Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act
Скачать 7.23 Mb.
|
Рис. 15.24. Схема LBE-конвертера завода «Stelco» (Канада): 1 — фурма для подачи кислорода; 2— шлак; 3— металл; 4— пористые вставки для подачи аргона или азота; 5—контроль состава отходящих газов; 6— отвод газов и плавильной пыли ность ванны, в результате повышается стойкость футеровки стен; б) увеличение стойкости фурм; в) снижение степени местного перегрева металла в локальной зоне удара кислородной струи и, как следствие, уменьшение интенсивности его испарения и образования пыли. 4. Уменьшается расход шлакообразующих, вводимых для ускорения шлакообразования (вплоть до отказа от использования таких добавок, как плавиковый шпат), что упрощает организацию подачи материалов к конвертеру. Работа с комбинированной продувкой требует более высокой культуры производства, включая управление плавкой, использование высококачественных огнеупоров и оборудования для донной продувки. Управление ходом плавки усложняется, поскольку к обычным операциям управления (изменение положения фурмы и определение момента окончания продувки) добавляются операции определения момента начала подачи инертного газа снизу и промежутка времени от момента окончания подачи кислорода сверху до момента окончания подачи газа снизу, режима подачи донного дутья и др. Как уже отмечалось выше, распределение кислорода в системе металл-шлак определяется интенсивностью подачи донного дутья. На рис. 15.25 и 15.26 показано изменение содержания железа в шлаке1 и концентрации кислорода в металле для различных вариантов конвертерного процесса. Кривые для процессов с комбинированной продувкой располагаются между кривыми для верхней и донной продувки. Характерным является уменьшение концентрации кислорода в металле и железа в шлаке по мере увеличения интенсивности подачи донного дутья. Режим донной продувки в процессах с подачей снизу нейтральных газов обязательно должен соответствовать сортаменту выплавляемой стали. Раннее интенсивное перемешивание нецелесообразно при выплавке высокоуглеродистой стали, так как при этом снижается окисленность шлака и тем самым ухудшаются условия дефосфорации. Интенсивность донного дутья увеличивают при производстве низкоуглеродистой стали. Так, например, средняя интенсивность подачи инертных газов при выплавке высокоуглеродистых сталей составляет 0,01, сред- Рис. 15.25. Содержание железа в шлаке при разных вариантах конвертерного процесса: 7—верхняя продувка; 2-4— комбинированная продувка с интенсивностью подачи донного дутья соответственно 0,01-0,10, 0,10-0,8 и 0,7-1,5 м?/(мин • т); 5—донная продувка Рис. 15.26. Зависимость содержания кислорода в стали от концентрации углерода на выпуске: 1 — верхняя продувка; 2, 3— комбинированная продувка с нейтральным газом; 4, 5—комбинированная продувка с подачей кислорода через днище; 6— донная кислородная продувка; 7— равновесная кривая ншглеродистых — 0,05, низкоутлеродистых — 0,1 м3/(мин • т). Oбычно в основное время продувки интенсивность подачи газа через днище невелика — 0,02-0,05 м3/(мин • т). При выплавке низкоуглеродистой стали в заключительный период продувки (за 3—7 мин до ее окончания) расход |газа существенно увеличивают — до |0,1-0,3м3/(мин • т). Увеличение интенсивности донного дутья, с одной стороны, в некоторой степени компенсирует уменьшение объема образующегося в ванне оксида углерода в связи с затуханием обезуглероживания, а с другой — поддерживает этот процесс в результате снижения парциального давления оксида углерода в всплывающих пузырях. Это позволяет получать низкое содержание углерода (0,03-0,04 %) в конце продувки без переокисления металла и шлака. С целью дальнейшего снижения концентрации углерода применяют операцию послепродувочного перемешивания. Данному сравнительно короткому по продолжительности периоду уделяют особое внимание. Подача кислорода в это время прекращена; металл и шлак перемешиваются подаваемым снизу инертным газом. Период перемешивания часто совмещают с периодом ожидания анализа конечной пробы. В процессе перемешивания ванны инертным газом снижается (за счет взаимодействия с углеродом) окисленность металла и шлака, всплывают неметаллические включения, удаляются газы, выравниваются состав металла и его температура (иногда этот период называют «промывочным»). Постепенное снижение при этом температуры металла определяется массой продутого газа. В 160-т конвертере температура в период послепродувочного перемешивания снижается со скоростью 3-4 °С/мин. Это обстоятельство необходимо учитывать и заканчивать кислородную продувку при более высокой (на 15—20 °С) температуре металла. Немаловажные проблемы, решаемые специалистами-огнеупорщиками, связаны с технологией изготовления пористых блоков-вставок. К этим блокам предъявляются очень высокие требования, так как они должны: 1) обеспечить возможность вдувания необходимого количества газа (обычно до 1,5—1,7 м3/т стали); 2) создать условия прохождения этого газа через металл в виде возможно более мелких пузырей и обеспечить его стабильную интенсивность во времени; 3) обладать высокой стойкостью, которая должна быть не ниже стойкости днища конвертера. Выполнение всех этих требований важно. Так, например, уменьшение среднего диаметра пузыря аргона с 12 до 2мм обеспечивает увеличение общей поверхности пузырей (на 1 л газа) с 0,5 до 3,0 м2. Особую трудность представляет изготовление собственно блоков-вставок. Чтобы обеспечить получение мелких пузырей и предотвращать затекание металла, каналы должны иметь диаметр -Гмм. В качестве основных размеров при изготовлении блоков-вставок принимают размеры кирпичей, из которых выкладывают днище конвертера. В кирпиче 150x100 мм предусматривают не менее 50 каналов для прохода газов. Обычно каждый такой кирпич заключен в металлическую (из листовой стали) блок-кассету, к донной части которой приварена трубка для подвода газа к отверстиям. Число блоков-вставок колеблется от 4 (60-т конвертер) до 16 (350—400-т конвертер). В качестве основы при изготовлении блоков-вставок используют специально обожженный магнезит или пери-клазоуглеродистые огнеупоры. Стойкость пористых блоков составляет 500—1000 плавок и более. Широкие исследования, по выбору конструкции донных дутьевых устройств и их рациональному расположению в днище при работе с нейтральным газом проведены на Западно-Сибирском металлургическом комбинате (ЗСМК) на 160-т конвертерах. Были опробованы металлические трубы, многоканальные блоки с направленной пористостью (число каналов от 4 до 49), одноканальные огнеупорные блоки. Установлено, что при расходе нейтрального газа на одну фурму более 1,5м3/мин резко возрастает износ как самой фурмы, так и околофурменного пространства. На рис. 15.27 представлены варианты размещения дутьевых устройств в днище. Наилучшие результаты по перемешиванию обеспечиваются при асимметричном расположении фурм. Диаметр окружности, по которой размещают фурмы, составляет 0,5— 0,6 диаметра днища. Если фурмы при горизонтальном положении конвертера располагаются ниже уровня ванны, износ их увеличивается. В настоящее время металлургами и огнеупорщиками разработан ряд вариантов устройств, успешно используемых для продувки металла снизу как в конвертерах, так и в дуговых и мартеновских печах. Для продувки снизу обычно используют аргон и азот. Азот дешевле аргона. Выбор того или иного продувочного газа в тот или иной период продувки решается с учетом необходимости получения стали требуемого качества (для некоторых марок стали требуются повышенные концентрации азота). 15.5.1. Использование для донной продувки СО2. Как отмечено выше, для улучшения перемешивания и рафинирования металла от ряда примесей используют инертные и малореактивные газы (азот и аргон), вдуваемые в конвертер снизу. Основным перемешивающим газом остается азот. Аргон как более дорогой газ применяют обычно только на заключительном этапе окислительного рафинирования стали с регламентированным содержанием азота. Можно ли для перемешивания в конвертерах с комбинированной продувкой использовать СО2? Привлекает эффект увеличения вдвое объема перемешивающих пузырьков, образующихся в результате реакции СО2 + [С] = 2СО, что должно обеспечить возможность уменьшения расхода вдуваемого газа. В опытных плавках, проведенных/в совместных исследованиях МИСиСа и Новолипецкого металлургического комбината, в качестве перемешивающего газа использовали СО2. В цехе, где проводили эксперименты, ощущался недостаток аргона, ограничивающий эффективность комбинированной продувки. Применение СО2 мгло бы помочь в ликвидации этих трудностей и уменьшить затраты на аргон. Плавки проводили на марках стлали, где в качестве перемешивающего газа для донной продувки металла использовали азот (8-10 мин), а на конечной стадии плавки — аргон в течение такого же времени. Для получения стали с пониженным содержанием азота длительность аргонной продувки увеличивали до 12-14 мин. Диоксид углерода — слабоокислительный (по сравнению с кислородом) газ. При рассмотрении физико-химических особенностей его взаимодействия с расплавом важно определить возможные варианты реакций, так как окисляться могут и углерод, и железо. 1. Взаимодействие диоксида углерода с растворенным углеродом по реакции СО2 + [С] = 2СО, ΔGo1=138 400-125,44 Т происходит с удвоением объема перемешивающего газа, что позволяет уменьшить расход газа, подаваемого снизу, или (при этом же расходе и той же подводящей системе) увеличить эффективность донной продувки. 2. Диоксид углерода взаимодействует и с железом по реакции С02 + [Fe] = СО + (FeO), ΔGo2 =34 000-30,97Г. Расчеты показывают, что эта реак- Рис. 15.27. Варианты расположения фурм в днище цйя будет протекать преимущественно только при очень малых концентрациях углерода. Эксперименты показали, что при использовании в качестве перемешивающего газа СО2 содержание азота в металле в конце операции было существенно ниже (<0,0030 %), чем обычно. Полученные результаты можно объяснить тем, что при вдувании СО2 снизу поступление азота в металл уменьшается из-за сокращения длительности продувки азотом, а удаление его усиливается в связи с интенсификацией перемешивания жидкой ванны. Содержание азота в готовом металле может быть дополнительно уменьшено, если применять защиту струи металла при выпуске из конвертера. Аргон слишком дорог для использования в этом технологическом приеме, а применение диоксида углерода может реально обеспечить защиту металла от поглощения азота. 15.5.2. Подогрев газов, используемых для донного дутья. Весьма заманчивым представляется увеличить приходную часть теплового баланса конвертерной плавки за счет подогрева газов, подаваемых для перемешивания через днище. Такие работы, проведенные на 160-т конвертерах Западно-Сибирского металлургического комбината, показали, что сконструированные устройства (рис. 15.28) позволяют подогревать газ за счет тепла, аккумулированного футеровкой, до 480—500 °С (расход газа до 24 м3/мин, длина трубопровода около 50 м). При этом улучшается тепловой баланс, предотвращаются образование настыли и за-металливание донных фурм. 15.5.3. «Малошлаковая» технология. Одной из важнейших проблем в организации рациональной технологии сталеплавильного производства является выбор состава шихты. Основная часть металлошихты конвертерной плавки — это чугун. Традиционным требованием к составу чугуна является максимально меньшее содержание в нем серы и фосфора. Получение низкосернистого чугуна сопряжено с определенным температурным режимом доменной плавки и использованием в доменной печи основного Рис. 15.28. Схема подогрева газа, используемого для донной продувки: 1 — пазы; 2 — витки трубопровода шлака, вследствие чего увеличивается расход кокса, возрастает масса шлака, снижается производительность доменных печей и т. п. Если нужно в доменной печи получить чугун с низким содержанием серы, требуется иметь основный шлак. Поскольку он более тугоплавок, требуется увеличивать расход кокса. Вместе с тем чем выше температурный режим и расход известняка (для получения основного шлака), тем выше в чугуне содержание восстановленного из руды кремния. Доменщики считают, что каждой 0,1 % уменьшения содержания кремния в чугуне соответствует снижение расхода кокса на 3,4 кг/т чугуна. В свою очередь, сталеплавильщики для получения в конвертере стали с низким содержанием серы традиционно ведут плавку с высокоосновным шлаком (CaO/SiO2 = 3,0-3,5 и более). В настоящее время возникла новая ситуация: металлурги располагают разработанными и опробованными технологиями внедоменной обработки чугуна и внепечной обработки стали. Эти технологии обеспечивают возможность существенно снизить содержание серы и в чугуне, и встали. В этой связи неизбежно возникает вопрос о том, какие требования предъявлять к составу чугуна в новых, изменившихся условиях. К этим новым условиям следует отнести и то, что в настоящее время Россия не располагает богатыми разрабатываемыми месторождениями марганца. В целом возникла проблема целесообразности перехода на использование в конвертерном производстве чугунов с низким содержанием марганца и кремния. На рис. 15.18 приведены результаты расчетных и экспериментальных данных, из которых, в частности, следует, что при снижении в чугуне концентрации кремния увеличивается выход жидкой стали, уменьшаются масса шлака и расход извести. Это и понятно. Чем больше в чугуне кремния, тем значительнее угар (кремний полностью окисляется в первые минуты продувки), тем больше образуется кремнезема (SiO2) и больше требуется извести (СаО) для получения высокой основности (CaO/SiO2). Соответственно увеличиваются общая масса шлака и масса железа (в виде оксидов) в шлаке, т. е. возрастают потери железа со шлаком. Таким образом, расчеты и практика показывают, что переход на использование низкокремнистого (и маломарганцовистого) жидкого чугуна целесообразен. Это позволяет повысить производительность доменных печей (при одновременной экономии кокса), снизить расходы флюсов в конвертерном производстве, уменьшить потери со шлаком, повысить стойкость футеровки и др. Переход на работу с низкокремнистым и маломарганцовистым чугуном обеспечивает увеличение выхода металла минимум на 1,0-1,5 %. Кроме того, несколько облегчаются условия работы шлакоуборки, уменьшаются шлаковые отвалы и т. п. В то же время есть ряд негативных моментов: 1. Переработка маломарганцовйстого чугуна связана с определенными трудностями («свертывание» шлаков, повышенный угар и др.). Это недостаток, но ситуация исправима. Переработка чугуна с низким содержанием марганца должна сопровождаться кими приемами, как ввод в состав шихты содержащих марганец добавок, оставление в конвертере шлака предыдущей плавки, использование «ожелезненной» извести и др. 2. При использовании технологий, включающих внепечную обработку и чугуна, и стали, может вызвать сомнение верность требования иметь в Конвертере высокую основность конечного шлака. Возможность снизить эту величину и пределы возможного снижения определяет практика, причем при снижении основности эффективность перехода на малокремнистые чугуны станет еще заметнее. 3. Снижение содержания в чугуне кремния приведет к уменьшению доли металлолома в шихте. На первый взгляд это недостаток. Однако события последних лет показали, что в России испытывается не избыток, а недостаток качественного лома. Приходится учитывать, что качество металлолома (прежде всего по содержанию примесей цветных металлов) непрерывно ухудшается; соответственно сужаются возможности использовать такой металлолом для производства качественных сталей. Постепенно расширяется практика использования в качестве охладителей различных железорудных материалов, материалов типа «синтиком», металлизованных железорудных.окатышей и др., что сопровождается существенным снижением содержания примесей цветных металлов (по данным ряда заводов, в 1,5—2 раза). При изучении малошлаковой технологии нельзя не отметить такой известный технологический прием, как оставление в печи или конвертере полностью или частично конечного жидкого шлака. При этом меняются и тепловой баланс, и технология плавки. По расчетам, 12-17 % общего расхода тепла конвертерной операции — это тепло конечного шлака. Шлак уже сформирован, он содержит много СаО и оксидов железа, поэтому при его оставлении в конвертере снижается расход извести, уменьшаются потери железа со шлаком и сокращается период формирования жидкоподвижного активного шлака. Необходимо только учитывать такие моменты, как: а) постепенное накопление в шлаке фосфора (при многократном оставлении шлака); б) возможность возникновения выбросов при контакте жидкого чугуна с жидким железистым шлаком. 15.6. ОСОБЕННОСТИ КОНВЕРТЕРНОГО ПЕРЕДЕЛА ВЫСОКОФОСФОРИСТЫХ ЧУГУНОВ Из формулы константы равновесия реакций дефосфорации следует, что a 2[P] = a(СаО)4-Р205 /(K ∙a5 (FeO) ∙ a 4(CaO)). B случае передела чугуна с обычным содержанием фосфора для получения [Р] < 0,010-0,020 % достаточно иметь в конвертере активный известково-железистый шлак. При повышении в чугуне содержания фосфора до 0,4— 0,5 % активность соединений фосфора в образующемся при продувке шлаке оказывается настолько высокой, что для достижения низких значений [Р] необходимо иметь очень большую массу известково-железистого шлака. Обычные добавки извести и окислителей уже не обеспечивают успеха. Рациональным является единственный способ: шлак, содержащий много фосфора, скачивать и наводить новый известково-железистый шлак, не содержащий фосфора. В связи с этим операция скачивания шлака является обязательным технологическим приемом при переработке высокофосфористых чугунов (двустадийный или двушлаковый процесс). Поскольку при переработке высокофосфористых чугунов шлак, содержащий много Р2О5, является ценным удобрением, необходимо его не просто скачивать, а скачивать в тот момент, когда он содержит максимальное количество Р2О5, т. е. когда он представляет максимальную ценность как удобрение. Кроме того, желательно организовать технологический процесс таким образом, чтобы фосфор, переходящий в шлак, не терялся и содержащий фосфорные соединения шлак не попадал в отвал. Плавка в конвертере при переработке высокофосфористых чугунов условно может быть разделена на два периода: 1) до скачивания шлака; 2) после скачивания шлака (в некоторых случаях его скачивают дважды). В обычном конвертерном процессе при продувке чугуна сверху активный жидкоподвижный шлак, в котором полностью растворились загруженные куски извести, успевает сформировываться только к концу плавки. При переработке высокофосфористых чугунов плавка прерывается для скачивания шлака. Если не принять специальных мер, то к моменту начала скачивания шлака известь полностью еще не успеет раствориться и процесс дефосфорации пройдет недостаточно полно. Если уменьшить интенсивность подачи кислорода и ждать, пока сформируется необходимый для дефосфорации шлак, то плавка существенно удлинится, ухудшатся условия службы футеровки, увеличатся относительные потери тепла. Таким образом, необходимо обеспечить раннее формирование активного железисто-известкового шлака. Для решения этой задачи существуют разные методы, чаще всего применяют два: 1) использование (оставление в конвертере) расплавленного железисто-известкового шлака предыдущей плавки для быстрого наведения шлака последующей плавки; 2) введение шлакообразу-ющих (прежде всего извести) в тонкоизмельченном (порошкообразном) состоянии, что позволяет быстро прогреть и ошлаковать каждую частичку извести. Наибольшее распространение варианты переработки высокофосфористых чугунов получили в Западной Европе, поскольку там металлургия традиционно базируется на значительных запасах фосфористых железных руд. Наиболее известные варианты технологии описаны ниже. |