Главная страница
Навигация по странице:

  • Рис. 15.25.

  • Рис. 15.26.

  • 15.5.1. Использование для донной продувки СО

  • Рис. 15.27.

  • 15.5.2. Подогрев газов, используе­мых для донного дутья.

  • 15.5.3. «Малошлаковая» техноло­гия.

  • Рис. 15.28.

  • 15.6. ОСОБЕННОСТИ КОНВЕРТЕРНОГО ПЕРЕДЕЛА ВЫСОКОФОСФОРИСТЫХ ЧУГУНОВ

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница38 из 88
    1   ...   34   35   36   37   38   39   40   41   ...   88

    Рис. 15.24. Схема LBE-конвертера завода «Stelco» (Канада):

    1 — фурма для подачи кислорода; 2— шлак; 3— ме­талл; 4— пористые вставки для подачи аргона или азота; 5—контроль состава отходящих газов; 6— отвод газов и плавильной пыли
    ность ванны, в результате повышается стойкость футеровки стен; б) увеличе­ние стойкости фурм; в) снижение сте­пени местного перегрева металла в ло­кальной зоне удара кислородной струи и, как следствие, уменьшение интенсивности его испарения и обра­зования пыли.

    4. Уменьшается расход шлакообразующих, вводимых для ускорения шлакообразования (вплоть до отказа от использования таких добавок, как плавиковый шпат), что упрощает организацию подачи материалов к конвертеру.

    Работа с комбинированной продув­кой требует более высокой культуры производства, включая управление плавкой, использование высококаче­ственных огнеупоров и оборудования для донной продувки. Управление хо­дом плавки усложняется, поскольку к обычным операциям управления (из­менение положения фурмы и опреде­ление момента окончания продувки) добавляются операции определения момента начала подачи инертного газа снизу и промежутка времени от мо­мента окончания подачи кислорода сверху до момента окончания подачи газа снизу, режима подачи донного дутья и др.

    Как уже отмечалось выше, рас­пределение кислорода в системе ме­талл-шлак определяется интенсив­ностью подачи донного дутья. На рис. 15.25 и 15.26 показано измене­ние содержания железа в шлаке1 и концентрации кислорода в металле для различных вариантов конвертер­ного процесса.

    Кривые для процессов с комбини­рованной продувкой располагаются между кривыми для верхней и донной продувки. Характерным является уменьшение концентрации кислорода в металле и железа в шлаке по мере увеличения интенсивности подачи донного дутья.

    Режим донной продувки в процес­сах с подачей снизу нейтральных газов обязательно должен соответствовать сортаменту выплавляемой стали. Ран­нее интенсивное перемешивание не­целесообразно при выплавке высоко­углеродистой стали, так как при этом снижается окисленность шлака и тем самым ухудшаются условия дефосфорации. Интенсивность донного дутья увеличивают при производстве низко­углеродистой стали. Так, например, средняя интенсивность подачи инерт­ных газов при выплавке высокоугле­родистых сталей составляет 0,01, сред-


    Рис. 15.25. Содержание железа в шлаке при разных вариантах конвертерного процесса:

    7—верхняя продувка; 2-4— комбинированная

    продувка с интенсивностью подачи донного

    дутья соответственно 0,01-0,10, 0,10-0,8 и

    0,7-1,5 м?/(мин • т); 5—донная продувка



    Рис. 15.26. Зависимость содержания кисло­рода в стали от концентрации углерода на выпуске:

    1 — верхняя продувка; 2, 3— комбинированная про­дувка с нейтральным газом; 4, 5—комбинирован­ная продувка с подачей кислорода через днище; 6— донная кислородная продувка; 7— равновесная кривая
    ншглеродистых — 0,05, низкоутлеродистых — 0,1 м3/(мин • т).

    Oбычно в основное время продувки интенсивность подачи газа через дни­ще невелика — 0,02-0,05 м3/(мин • т). При выплавке низкоуглеродистой ста­ли в заключительный период продув­ки (за 3—7 мин до ее окончания) рас­ход |газа существенно увеличивают — до |0,1-0,3м3/(мин • т). Увеличение интенсивности донного дутья, с одной стороны, в некоторой степени ком­пенсирует уменьшение объема об­разующегося в ванне оксида углерода в связи с затуханием обезуглерожива­ния, а с другой — поддерживает этот процесс в результате снижения парци­ального давления оксида углерода в всплывающих пузырях. Это позволяет получать низкое содержание углерода (0,03-0,04 %) в конце продувки без переокисления металла и шлака.

    С целью дальнейшего снижения концентрации углерода применяют операцию послепродувочного переме­шивания.

    Данному сравнительно короткому по продолжительности периоду уделя­ют особое внимание. Подача кислоро­да в это время прекращена; металл и шлак перемешиваются подаваемым снизу инертным газом. Период пере­мешивания часто совмещают с перио­дом ожидания анализа конечной про­бы. В процессе перемешивания ванны инертным газом снижается (за счет взаимодействия с углеродом) окислен­ность металла и шлака, всплывают не­металлические включения, удаляются газы, выравниваются состав металла и его температура (иногда этот период называют «промывочным»). Посте­пенное снижение при этом температу­ры металла определяется массой про­дутого газа. В 160-т конвертере темпе­ратура в период послепродувочного перемешивания снижается со скорос­тью 3-4 °С/мин. Это обстоятельство необходимо учитывать и заканчивать кислородную продувку при более вы­сокой (на 15—20 °С) температуре ме­талла.

    Немаловажные проблемы, решае­мые специалистами-огнеупорщиками, связаны с технологией изготовления пористых блоков-вставок. К этим бло­кам предъявляются очень высокие требования, так как они должны:

    1) обеспечить возможность вдувания необходимого количества газа (обыч­но до 1,5—1,7 м3/т стали);

    2) создать условия прохождения этого газа через металл в виде возможно более мелких пузырей и обеспечить его стабильную интенсивность во времени;

    3) обла­дать высокой стойкостью, которая должна быть не ниже стойкости дни­ща конвертера.

    Выполнение всех этих требований важно. Так, например, уменьшение среднего диаметра пузы­ря аргона с 12 до 2мм обеспечивает увеличение общей поверхности пузы­рей (на 1 л газа) с 0,5 до 3,0 м2. Особую трудность представляет изготовление собственно блоков-вставок. Чтобы обеспечить получение мелких пузырей и предотвращать затекание металла, каналы должны иметь диаметр -Гмм. В качестве основных размеров при из­готовлении блоков-вставок принима­ют размеры кирпичей, из которых выкладывают днище конвертера. В кирпиче 150x100 мм предусматрива­ют не менее 50 каналов для прохода газов. Обычно каждый такой кирпич заключен в металлическую (из листо­вой стали) блок-кассету, к донной ча­сти которой приварена трубка для подвода газа к отверстиям. Число бло­ков-вставок колеблется от 4 (60-т кон­вертер) до 16 (350—400-т конвертер). В качестве основы при изготовлении блоков-вставок используют специаль­но обожженный магнезит или пери-клазоуглеродистые огнеупоры. Стой­кость пористых блоков составляет 500—1000 плавок и более.

    Широкие исследования, по выбо­ру конструкции донных дутьевых ус­тройств и их рациональному распо­ложению в днище при работе с нейт­ральным газом проведены на Запад­но-Сибирском металлургическом комбинате (ЗСМК) на 160-т конвер­терах. Были опробованы металличес­кие трубы, многоканальные блоки с направленной пористостью (число каналов от 4 до 49), одноканальные огнеупорные блоки. Установлено, что при расходе нейтрального газа на одну фурму более 1,5м3/мин резко возрастает износ как самой фурмы, так и околофурменного простран­ства.

    На рис. 15.27 представлены вариан­ты размещения дутьевых устройств в днище. Наилучшие результаты по пе­ремешиванию обеспечиваются при асимметричном расположении фурм. Диаметр окружности, по которой раз­мещают фурмы, составляет 0,5— 0,6 диаметра днища. Если фурмы при горизонтальном положении конверте­ра располагаются ниже уровня ванны, износ их увеличивается.

    В настоящее время металлургами и огнеупорщиками разработан ряд ва­риантов устройств, успешно использу­емых для продувки металла снизу как в конвертерах, так и в дуговых и мар­теновских печах.

    Для продувки снизу обычно ис­пользуют аргон и азот. Азот дешевле аргона. Выбор того или иного проду­вочного газа в тот или иной период продувки решается с учетом необхо­димости получения стали требуемого качества (для некоторых марок стали требуются повышенные концентра­ции азота).

    15.5.1. Использование для донной продувки СО2. Как отмечено выше, для улучшения перемешивания и ра­финирования металла от ряда приме­сей используют инертные и малореак­тивные газы (азот и аргон), вдуваемые в конвертер снизу. Основным переме­шивающим газом остается азот. Аргон как более дорогой газ применяют обычно только на заключительном этапе окислительного рафинирования стали с регламентированным содержа­нием азота.

    Можно ли для перемешивания в конвертерах с комбинированной про­дувкой использовать СО2? Привлекает эффект увеличения вдвое объема пе­ремешивающих пузырьков, образую­щихся в результате реакции СО2 + [С] = 2СО, что должно обеспе­чить возможность уменьшения расхо­да вдуваемого газа.

    В опытных плавках, проведенных/в совместных исследованиях МИСиСа и Новолипецкого металлургического комбината, в качестве перемешиваю­щего газа использовали СО2. В цехе, где проводили эксперименты, ощу­щался недостаток аргона, ограничива­ющий эффективность комбинирован­ной продувки. Применение СО2 мгло бы помочь в ликвидации этих трудно­стей и уменьшить затраты на аргон. Плавки проводили на марках стлали, где в качестве перемешивающего газа для донной продувки металла исполь­зовали азот (8-10 мин), а на конечной стадии плавки — аргон в течение тако­го же времени. Для получения стали с пониженным содержанием азота дли­тельность аргонной продувки увели­чивали до 12-14 мин.

    Диоксид углерода — слабоокисли­тельный (по сравнению с кислородом) газ. При рассмотрении физико-хими­ческих особенностей его взаимодей­ствия с расплавом важно определить возможные варианты реакций, так как окисляться могут и углерод, и железо.

    1. Взаимодействие диоксида угле­рода с растворенным углеродом по ре­акции

    СО2 + [С] = 2СО,

    ΔGo1=138 400-125,44 Т

    происходит с удвоением объема пере­мешивающего газа, что позволяет уменьшить расход газа, подаваемого снизу, или (при этом же расходе и той же подводящей системе) увеличить эффективность донной продувки.

    2. Диоксид углерода взаимодей­ствует и с железом по реакции

    С02 + [Fe] = СО + (FeO),

    ΔGo2 =34 000-30,97Г.

    Расчеты показывают, что эта реак-



    Рис. 15.27. Варианты расположения фурм в днище
    цйя будет протекать преимущественно только при очень малых концентраци­ях углерода.

    Эксперименты показали, что при использовании в качестве перемеши­вающего газа СО2 содержание азота в металле в конце операции было суще­ственно ниже (<0,0030 %), чем обыч­но. Полученные результаты можно объяснить тем, что при вдувании СО2 снизу поступление азота в металл уменьшается из-за сокращения дли­тельности продувки азотом, а удале­ние его усиливается в связи с интенси­фикацией перемешивания жидкой ванны.

    Содержание азота в готовом метал­ле может быть дополнительно умень­шено, если применять защиту струи металла при выпуске из конвертера. Аргон слишком дорог для использова­ния в этом технологическом приеме, а применение диоксида углерода может реально обеспечить защиту металла от поглощения азота.

    15.5.2. Подогрев газов, используе­мых для донного дутья. Весьма заман­чивым представляется увеличить при­ходную часть теплового баланса кон­вертерной плавки за счет подогрева газов, подаваемых для перемешивания через днище. Такие работы, проведен­ные на 160-т конвертерах Западно-Си­бирского металлургического комбина­та, показали, что сконструированные устройства (рис. 15.28) позволяют по­догревать газ за счет тепла, аккумули­рованного футеровкой, до 480—500 °С (расход газа до 24 м3/мин, длина тру­бопровода около 50 м). При этом улучшается тепловой баланс, предотв­ращаются образование настыли и за-металливание донных фурм.

    15.5.3. «Малошлаковая» техноло­гия. Одной из важнейших проблем в организации рациональной техноло­гии сталеплавильного производства является выбор состава шихты. Ос­новная часть металлошихты конвер­терной плавки — это чугун. Традици­онным требованием к составу чугуна является максимально меньшее содер­жание в нем серы и фосфора. Получе­ние низкосернистого чугуна сопряже­но с определенным температурным режимом доменной плавки и исполь­зованием в доменной печи основного



    Рис. 15.28. Схема подогрева газа, используе­мого для донной продувки:

    1 — пазы; 2 — витки трубопровода
    шлака, вследствие чего увеличивается расход кокса, возрастает масса шлака, снижается производительность домен­ных печей и т. п.

    Если нужно в доменной печи полу­чить чугун с низким содержанием серы, требуется иметь основный шлак. Поскольку он более тугоплавок, тре­буется увеличивать расход кокса. Вме­сте с тем чем выше температурный ре­жим и расход известняка (для получе­ния основного шлака), тем выше в чу­гуне содержание восстановленного из руды кремния.

    Доменщики считают, что каждой 0,1 % уменьшения содержания крем­ния в чугуне соответствует снижение расхода кокса на 3,4 кг/т чугуна. В свою очередь, сталеплавильщики для полу­чения в конвертере стали с низким со­держанием серы традиционно ведут плавку с высокоосновным шлаком (CaO/SiO2 = 3,0-3,5 и более). В на­стоящее время возникла новая ситуация: металлурги располагают разработан­ными и опробованными технологиями внедоменной обработки чугуна и внепечной обработки стали. Эти технологии обеспечивают возможность существен­но снизить содержание серы и в чугуне, и встали.

    В этой связи неизбежно возникает вопрос о том, какие требования предъявлять к составу чугуна в новых, изменившихся условиях. К этим но­вым условиям следует отнести и то, что в настоящее время Россия не рас­полагает богатыми разрабатываемыми месторождениями марганца. В целом возникла проблема целесообразности перехода на использование в конвер­терном производстве чугунов с низ­ким содержанием марганца и крем­ния.

    На рис. 15.18 приведены результа­ты расчетных и экспериментальных данных, из которых, в частности, сле­дует, что при снижении в чугуне кон­центрации кремния увеличивается вы­ход жидкой стали, уменьшаются масса шлака и расход извести. Это и понят­но. Чем больше в чугуне кремния, тем значительнее угар (кремний полнос­тью окисляется в первые минуты про­дувки), тем больше образуется крем­незема (SiO2) и больше требуется из­вести (СаО) для получения высокой основности (CaO/SiO2). Соответствен­но увеличиваются общая масса шлака и масса железа (в виде оксидов) в шла­ке, т. е. возрастают потери железа со шлаком.

    Таким образом, расчеты и практи­ка показывают, что переход на ис­пользование низкокремнистого (и ма­ломарганцовистого) жидкого чугуна целесообразен. Это позволяет повы­сить производительность доменных печей (при одновременной экономии кокса), снизить расходы флюсов в конвертерном производстве, умень­шить потери со шлаком, повысить стойкость футеровки и др. Переход на работу с низкокремнистым и мало­марганцовистым чугуном обеспечива­ет увеличение выхода металла мини­мум на 1,0-1,5 %. Кроме того, не­сколько облегчаются условия работы шлакоуборки, уменьшаются шлако­вые отвалы и т. п.

    В то же время есть ряд негативных моментов:

    1. Переработка маломарганцовйстого чугуна связана с определенными трудностями («свертывание» шлаков, повышенный угар и др.). Это недоста­ток, но ситуация исправима. Перера­ботка чугуна с низким содержанием

    марганца должна сопровождаться кими приемами, как ввод в состав шихты содержащих марганец добавок, оставление в конвертере шлака пре­дыдущей плавки, использование «ожелезненной» извести и др.

    2. При использовании технологий, включающих внепечную обработку и чугуна, и стали, может вызвать сомне­ние верность требования иметь в Кон­вертере высокую основность конечно­го шлака. Возможность снизить эту величину и пределы возможного сни­жения определяет практика, причем при снижении основности эффектив­ность перехода на малокремнистые чугуны станет еще заметнее.

    3. Снижение содержания в чугуне кремния приведет к уменьшению доли металлолома в шихте. На первый взгляд это недостаток. Однако собы­тия последних лет показали, что в России испытывается не избыток, а недостаток качественного лома. При­ходится учитывать, что качество ме­таллолома (прежде всего по содержа­нию примесей цветных металлов) не­прерывно ухудшается; соответственно сужаются возможности использовать такой металлолом для производства качественных сталей. Постепенно рас­ширяется практика использования в качестве охладителей различных желе­зорудных материалов, материалов типа «синтиком», металлизованных железорудных.окатышей и др., что со­провождается существенным сниже­нием содержания примесей цветных металлов (по данным ряда заводов, в 1,5—2 раза).

    При изучении малошлаковой тех­нологии нельзя не отметить такой из­вестный технологический прием, как оставление в печи или конвертере полностью или частично конечного жидкого шлака. При этом меняются и тепловой баланс, и технология плавки. По расчетам, 12-17 % общего расхода тепла конвертерной операции — это тепло конечного шлака. Шлак уже сформирован, он содержит много СаО и оксидов железа, поэтому при его ос­тавлении в конвертере снижается рас­ход извести, уменьшаются потери же­леза со шлаком и сокращается период формирования жидкоподвижного ак­тивного шлака.

    Необходимо только учитывать та­кие моменты, как: а) постепенное на­копление в шлаке фосфора (при мно­гократном оставлении шлака); б) воз­можность возникновения выбросов при контакте жидкого чугуна с жид­ким железистым шлаком.

    15.6. ОСОБЕННОСТИ КОНВЕРТЕРНОГО ПЕРЕДЕЛА

    ВЫСОКОФОСФОРИСТЫХ ЧУГУНОВ

    Из формулы константы равновесия реакций дефосфорации следует, что

    a 2[P] = a(СаО)4-Р205 /(Ka5 (FeO) ∙ a 4(CaO)). B случае передела чугуна с обычным со­держанием фосфора для получения [Р] < 0,010-0,020 % достаточно иметь в конвертере активный известково-железистый шлак. При повышении в чугуне содержания фосфора до 0,4— 0,5 % активность соединений фосфора в образующемся при продувке шлаке оказывается настолько высокой, что для достижения низких значений [Р] необходимо иметь очень большую массу известково-железистого шлака. Обычные добавки извести и окислите­лей уже не обеспечивают успеха. Ра­циональным является единственный способ: шлак, содержащий много фосфора, скачивать и наводить новый известково-железистый шлак, не со­держащий фосфора. В связи с этим операция скачивания шлака является обязательным технологическим при­емом при переработке высокофосфо­ристых чугунов (двустадийный или двушлаковый процесс).

    Поскольку при переработке высо­кофосфористых чугунов шлак, содер­жащий много Р2О5, является ценным удобрением, необходимо его не про­сто скачивать, а скачивать в тот мо­мент, когда он содержит максималь­ное количество Р2О5, т. е. когда он представляет максимальную ценность как удобрение. Кроме того, желатель­но организовать технологический процесс таким образом, чтобы фос­фор, переходящий в шлак, не терялся и содержащий фосфорные соедине­ния шлак не попадал в отвал.

    Плавка в конвертере при переработке высокофосфористых чугунов ус­ловно может быть разделена на два пе­риода: 1) до скачивания шлака; 2) пос­ле скачивания шлака (в некоторых случаях его скачивают дважды). В обычном конвертерном процессе при продувке чугуна сверху активный жидкоподвижный шлак, в котором полностью растворились загруженные куски извести, успевает сформировы­ваться только к концу плавки. При пе­реработке высокофосфористых чугу­нов плавка прерывается для скачива­ния шлака. Если не принять специ­альных мер, то к моменту начала скачивания шлака известь полностью еще не успеет раствориться и процесс дефосфорации пройдет недостаточно полно. Если уменьшить интенсив­ность подачи кислорода и ждать, пока сформируется необходимый для де­фосфорации шлак, то плавка суще­ственно удлинится, ухудшатся условия службы футеровки, увеличатся отно­сительные потери тепла. Таким обра­зом, необходимо обеспечить раннее формирование активного железисто-известкового шлака. Для решения этой задачи существуют разные мето­ды, чаще всего применяют два: 1) ис­пользование (оставление в конверте­ре) расплавленного железисто-извест­кового шлака предыдущей плавки для быстрого наведения шлака последую­щей плавки; 2) введение шлакообразу-ющих (прежде всего извести) в тонко­измельченном (порошкообразном) со­стоянии, что позволяет быстро про­греть и ошлаковать каждую частичку извести.

    Наибольшее распространение ва­рианты переработки высокофосфори­стых чугунов получили в Западной Ев­ропе, поскольку там металлургия тра­диционно базируется на значительных запасах фосфористых железных руд. Наиболее известные варианты техно­логии описаны ниже.
    1   ...   34   35   36   37   38   39   40   41   ...   88


    написать администратору сайта