен самостоятельным комп­лексом контрольно-измерительных приборов.

    Агрегат Arcon имеет производи­тельность 1,6 млн. т/год. В качестве ме-таллошихты используют жидкий чугун (40 %), гранулированный чугун (5 %) и горячебрикетированное губчатое же­лезо (55 %). Масса выпускаемой плав­ки 170 т, продолжительность работы агрегата 7300ч в год (170т стали вы­пускают каждые 46 мин). Цикл работы агрегата составляет 92 мин. Согласно технологии в плавке используется ос­тавленный от предыдущей плавки жидкий расплав массой 50 т, т. е. вмес­тимость каждого корпуса 220 т жидкой стали. График одновременной работы корпусов показан на рис. 15.38, б.

    После выпуска плавки (по времени занимает 5 мин) корпуса № 1 предус­мотрено время на осмотр и текущий ремонт шиберного затвора, выпускно­го отверстия и т. п. На оставшуюся от предыдущей плавки жидкую массу стали и шлака загружают ферроалю-

    миний или ферросилиций для предот­вращения вскипания ванны при пос­ледующей заливке чугуна. Затем через желоб заливают 75 т чугуна, выводят желоб, закрывают боковое окно, по­ворачивают кислородную фурму, опускают ее в рабочее пространство и начинают продувку кислородом с ин­тенсивностью 12 тыс. м3/ч.

    По ходу продувки (в течение 27 мин) через горловину непрерывно загружают горячебрикетированное губчатое железо (35 т), гранулирован­ный чугун (Ют), известь и доломит. По окончании продувки фурму под­нимают, отворачивают в сторону и на •ее место подводят электрод от корпуса № 2. Электрод опускают в рабочее пространство, зажигают дугу и прово­дят дуговой нагрев ванны в течение 37 мин при подводимой мощности 60 МВт. По ходу дугового нагрева не­прерывно загружают 70 т горячебри-кетированного губчатого железа. Че­рез боковое окно с помощью фурм ма­нипулятора вдувают порошкообраз­ные известь, доломит и уголь для формирования вспененного шлака. Затем на 7 мин снижают подводимую мощность до 10 МВт и скачивают шлак. Перед выпуском плавки элект­род поднимают и переводят на корпус № 2, где в это время заканчивается продувка ванны кислородом.

    При такой работе на производство 1 т стали расходуется Электроэнергии 225 кВт • ч, кислорода 45 м3, электро­дов 0,7 кг.

    15.10.3. Конвертер-газогенератор. В конвертер вводят (вдувают в струе природного газа) угольную пыль. От­ходящие газы содержат значительное количество СО и некоторое количе­ство Н2. Газы улавливают и использу­ют главным образом в качестве топли­ва. Подробнее материал изложен в гл. 25.

    15.10.4. Конвертер — агрегат жидко-фазного восстановления. В конвертер вместе с жидким чугуном загружают руды, содержащие оксиды ценных ме­таллов (хрома, никеля и др.) или желе­зосодержащие отходы металлургичес­кого производства. Процесс организу­ют таким образом, что происходит восстановление оксидов. В России процесс жидкофазного восстановле­ния железа в конвертере используют на Западно-Сибирском металлурги­ческом комбинате. Так, например, в 160-т конвертер загружают 145,3т чу­гуна (жидкого), 15т окалины, 3 т кок­са. Получают 150,3т жидкой стали. Масса металлического расплава воз­росла в результате жидкофазного вос­становления железа, содержавшегося в окалине.

    15.11. КОНТРОЛЬ И АВТОМАТИЗАЦИЯ КОНВЕРТЕРНОГО ПРОЦЕССА
    Основные задачи автоматизации кон­вертерной плавки взаимосвязаны и должны решаться практически одно­временно. К ним относятся:

    1. Получение стали заданного со­става, заданной температуры и в за­данном количестве.

    2. Формирование шлака необходи­мого состава и количества. При этом требуемая основность шлака должна обеспечить условия удаления фосфора и серы, а требуемая окисленность дол­жна обеспечить максимальную сте­пень дефосфорации и одновременно минимальные потери железа в шлаке.

    3. Обеспечение максимальной про­изводительности агрегата (минимиза­ция продолжительности операций, а также потерь металла в шлаке и с от­ходящими газами).

    4. Минимальные затраты на про­цесс (все, что приведено в пп. 1, 2, 3, должно обеспечиваться при мини­мальном расходе кислорода, шлакооб-разующих, огнеупоров (при высокой стойкости футеровки) и минимальных затратах рабочей силы на обслужива­ние систем контроля и управления).

    Организация контроля и автомати­зации конвертерного процесса пред­ставляет собой очень сложную задачу. Основные трудности связаны со сле­дующим:

    1. В отдельные моменты продувки скорость окисления углерода достига­ет 0,5 % С/мин. Одна марка углероди­стой стали от другой обычно отличает­ся содержанием углерода на 0,05 %.

    Такое количество углерода может окислиться в конвертере всего за 6— Юс. Таким образом, небольшая ошиб­ка в определении момента окончания продувки может привести к получе­нию стали иной марки.

    2. Для получения металла строго определенных температуры и состава в конце операции необходимо учиты­вать не только энтальпию и массу ма­териалов в начале операции (массу чу­гуна и лома; их точный химический состав и температуру; количество теп­ла, аккумулированного кладкой кон­вертера; количество и состав попав­шего в конвертер миксерного шлака и т. д.), но и изменение этих параметров по ходу продувки (с учетом массы и точного состава всех вводимых в кон­вертер шлакообразующих; количества выделившихся газов; количества окис­лившегося и унесенного плавильной пылью железа; потерь тепла через стенки, с охлаждающей фурму водой, с отходящими газами и т. д.).

    Из приведенного следует, что для организации конвертерного процесса необходимы безотказно действующие датчики с целью: определения массы заливаемого чугуна; взвешивания лома и шлакообразующих; измерения температуры и состава отходящих га­зов; расхода кислорода, подаваемого для продувки металла, и т. п. Если в цехе обеспечена абсолютная стандарт­ность от плавки к плавке состава ших­ты и температуры жидкого чугуна и установлены надежные устройства, обеспечивающие точность взвешивания материалов, то по данным предва­рительных расчетов-количества кисло­рода, необходимого для окисления Уфимесей, и количества выделившего­ся при этом тепла можно контролиро­вать процесс плавки, исходя из знания только количества израсходованного на продувку ванны кислорода (а при постоянном расходе кислорода — по времени). Необходимо провести се­рию контрольных плавок для уточне­ния данных о режиме шлакообразова­ния и установления количества желе­за, переходящего в процессе плавки в шлак и удаляющегося с отходящими газами.

    Одним из основных контролируе­мых параметров плавки является кон­центрация в ванне углерода. Получе­ние непрерывной информации о ко­личестве окислившегося углерода воз­можно в том случае, если точно известны масса и состав металличес­кой шихты в начале операции и состав и количество отходящих газов. Весь окислившийся в процессе плавки уг­лерод удаляется из конвертера в виде СО и СО2. Имея точные данные о ко­личестве выделившихся газов и их со­ставе, можно составлять мгновенные балансы и в любой момент плавки знать, сколько углерода осталось в ванне. Однако вследствие тяжелых ус­ловий эксплуатации датчиков в зоне высоких температур и большой запы­ленности отходящих газов плавильной пылью данные о составе и количестве газов недостаточно надежны, чтобы ими можно было пользоваться для оп­ределения момента окончания про­дувки.

    При проектировании систем конт­роля и регулирования приходится учи­тывать, что на практике от плавки к плавке изменяется состав как чугуна и лома (обычно известен примерный со­став), так и добавочных материалов. По ходу кампании изменяются (в свя­зи с износом) и размеры конвертера; соответственно изменяются количе­ство тепла, аккумулированного клад­кой, потери тепла через кладку, по­верхность ванны металла (по мере из­носа футеровки поверхность ванны при неизменной массе металла возрас­тает, а глубина ванны уменьшается). Изменяются также и условия подсоса в полость конвертера атмосферного воздуха и т. д. В связи с этим системы автоматического контроля за ходом конвертерной плавки пока еще не все­гда позволяют полностью отказаться от визуального контроля (по яркости факела отходящих газов, по характеру вылетающих искр и т. п.) и от отбора проб металла и замера его температу­ры. Отбор проб и измерение темпера­туры можно проводить как при повалке конвертера (предварительно для этого прекращают продувку и подни­мают фурму), так и по ходу плавки, не прекращая продувку.

    На рис. 15.39 представлена схема устройства для измерения

    Рис. 15.39. Устройство для замера температу­ры ванны и отбора проб металла без повалки конвертера
    температу ры ванны и отбора проб металла без повалки конвертера, разработанного для конвертеров вместимостью 350— 400 т. Это достаточно сложное соору­жение: масса фурмы с охлаждающей водой 4,7 т, масса всей установки с на­правляющей, кареткой и с механизма­ми перемещения 57 т. На ряде пред­приятий температуру ванны измеряют небольшими термопарами (термопа­рами-бомбами») одноразового ис­пользования, которые после ввода на гибком тросе в ванну показывают ее температуру, а затем отгорают вместе с концом троса и остаются в ванне. Таким же способом измеряют актив­ность кислорода в металле. В конвер­тер забрасывают «бомбу», несущую в себе небольшую термопару и прибор для замера активности кислорода (активометр, или кислородный зонд). Прибор передает информацию о тем­пературе металла и активности в нем кислорода а[O] и сгорает. Учитывая связь между а[O] и содержанием в ван­не углерода, данные замера а[O] могут быть использованы для ориентировоч­ного представления о содержании в металле углерода.

    Однако датчики, при помощи ко­торых можно было бы установить со­держание в металле углерода без отбо­ра пробы, пока еще не созданы. По­мимо данных, полученных в результа­те отбора проб и непосредственного измерения температуры, по ходу плав­ки автоматически контролируются следующие параметры: давление, рас­ход и общее количество кислорода; положение фурмы над уровнем спо­койной ванны; содержание в отходя­щих газах СО, СО2 и О2; давление, расход воды, подаваемой для охлажде­ния фурмы, ее температура на входе и выходе. По разности температур воды на входе и выходе можно косвенно оценивать температуру в полости кон­вертера. С этой же целью используют данные о некотором «удлинении» на­ружной трубы фурмы относительно внутренней «холодной» трубы вслед­ствие нагрева.

    На системы автоматического уп­равления ходом плавки возложено вы­полнение следующих операций:

    1. Получение информации о соста­ве шихты и расчет необходимого соотношения и количества шихтовых ма­териалов для получения стали данной марки.

    2. Расчет количества кислорода, необходимого для окисления приме­сей, а также расхода охладителей и шлакообразующих.

    3. Определение момента ввода в ванну добавок охладителей и шлако­образующих.

    4. Регулирование интенсивности подачи кислорода и положения (высо­ты) кислородной фурмы по ходу плав­ки.

    5. Автоматический контроль темпе­ратуры и состава металла по ходу плавки.

    6. Определение момента оконча­ния продувки.

    Для управления применяют как статические, так и динамические ме­тоды. Статические методы основаны на использовании начальной инфор­мации о входных параметрах для полу­чения требуемых параметров в конце продувки. Динамические (т. е. изменя­ющиеся по ходу) методы управления процессом плавки характеризуются, во-первых, получением непрерывной информации о ходе процесса для осу­ществления обратной связи и, во-вто­рых, выработкой динамических управ­ляющих воздействий (например, из­менение по ходу плавки расхода кис­лорода или положения фурмы в зависимости от полученных данных о составе металла и т. п.).

    С помощью статических методов можно с достаточной степенью точно­сти определить количество: шихты (в зависимости от информации о ее со­ставе); кислорода, необходимого для окисления примесей; охладителей, ко­торые необходимо ввести для получе­ния требуемой температуры металла в конце плавки; шлакообразующих для получения в конце операции шлака нужного состава.

    При динамических методах уп­равления на основе непрерывно по­лучаемой информации о составе и температуре ванны осуществляется непрерывное регулирование положе­ния кислородной фурмы, интенсив­ности подачи кислорода, а также оп­ределяется момент окончания про­дувки.

    Разработан ряд алгоритмов и дина­мических моделей конвертерного про-^ цесса, позволяющих при использова­нии надежной информации с доста­точной степенью точности контроли­ровать и регулировать ход плавки. Созданы новые методы косвенного контроля за ходом плавки, основанные на определении: интенсивности шума (он зависит от интенсивности образования пузырей при обезуглеро­живании); интенсивности вибрации конструкций конвертера во время продувки; изучения светимости факе­ла горения СО над горловиной кон­вертера и др.

    16. ПРОИЗВОДСТВО СТАЛИ В МАРТЕНОВСКИХ ПЕЧАХ
    16.1. ИСТОРИЯ РАЗВИТИЯ

    Сущность мартеновского процесса заключается в ведении плавки на поду пламенной отражательной печи, оборудованной регенератора­ми для предварительного подогрева воздуха (иногда и газа). В историчес­ком аспекте идея получения литой стали на поду отражательной печи высказывалась многими учеными (например, еще в 1722 г. Реомюром). Однако долгое время сделать это не удавалось, так как температура факе­ла обычного в то время топлива — ге­нераторного газа — была недостаточ­ной для нагрева металла выше 1500 0С, чтобы получить жидкую сталь. В 1856г. братья Сименсы предложили использовать в пламен­ных печах для подогрева воздуха теп­ло горячих отходящих газов, устанав­ливая для этого регенераторы. Прин­цип регенерации тепла был исполь­зован Пьером Мартеном и для плавки стали (см. гл. 1).

    Началом существования мартенов­ского процесса можно считать 8 апре­ля 1864г., когда Пьер Мартен на од­ном из французских заводов сварил первую плавку.

    В мартеновскую печь загружают шихту (чугун, металлический лом и др.), которая под воздействием тепла от факела сжигаемого топлива посте­пенно плавится. После расплавления в ванну вводят различные добавки с тем, чтобы получить металл нужного состава и температуры; затем готовый металл выпускают в ковши и разлива­ют. Благодаря своим качествам и де­шевизне мартеновская сталь нашла очень широкое применение. Уже в начале XX в. доля мартеновской стали составляла половину общего мирового производства стали.

    В 1870г. дала первые плавки печь емкостью 2,5 т, построенная в России известными металлургами А. А. Из-носковым и Н. Н. Кузнецовым на Сормовском заводе. Эта печь хорошо работала и стала образцом для печей большой емкости, построенных позже на других русских заводах.

    После Октябрьской революции 1917 г. мартеновский процесс стал ос­новным в нашей металлургии. Огром­ную роль сыграли мартеновские печи и в годы Великой Отечественной вой­ны. Советским металлургам впервые в мировой практике удалось удвоить садку мартеновских печей без суще­ственной их перестройки (ММК, КМК), удалось наладить производство высококачественной стали (броневой, подшипниковой и т. п.) на действо­вавших в то время мартеновских пе­чах.

    В 1986 г. производство стали в СССР превысило 160 млн. т/год. Ос­новная масса стали в мире выплавля­лась тогда в мартеновских печах; наи­более крупные и высокопроизводи­тельные (около 1 млн. т стали в год) работали в СССР. Однако в современ­ных условиях мартеновский процесс уже не выдерживает конкуренции с конвертерным процессом и электро­плавкой. Во многих странах производ­ство мартеновской стали по этой причине прекращено. В России доля стали, выплавляемой в мартеновских печах, в последние десятилетия не­прерывно уменьшается и составляет в настоящее время около 1/5 общего производства стали.

    16.2. КОНСТРУКЦИЯ И РАБОТА МАРТЕНОВСКОЙ ПЕЧИ
    Мартеновская печь симметрична по своей конструкции и состоит из следу­ющих основных элементов (рис. 16.1): рабочее пространство, головки, верти­кальные каналы, шлаковики, регене­раторы, борова, реверсивные и регу­лирующие клапаны, котел-утилиза­тор, газоочистка и дымовая труба. На рис. 16.1 схематически показана мар­теновская печь в тот момент, когда топливо и воздух поступают с правой стороны печи. Проходя через предва­рительно нагретую насадку регенера­тора, воздух нагревается до 1000— 1200°С и в нагретом состоянии через головку попадает в печь. При сгора­нии топлива образуется факел, темпе­ратура которого 1800—1900 °С. Пройдя головку, расположенную в левой сто­роне печи, раскаленные продукты сго­рания попадают в левую насадку реге­нератора и по системе боровов уходят к трубе. При этом насадка левого реге­нератора нагревается, а насадка реге­нератора правой стороны постепенно охлаждается. В момент, когда темпе­ратура в регенераторе, через который поступал в печь воздух, уже снизилась настолько, что становится невозмож­ным нагрев воздуха до нужного уров­ня, а противоположный регенератор, через который из печи уходят продукты сгорания, перегревается, осуществ­ляют перекидку клапанов, изменяя на­правление движения потоков в печи. Операцию перекидки выполняют по­средством перекидных клапанов. Хо­лодный воздух в результате этой опе­рации направляется через хорошо на­гретый левый регенератор, а продукты сгорания уходят в правую сторону печи, постепенно нагревая остывший правый регенератор. В течение плавки циклы повторяются.

    Энтальпия продуктов сгорания Н равна произведению массы продуктов сгорания т на их теплоемкость с и температуру t, т. е. Н= cmt, откуда t = H/ст. Энтальпия
    H складывается из химического тепла сгорания топли­ва Hх т и тепла нагрева воздуха Hн В, т. е. Н= Нхт + Hн в, соответственно t = (Нх.т. + Нн.в. )/cт. Таким образом, при нагреве поступающего в печь воз­духа обеспечивается достаточно высо­кая температура факела (>1800°С). Чем выше температура нагрева возду­ха, тем выше температура факела и тем лучше работает печь.

    Повышение температуры факела можно обеспечить также заменой воз­духа (частичной или полной) кислоро­дом. Тогда в формуле t = Н/с-т умень­шается знаменатель (уменьшается /п) и соответственно возрастает темпера­тура. На каждый объем подаваемого воздуха с кислородом поступает 3,762



    Рис. 16.1. Схема устройства (а) и общий вид (б) мартеновской печи:

    / — дымовая труба; 2 — боров; 3 — регенератор; 4— шлаковик; 5 — вертикальный канал; 6— головка; 7—ра­бочее пространство; 8— реверсивные и регулирующие клапаны; 9— котел-утилизатор; 10— газоочистка
    объема балластного азота. Обогаще­ние воздуха кислородом приводит к уменьшению количества продуктов сгорания (при том же количестве теп­ла, выделенном топливом) и соответ­ственно к повышению температуры.

    При рассмотрении существующих вариантов конструкций мартеновских печей исходят из следующих общих признаков:

    а) по характеру конструкций мар­теновские печи бывают стационарны­ми и качающимися. Большинство мар­теновских печей стационарные, так как качающиеся печи более сложные по конструкции и эксплуатация их об­ходится дороже. Однако в отдельных случаях установка качающихся печей себя оправдывает, например при тех­нологической необходимости скачи­вать большое количество шлака или выпускать из печи не всю плавку, а только ее часть;

    б) по характеру материалов, ис­пользуемых для изготовления подины, мартеновские печи бывают основными и кислыми',

    в) в зависимости от вида топлива и его теплотворной способности марте­новские печи могут иметь две пары реге­нераторов — для подогрева и воздуха, и газа (при отоплении печи газом с невы­сокой теплотворной способностью) или одну пару регенераторов (когда печь отапливается высококалорийным топ­ливом, подогрев которого либо не ну­жен, либо трудно осуществим);

    г) в зависимости от емкости марте­новские печи делятся на печи малой емкости (<125т), средней емкости (125—300т) и большегрузные печи. Из большегрузных печей металл обычно выпускается одновременно в два ков­ша (в исключительных случаях в три ковша).

    Под термином «емкость печи» обычно понимается та масса металло-шихты, которую возможно загрузить в печь. Масса вводимых в печь по ходу плавки добавочных материалов при этом не учитывается. Кроме термина «емкость печи» рекомендован термин «вместимость печи», встречается так­же понятие «садка печи».

    Строение мартеновской печи де­лится на верхнее и нижнее. Деление это весьма условно. Обычно рабочая площадка мартеновского цеха распо­ложена на 5—7 м выше уровня пола цеха. Верхнее строение печи располо­жено выше этой площадки. Оно вклю­чает собственно рабочее пространство и головки печи. Нижнее строение рас­положено под рабочей площадкой. Оно включает шлаковики, регенерато­ры и борова с перекидными устрой­ствами. Под рабочей площадкой обычно размещают также вентилято­ры для подачи через регенераторы в печь воздуха и другое вспомогательное оборудование.

    16.2.1. Рабочее пространство марте­новской печи предназначено для осу­ществления всего технологического процесса выплавки стали, начиная от загрузки шихты и кончая выпуском готового металла. Оно представляет собой камеру определенного профиля, ограниченную подом, сводом, пере­дней и задней стенками, а с торцов — головками печи (рис. 16.2).

    1   ...   35   36   37   38   39   40   41   42   ...   88


    написать администратору сайта