Главная страница
Навигация по странице:

  • 17.5.1. Топливно-дуговой сталепла­вильный агрегат

  • 17.5.2. Двухэлектродная дуговая печь постоянного тока

  • 17.5.3. ДСП постоянного тока Comelt с несколькими

  • Рис. 17.13.

  • 17.5.5. Шахтная дуговая печь с удерживающими пальцами

  • Какая шихта предпочтительнее

  • Пути снижения расхода электроэнер­гии.

  • Как решать проблемы ресурсосбере­жения и экологии

  • 17.6. ТЕХНОЛОГИЯ ПЛАВКИ СТАЛИ В КИСЛЫХ ДСП

  • 17.7. ПЛАВКА СТАЛИ В ИНДУКЦИОННЫХ ПЕЧАХ

  • 18. ПРОИЗВОДСТВО СТАЛИ В АГРЕГАТАХ НЕПРЕРЫВНОГО ДЕЙСТВИЯ

  • 18.1.1. По организации процесса

  • 18.1.2. По конструкции агрегата

  • 18.2. ПЕРЕПЛАВ МЕТАЛЛОЛОМА

  • 18.3. ПЕРСПЕКТИВЫ РАЗВИТИЯ НЕПРЕРЫВНЫХ ПРОЦЕССОВ

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница46 из 88
    1   ...   42   43   44   45   46   47   48   49   ...   88


    17.5. СОВРЕМЕННЫЕ ПРИЕМЫ ОРГАНИЗАЦИИ РАБОТЫ ДСП
    Главные особенности организации ра­боты современных ДСП сводятся к следующему:

    1. Переход на двустадийную техно­логию производства: а) быстрое рас­плавление в печи металлошихты, окисление углерода и фосфора, удале­ние окислительного шлака; б) оконча­тельное рафинирование (десульфурация, дегазация и т. п.) и доводка вне печи методами внепечной обработки.

    2. Использование мощных и сверх­мощных трансформаторов (до 1000 кВ-А/т) и стремление к эффек­тивному использованию этой мощно­сти.

    3. Возможно более полное исполь­зование тепла отходящих газов для предварительного подогрева металло­шихты.

    4. Широкое применение для ин­тенсификации процессов нагрева и расплавления металлошихты кислоро­да и топливно-кислородных горелок (несмотря на повышенный угар ших­ты).

    5. Повсеместное использование ус­тройства для водяного охлаждения от­дельных деталей конструкций печи, свода и стенок.

    6. Организация непрерывного про­цесса плавления металлошихты в печи.

    7. Стремление получать макси­мальную часовую производительность агрегата.

    новые конструк­ции ДСП. Дать общую классифика­цию новых конструктивных решений пока еще затруднительно. Приведем несколько характерных примеров.

    17.5.1. Топливно-дуговой сталепла­вильный агрегат (и двустадийный топ-ливно-дуговой сталеплавильный про­цесс в нем) разработан Челябинским научно-исследовательским институ-

    том металлургии (Россия) на основа­нии опыта комбинированного ис­пользования в дуговых печах электро­энергии, газообразного и твердого топлива, а также теплоты отходящих технологических газов для предвари­тельного высокотемпературного на­грева лома. В топливно-дуговой стале­плавильный агрегат входят ДСП и многокамерный шахтный водоохлаж-даемый подогреватель лома (рис. 17.11). Печь оборудована эркерными топливно-кислородными горелками мощностью по 25—30 МВт каждая и фурмами для вдувания угля и кисло­рода. В стенах печи установлены так­же кислородные фурмы для дожига­ния технологических газов.

    Плавка в топливно-дуговом агрега­те проводится в две стадии. На пер-



    Рис. 17.11. Топливно-дуговой сталеплавиль­ный агрегат:

    / — шахта; 2—газо-воздушные горелки; 3— высо­комощные вращающиеся топливно-кислородные горелки; 4— подовые фурмы для вдувания угля и кислорода; 5— стеновые кислородные фурмы; 6— внецентренный графитированный электрод
    вой стадии лом, уже подогретый до

    700 "С в нижней камере шахты, на­гревается в объеме печи до температу­ры плавления только за счет сжигае­мого в кислороде топлива (природно­го газа и угольной пыли). На вто­рой стадии расплавление шихты и нагрев жидкой ванны проводятся при одновременном использовании элект­роэнергии и порошкообразного угля. За 4 мин до выпуска плавки с целью гомогенизации состава ванны и вы­равнивания ее температуры вдувание угля прекращают и плавку доводят только на электрических дугах. Для 100-т печи расчетная производитель­ность 900 тыс. т/год.

    За счет высокотемпературного на­грева лома технологическими газами и использования больших количеств топлива расход электроэнергии может быть снижен до 180 кВт-ч/т, расход электродов — до менее 1,2 кг/т. При этом по сравнению с обычной ДСП затраты первичной энергии на вып­лавку стали могут быть уменьшены в 1,5—1,6 раза, что способствует не толь­ко повышению экономической эф­фективности процесса, но и улучше­нию экологии.

    17.5.2. Двухэлектродная дуговая печь постоянного тока разработана фирмами Японии и Швейцарии. Пер­вая такая печь емкостью 250т (мощ­ностью 100 MB • А, производительнос­тью 0,8 млн т/год) введена в эксплуа­тацию на заводе фирмы Tokyo Steel в 1996 г. Установка состоит из двух ос­новных элементов: овальной печи и системы загрузки лома (рис. 17.12). В последнюю входят криволинейный шахтный подогреватель и загрузочное устройство с двумя толкателями, рас­положенными на разных уровнях. Лом из бункера поступает в шахту и нагре­вается технологическими газами до температуры 800 °С (температура выходящих газов около 200 °С).

    Печь оборудована двумя верхними графитовыми электродами и двумя подовыми электродами, выполненны­ми из токопроводящих огнеупоров. Дуги отклонены к центру печи, куда загружается лом; этим достигается уменьшение тепловой нагрузки стен, в результате можно не устанавливать стеновые панели и снизить теплопоте-



    Рис. 17.12. Двухэлектродная ДСП постоян­ного тока:

    1 — бункер; 2— шахта; 3 — верхний толкатель; 4 — нижний толкатель
    ри печи. Печь работает с очень боль­шой массой оставшегося от предыду­щей плавки расплава (110т при массе выпускаемой плавки 140т). Это обес­печивает постоянство условий работы печи (имеются в виду температура ме­талла, подводимая мощность, газовы­деление, температура технологических газов). Загрузка лома в шахту полнос­тью автоматизирована и основана на контроле уровня лома в шахте. Авто­матизированы процессы вдувания кислорода, углерода, шлакообразую-щих, управление перемещением гра­фитовых электродов.

    Преимуществами такой печи явля­ются: 1)расход электроэнергии 260 кВт • ч при расходе вдуваемого угля 25 кг и кислорода 33 м3 на 1 т ста­ли; 2) снижение уровня шума (на 15— 20 дБ по сравнению с обычной дуго­вой печью постоянного тока); 3) сни­жение фликкера на 50—60 % по срав­нению с одноэлектродной дуговой печью постоянного тока; 4) уменьше­ние пылевыделения; 5) высокая доля токового времени плавки.

    Так как все операции плавки авто­матизированы, ожидается, что печь в комплексе с печью-ковшом будут об­служивать только два оператора.

    Двухэлектродные печи постоянного тока конструкции фирмы Danieli рабо­тают на заводах фирмы Hylsa (Мекси­ка) в Монтеррее (емкость 135т, мощ­ность трансформатора 208 MB • А, шихта —лом, холодные и горячие ме-таллизованные окатыши) и в Пуэбло.

    17.5.3. ДСП постоянного тока Comelt с несколькими наклонными под углом 40° электродами, пропущенны­ми через периферийную часть свода, и с сочлененной со сводом шахтой, где происходит подогрев лома отходящи­ми газами, разработана австрийской фирмой Voest Alpine Industrie-anlagenbau. Опытная печь постоянно­го тока с четырьмя графитовыми элек­тродами диаметром 250 мм и подовым анодом (рис. 17.13) была сооружена на базе плазменной печи емкостью 50т на заводе в Линце (Австрия). Дуги длиной 0,5—1,2 м горят по оси элект­родов, образуя в шихте полости дли­ной до 1,7 м. Лом поступает по транс­портеру в верхнюю часть шахты со скоростью около 25 т/мин. После вы­пуска металла в печь загружают 60— 80 % всей шихты вместе с известью и коксом. Печь оборудована тремя газо­кислородными горелками и тремя кислородными фурмами для дожига­ния СО. Каждая пара электродов пи­тается через свой трансформатор мощностью 48 MB • А. Максимальные значения силы тока и напряжения на дуге составляют соответственно 29 кА и 850 В. Печь тщательно герметизиро­вана; отходящие газы проходят через слой шихты. Собираемую пыль можно возвращать в печь, вдувая с током азо­та через полый электрод. Плавку ведут под вспененным шлаком.

    При емкости печи Comelt более 150 т продолжительность плавки дол­жна быть менее 40 мин. При этом по сравнению с обычной дуговой печью общая экономия энергии составит около 100 кВт • ч/т, расход электродов будет на 30 % меньше (0,9 вместо 1,4 кг/т), снизятся удельные капиталь­ные расходы и затраты на ремонт (на 15—20%). Конструкция печи Comelt обеспечивает полное улавливание вы­деляющихся газов при уменьшении их объема на 70 %, снижение шумовыде-ления на 15—20 дБ, уменьшение фликкера.



    Рис. 17.13. ДСП постоянного тока Comelt
    17.5.4. ДСП Consteel постоянного тока с непрерывной загрузкой металло-шихты, подогретой в тоннельной печи отходящими газами (рис. 17.14), впер­вые была введена в эксплуатацию в 1990г. на заводе фирмы Florida Steel, США. Емкость печи 74т, производи­тельность 54 т/ч при мощности транс­форматора 24 МБ • А. За время работы процесс был значительно усовершен­ствован: исключены топливно-кисло-родные горелки для подогрева лома в тоннельной печи, изменена система охлаждения конвейера, расходуемые кислородные фурмы заменены на во-доохлаждаемые, введен свод над за­грузочной частью нагревательной печи. В результате в 1995 г. средний удельный расход электроэнергии со­ставил 389 кВт•ч/т, кислорода — 22 м3/т (без использования природно­го газа), электродов—1,7 кг/т. При подогреве лома до 540 °С получена экономия расхода электроэнергии 109 кВт • ч/т стальной заготовки.

    Аналогичные печи введены в эксп­луатацию на заводах Kyoei Stell, Япо­ния (печь постоянного тока с транс­форматором мощностью 51 МВт, ем­костью 192т), Nucor Steel, США (печь постоянного тока с трансформатором мощностью 39 МВт) и Jersey Steel, США (печь переменного тока с транс­форматором мощностью 35 МВт).

    Производительность этих печей соста­вила соответственно 120; 92 и 82 т/ч при удельных расходах на 1 т стали: электроэнергии 320; 351 и 390 кВт-ч, кислорода 34; 33,4 и 23 м3 и электро­дов 1,2; 1,3 и 1,75кг.

    На установке фирмы Nippon Steel Plant and Machinery Division (Япония) усовершенствован нагрев лома на конвейере. Горячие отходящие газы проходят сквозь слой лома, а не над ним, как в первых печах Consteel, что повышает эффективность нагрева лома.

    Преимуществами печи Consteel яв­ляются снижение шумовыделения, выбросов пыли на 40 % и значитель­ное снижение издержек производства. К недостаткам этой печи следует от­нести необходимость тщательной под­готовки металлошихты к загрузке по размерам кусков и большую протя­женность эстакады для загрузочного конвейера.

    17.5.5. Шахтная дуговая печь с удерживающими пальцами разработана фирмой Fuchs Systemtechnik, Герма­ния (рис. 17.15). Шахта этой печи в нижней части оборудована водоох-лаждаемыми пальцами, удерживаю­щими лом уже в период рафинирова­ния предыдущей плавки. После вы­пуска стали пальцы «открываются» и горячий лом падает в жидкую массу


    Рис 17.14. ДСП Consteel:

    1 — магнитный кран; 2 — загрузочный конвейер; 3 подогреватель; 4 — печь; 5—сталевоз



    Рис. 17.15. Шахтная ДСП с удерживающими пальцами и непрерывной подачей металло­шихты:

    и —схема; б— реконструкция обычной ДСП; в —

    общий вид в цехе (см. рис. 17.15, б, в на цветной

    вклейке)
    металла и шлака, оставшихся от пре­дыдущей плавки, затем сразу в.шахту загружается вторая корзина.

    При плавке стали в этой печи в шихту могут входить металлизованные окатыши, твердый или жидкий чугун либо 100 % лома. Показатели работы шахтных печей с удерживающими пальцами очень высоки, поэтому они быстро нашли применение во всем мире; в 1996г. в эксплуатацию введе­ны две такие печи, в 1997г.—три, в 1998 г. — шесть печей и т. д. В августе 1998г. 120-т печь такой конструкции (мощность трансформатора 85 MB • А) пущена в России на комбинате «Се­версталь» (г. Череповец).

    В результате дальнейшего развития шахтной дуговой печи с удерживаю­щими пальцами появилась двухкамер­ная шахтная дуговая печь с удержива­ющими пальцами типа MSP (Multi­stage Scrap Preheater — многокамер­ный подогрев лома) конструкции фирмы Mannesmann Demag Metal­lurgy, Германия. Лом в шахте этой печи подогревается в двух камерах, разделенных удерживающими пальца­ми, что гарантирует более полное ис-

    пользование теплоты дожигания тех­нологических газов. При работе на шихте, состоящей только из лома, рас­ход электроэнергии в такой печи со­ставляет менее 290 кВт • ч/т. Печь рас­считана на использование в шихте жидкого чугуна, что позволит допол­нительно уменьшить расход электро­энергии. На рис. 17.16 показана схема двухкамерной (двухкорпусной) 135-т печи постоянного тока с удерживаю­щими пальцами с трансформатором мощностью 156 MB • А. Печь установ­лена в Монтеррее (Мексика). В шихте используется до 55 % металлизованных окатышей.

    Стремление в максимальной степе­ни использовать мощность трансфор­матора, тепло, аккумулированное кладкой, и тепло отходящих газов привело к созданию серии конструк­ций двухкорпусных и двухшахтных ДСП.

    Двухкорпусная дуговая печь с од­ним источником питания, электро­дом-катодом (тремя электродами на печи переменного тока) и короткой сетью имеет две ванны: когда в одной идет расплавление металлошихты ду­гами, другая находится в режиме за­грузки и подогрева шихты. Двухкор­пусная печь с одним источником пи-
    Рис. 17.16. Шахтная ДСП (с удерживающи­ми пальцами) постоянного тока:

    / — окатыши + известь + углерод; 2 —нагретый

    лом; 3 — две фурмы; 4— четыре горелки (О2 + СН4);

    5— охлажденные газы СО2/02


    тания может иметь два комплекта то-коподвода и электродов (рис. 17.17) отдельно для каждого из корпусов, что позволяет еще более сокращать бесто­ковое время работы печи. На установ­ке используют два способа подогрева лома: первый заключается в по­даче технологических газов из находя­щегося под нагрузкой корпуса в «от­ключенный» корпус; при втором способе лом подогревают с помощью топливно-кислородных горелок, уста­новленных в корпусах.

    Использование двухкорпусных пе­чей позволяет увеличить производи­тельность при существующей мощно­сти трансформатора или уменьшить мощность трансформатора при суще­ствующей производительности.

    Двухкорпусная печь по сравнению с двумя печами той же емкости обес­печивает большую экономию капи­тальных затрат (минимум 35 % без учета расходов на сооружение под­станции), а также сокращение продолжительности плавки на 40 % и сни­жение расхода электроэнергии на 40— 60 кВт • ч/т. Двухкорпусные печи ра­ботают во многих странах (в Японии, США, Франции, Индии и др.). В зави­симости от величины садки, мощнос­ти трансформатора, типа шихты (лом, горячие железосодержащие брикеты, твердый чугун, жидкий чугун и т. п.) производительность таких печей ко­леблется в пределах 1,0—1,6 млн. т/год.

    Разновидностью двухкорпусных ДСП являются двухшахтные печи. В качестве примера на рис. 17.18 пред­ставлена работа двухшахтной печи за­вода SAM Montereau.

    Две зеркально установленные шахт­ные печи емкостью по 90 т обслужива­ются одним трансформатором мощно­стью 96 MB • А с одной системой элек­тродов. Печь оборудована 12 горелка­ми (по 6 на каждый корпус) мощностью по 3 МВт, четырьмя ма­нипуляторами, системами управления дугами, перемешивания аргоном, по-



    Рис. 17.17. Двухкорпусная ДСП постоянного тока с диаметром кожуха 7,6 м фирмы Gallatin

    Steel, США


    Рис. 17.18. Схема работы двухшахтной ДСП

    дачи извести и углеродсодержащих материалов. Четыре горелки располо­жены в шахте, одна — в рабочем окне и одна — вблизи выпускного отвер­стия. В подине установлено пять по­ристых вставок для продувки ванны азотом. Своды снабжены соедини­тельными патрубками с трехходовым краном дроссельного типа, позволяю­щим направлять часть отходящих га­зов от одной печи в другую. Последовательность работы двухшахтной печи представлена на рис. 17.18, а — д.

    При выпуске плавки из печи Б электрододержатель перемещается к печи А, где начинается расплавление шихты. На начальной стадии расплав­ления шихты в печи А в печи Б начи­нается загрузка. В этот период в печь Б загружают 75 % завалки. Горелки в печи Б работают на полную мощ­ность. Когда в печи А идет рафиниро­вание металла, отходящий газ направ­ляют в печь Б для подогрева лома на подине и в шахте. В это время в шахту печи Б загружают остаток лома. Когда печь А готова к выпуску плавки, печь Б должна быть полностью загружена ломом, чтобы избежать перерывов в энергоподводе. Время вспомогатель­ных операций при такой работе уменьшается до 3 мин и время под нагрузкой достигает 92 % плавки. В 1995 г. средние удельные расходы на двухшахтной ДСП этой фирмы при массе плавки 95 т составили: электро­энергии 365 кВт • ч, электродов 1,45 кг, кислорода 30,0 м3, природного газа 8,0м3, загружаемого угля 11,5кг, угольного порошка 5,0 кг. Производи­тельность печи составила 105 т/ч.

    Появляются все новые варианты конструкций двухкорпусных агрега­тов.

    Сочетание преимуществ конвер­терного и электросталеплавильного производств может быть получено при использовании Arcon-процесса, раз­работанного фирмой Concast Standard AG, Швейцария. Arcon (Arc in converter) — двухкорпусный агрегат, состоящий из конвертера с верхней кислородной продувкой и одноэлект-родной ДСП постоянного тока (рис. 17.19). В каждом из корпусов кисло­родная фурма 1 может быть заменена общим графитированным электро­дом 2 и наоборот. Размеры корпусов соответствуют размерам типового конвертера. Днище каждого корпуса выполнено из электропроводных пе-риклазографитовых огнеупоров и име­ет подовый пластинчатый медный электрод. Для футеровки стен корпуса использованы периклазографитовые огнеупоры. Выпускное отверстие рас­положено в периферийной части то-копроводящей подины.

    271

    Рис. 17.19. Двухкорпусный агрегат Агсоп
    Чугун заливают через горловину корпуса или с помощью желоба через боковое окно, являющееся частью фу­теровки корпуса. Окно при работе корпуса по режиму дуговой печи слу­жит для ввода фурм для вдувания из­вести, угля и кислорода, манипулято­ра и спуска шлака. Общий для обоих корпусов графитированный электрод крепится на электрододержателе, рас­положенном между корпусами со сто­роны выпускного отверстия. Кисло­родные фурмы, отдельные для каждо­го из корпусов, имеют дополнитель­ные боковые сопла для вдувания кислорода на дожигание СО техноло­гических газов. Электрическое пита­ние агрегата осуществляют с исполь­зованием шестипульсного выпрями­тельного блока, обеспечивающего подвод тока силой до 80 кА. Подстан­ция с печным трансформатором и выпрямительным блоком расположе­на рядом с агрегатом. Помещение для управления работой корпусов общее, однако каждый корпус оснащен само­стоятельным комплексом контрольно-измерительных приборов.

    Агрегат Агсоп имеет производи­тельность 1,6 млн. т/год. В качестве металлошихты используют жидкий чугун (40 %), гранулированный чугун (5 %) и горячебрикетированное губча­тое железо (55 %). Масса выпускаемой плавки 170т (170т стали выпускают каждые 46 мин), продолжительность работы агрегата 7300 ч в год. Цикл ра­боты агрегата составляет 92 мин. Тех­нология основана на использовании оставленного от предыдущей плавки жидкого расплава массой 50 т, т. е. ем­кость каждого корпуса 220т жидкой стали.

    После выпуска плавки (в течение 5 мин) из корпуса № 1 проводят ос­мотр и текущий ремонт шиберного затвора, выпускного отверстия и т. п На оставшуюся от предыдущей плавки жидкую массу стали и шлака загружа­ют ферроалюминий или ферросили­ций для предотвращения вскипания ванны при последующей заливке чугу­на. Затем через желоб заливают 75т чугуна, выводят желоб, закрывают бо­ковое окно, поворачивают кислород­ную фурму, опускают ее в рабочее про­странство и проводят продувку кисло­родом с интенсивностью 12 тыс. м3/ч в течение 27 мин. По ходу продувки че­рез горловину непрерывно загружают горячебрикетированное губчатое же­лезо (35 т), гранулированный чугун (10 т), известь и доломит.

    По окончании продувки фурму поднимают, отворачивают в сторону и на ее место поворачивают электрод от корпуса № 2. Электрод опускают в ра­бочее пространство, зажигают дугу и ведут дуговой нагрев ванны в течение 37 мин при подводимой мощности 60 МВт. По ходу дугового нагрева не­прерывно загружают 70 т горячебри-кетированного губчатого железа. Че­рез боковое окно с помощью фурм ма­нипулятора вдувают порошкообраз­ные известь, домолит и уголь для формирования вспененного шлака. Затем на 7 мин снижают подводимую мощность до 10 МВт и скачивают шлак. Перед выпуском плавки элект­род поднимают и переводят на корпус № 2, где в это время заканчивается продувка ванны кислородом.

    При такой работе удельный расход электроэнергии составляет 225 кВт • ч, кислорода — 45 м3, электродов — 0,7 кг! Токовое время работы двухкорпусного агрегата достигает 95%.

    Комбинация конвертера и дуговой печи в одном агрегате дает следующие преимущества по сравнению с обыч­ной дуговой печью: 1) широкий выбор металлошихты; 2) высокая производи­тельность; 3) низкий расход электро­энергии в результате использования химической энергии окисления при месей металлошихты; 4) уменьшение требуемой электрической мощности; 5) снижение удельного расхода элект­родов; 6) меньшее влияние на токо-подводящие сети; 7) возможность ра­боты при маломощных электросетях; 8) снижение затрат на электрообору­дование.

    Фирма Mannesmann Demag Metallurgy разработала конструкцию двухкорпусной печи переменного тока, подобную печи Агсоп, назвав ее Conarc (Converter-arc-furnace) (рис. 17.20). Эта печь характеризуется гиб­костью в выборе сырья и источников энергии. Часть кислорода (до 85 %) вдувается через многосопловую верх­нюю фурму с интенсивностью до 330 м3/мин. Расход электроэнергии составляет 187—244 кВт • ч/т.

    Приведенные примеры показывают, что современные технологии производ­ства стали в ДСП существенно отлича­ются от традиционных. При этом воз­никает ряд проблем и вопросов, на ко­торые пока нет окончательных ответов.

    Какая шихта предпочтительнее? Традиционной шихтой ДСП является металлолом. В настоящее время в мире сложился дефицит качественно­го металлолома (см. гл. 4), который сохранится и в обозримом будущем. Варианты выхода из ситуации: исполь­зование губчатого железа и жидкого продукта процессов ПЖВ (см. гл. 7),



    Рис. 17.20. Двухкорпусный агрегат Conarc
    твердого или жидкого чугуна; получе­ние и использование новых видов ме­талл ошихты. В России — это получе­ние материала суперком (или синти-ком), за рубежом — карбиды железа (см. гл. 4) или новый материал — один из видов первородной шихты, полу­чившей название ITmk3 (Ironmaking-Techono-logy-mark-three — технология получения железа (чугуна) номер три). Первородную шихту ITmk3, содержа­щую 97-98 % Fe, 2 % С, 0,17 % S, по­лучают восстановлением рудной мело­чи углем при 1350—1500 °С. Этот про­дукт, практически чистое железо, мо­жет быть получен в жидком виде или в виде дроби.

    В каждом конкретном случае тех­нологи принимают решение сами. В некоторых электросталеплавильных печах, расположенных вблизи от «ис­точника» чугуна, его эффективнее ис­пользовать жидким, так как при этом обеспечивается поступление значитель­ного количества тепла (100 кВт • ч/т и более), уменьшение расхода электро­энергии, электродов и снижение уровня остаточных примесей при по­вышении производительности печи. В некоторых случаях целесообразно получать чугун в вагранках с кисло­родным дутьем, так как в этом случае снижаются расходы на очистку отхо­дящих газов, создаются условия для переработки загрязненного лома и по­является возможность уменьшить на­грузку на систему очистки газов дуго­вой печи. Еще более перспективно ис­пользование жидкого чугуна, получае­мого на установках ПЖВ.

    Пути снижения расхода электроэнер­гии. Удельный расход электроэнергии при плавке стали в ДСП зависит от та­ких факторов, как: 1) конструкция и емкость печи, мощность трансформа­тора; 2) наличие сырьевых материалов; 3) портфель заказов; 4) технология плавки; 5) дожигание технологических газов; 6) вдувание кислорода; 7) пред­варительный подогрев лома; 8) автома­тизация процесса; 9) использование альтернативных источников энергии и т. д. Удельный расход электроэнергии на печах постоянного или переменного тока (однокорпусных или двухкорпус-ных) примерно одинаков. Различие вносят только операции дожигания

    ЛТО технологических газов и подогрева шихты (шахтные печи и печь Consteel), которые способствуют снижению рас­хода электроэнергии во всех случаях. Минимальный расход электроэнергии на двухэлектродных печах постоянного тока и печах Contiarc обусловлен боль­шей эффективностью электрических дуг и уменьшением теплопотерь при большей газоплотности печей. Сни­жение удельного расхода электро­энергии до уровня менее 200 кВт • ч/т при работе двухкорпусных печей по технологии Агсоп или Сопагс получе­но за счет тепла, вносимого жидким чугуном.

    Расход электроэнергии заметно снижается при использовании газо­кислородных горелок и кислородных фурм (или «копий») в процессе рас­плавления металлошихты. Однако при этом существенно возрастает угар металла, достигая 6-8 % и более. При решении вопроса об использовании таких способов интенсификации про­цессов необходимо анализировать структуру себестоимости стали и вли­яния на нее как оплаты труда персона­ла, так и стоимости металлошихты.

    На рис. 17.21 представлен вариант расчета общего расхода энергии для трех технологических схем сталепла­вильных процессов. В соответствии с данным вариантом минимальный рас­ход энергии имеет место при перера­ботке в ДСП металлолома.

    Проблема электродов. На ДСП при­меняют, как правило, графитирован-ные электроды (они дороже, чем угольные, но обладают более высоки­ми свойствами по таким показателям, как плотность, механическая проч­ность, теплопроводность, допустимая плотность тока, температура окисле-


    Рис. 17.21. Удельный расход энергии (ГДж/т жидкой стали) на отдельных стадиях процессов по трем схемам производства стали-проката:

    а - интегрированный металлургический завод производительностью 3-5 млн. т/год; б -завод производи­тельностью 1—2 млн. т/год, работающий по схеме прямое получение железа — электроплавка; в — мини-за­вод производительностью 0,5-1,0 млн. т/год
    ния). Расход электродов для ДСП, ра­ботающих по традиционной техноло­гии, 5—6 кг/т стали; затраты на элект­роды составляют 8—15 % себестоимо­сти стали, поэтому снижение расхода электродов — важная производствен­но-экономическая проблема.

    Такие приемы, как покрытие по­верхности электродов защитными со­ставами или использование водяного охлаждения срединной полости элект­рода, позволяют снизить расход элект­родов. Естественно, что расход элект­родов снижается (при их хорошем ка­честве) по мере повышения произво­дительности ДСП. Расход электродов в современных высокопроизводитель­ных ДСП 1—3 кг/т стали (на ДСП по­стоянного тока расход электродов не­сколько ниже, чем на ДСП перемен­ного тока).

    На мощных современных ДСП требуются электроды большого диа­метра — более 600 и даже 700 мм. По отечественному ГОСТ 4426—71 диа­метр электродов составляет от 75 до 555 мм. Производство качественных электродов больших диаметров требу­ет сложной технологии. В настоящее время электроды диаметром 600 мм и более производятся всего в несколь­ких промышленно развитых странах.

    Как решать проблемы ресурсосбере­жения и экологии? Высокомощные ДСП характеризуются значительным выделением пыли. На шахтных печах выделение пыли ниже; меньше пыли выделяется на ДСП постоянного тока. Однако проблема улавливания пыли остается для печей всех конструкций. При этом важными являются, по крайней мере, три момента, которые приходится иметь в виду:

    а) по мере усиления средств газо-пылеотсоса увеличиваются скорости газовых потоков в объеме печи, что, в свою очередь, отрицательно влияет на угар металла и электродов;

    б) в последние годы для России ха­рактерно заметное увеличение авто­парка, например, возросло число за­рубежных автомашин, на которых обычно более основательна антикор­розионная обработка с использовани­ем цинковых покрытий и др.; растет доля соответствующего металлолома, и улавливание пыли становится более

    целесообразным и с экономической точки зрения (см. п. 25.10.3);

    в) последние годы характеризуются непрерывным ростом использования различных пластиков, полихлорвини­ловых покрытий и т. п. Соответствую­щие отходы попадают с металлоломом в печь, т. е. в процессе нагрева в печи образуются различные летучие орга­нические соединения, в том числе ди­оксины и фураны (см. гл. 26). Решать эту проблему очень трудно, но необ­ходимо. Эти вопросы более подробно рассмотрены ниже, в материалах шес­той части.

    17.6. ТЕХНОЛОГИЯ ПЛАВКИ СТАЛИ В КИСЛЫХ ДСП
    Футеровка кислых ДСП аналогична футеровке кислых мартеновских печей и состоит из почти чистого кремнезе­ма; соответственно шлаки кислых пе­чей насыщены SiO2. Ни серу, ни фос­фор удалить из металла под кислым шлаком нельзя, и это должно учиты­ваться при шихтовке плавки. В кислых печах сталь обычно выплавляют мето­дом переплава с проведением корот­кого периода кипения для дегазации расплава. Кислые шлаки менее про­ницаемы для газов, чем основные; ра­створимость газов в кислых шлаках также меньше. В кислых шлаках низка активность FeO (основного оксида). При повышении температуры восста­навливается кремний, например, по реакциям

    SiO2 + 2[C] = [Si] + 2CO-Q;

    К=[Si] Р2СО/a(Si02).[C]2,

    откуда

    [Si]= К.a(Si02) ∙ [C]22СО.

    ї

    В кислых шлаках, насыщенных SiO2, а(SiО2) приближается к единице, поэтому скорость восстановления кремния может быть весьма заметна (до 0,01 %/мин), особенно при высо­ком содержании углерода. О мерах ре­гулирования этого процесса см. разд. 16.9.

    В связи с отсутствием условий для десульфурации и дефосфорации удельная (на 1 т стали) поверхность контакта металл—шлак для кислых пе­чей не имеет такого значения, как для основных, поэтому для уменьшения тепловых потерь можно иметь более глубокую ванну. Меньшая теплопро­водность кислых огнеупоров также способствует снижению тепловых по­терь и более быстрому нагреву метал­ла. Из-за отсутствия длительных пе­риодов рафинирования металла от фосфора и серы все это приводит к получению более высокого теплового к. п. д., сокращению длительности плавки, уменьшению расходов элект­роэнергии и электродов. Кислая футе­ровка и кислые шлаки, большая глу­бина ванны кислых печей, невысокая стоимость материалов, из которых формируется футеровка (песок, динасовый кирпич), — вот неполный пере­чень достоинств кислых печей. К не­достаткам относится невозможность проводить в печи операции десульфу-рации и дефосфорации. О возможных перспективах развития кислых про­цессов см. гл. 21.

    В настоящее время емкость кислых печей не превышает Ют. Число кис­лых печей достаточно велико; их уста­навливают в литейных цехах и исполь­зуют в основном для производства фа­сонного литья.

    17.7. ПЛАВКА СТАЛИ В ИНДУКЦИОННЫХ ПЕЧАХ
    Некоторое количество стали выплав­ляется в тигельных индукционных пе­чах, в которых расплавляемый металл находится в керамическом тигле, по­мещенном внутрь многовиткового ци­линдрического индуктора (рис. 17.22). Диапазон емкостей современных ти­гельных индукционных печей весьма велик — от нескольких килограммов (в основном для исследовательских работ в лабораториях) до десятков тонн. Под действием переменного магнитного поля, создаваемого индук­тором, в нагреваемом металле индуци­руется электродвижущая сила. За счет джоулева тепла, выделяющегося в ме­талле под действием тока, металл на­гревается и плавится.

    Электромагнитные силы оказыва-


    Рис. 17.22. Тигельная индукционная печь:

    1 — жидкая сталь; 2— шлак; 3 — водоохлаждаемая катушка индуктора; 4— огнеупорная футеровка; 5— сливной носок; 6 — огнеупорный кирпич; 7—тер­моизоляция



    Рис. 17.23. Промышленная тигельная откры­тая индукционная печь:

    1 — механизм подъема и отворота свода; 2 — тигель; 3— индуктор; 4 — магнитопроводы (ферромагнит­ные экраны); 5— кожух; 6—сигнализатор; 7—ме­ханизм наклона
    ют на жидкий металл статическое и динамическое воздействия, в резуль­тате чего верхняя часть металла отжи­мается от стенок тигля, а во всем объе­ме возникает электродинамическая циркуляция. Выпуклый мениск затрудняет обработку металла шлаком, поскольку шлак стекает к стенкам тигля; достаточно высокая скорость турбулентного движения металла уси­ливает износ футеровки. В принципе, если электромагнитные силы доста­точно велики и могут уравновесить действие гравитационных сил тяжес­ти, можно осуществить индукцион­ную плавку во взвешенном состоянии, без тигля (бестигельная плавка).

    Практически в обычных индукци­онных печах шлак нагревается от жид­кого металла. Если шлак холодный и вязкий, то соответственно нет условий для удаления серы и фосфора. Этот не­достаток таких печей в какой-то мере устраняется использованием крышек (рис. 17.23), а в некоторых современных установках — плазменных горелок.

    К достоинствам индукционных пе­чей относятся: 1) отсутствие электро­дов и соответственно отсутствие науг­лероживания металла; 2) отсутствие дуг и соответственно меньше насыще­ние металла азотом и водородом; 3) перемешивание металла; 4) возмож­ность выплавлять металл в любой контролируемой атмосфере и вообще в вакууме (рис. 17.24), а соответствен но и малый угар легирующих, отсут­ствие газов и т. п.



    Рис. 17.24. Тигельная вакуумная индукционная печь:

    7 8— подвижная и неподвижная части корпуса соответственно; 2— тигель; 3 — механизм наклона; 4— камера загрузки; 5 — дозатор; 6— рабочая площадка; 7— устройство для чистки тигля
    Другими словами, качество метал­ла, выплавляемого в индукционных печах, в значительной мере определя­ется качеством шихты. По существу, плавка в таких печах есть переплав чи­стой, специально отобранной метал-лошихты с добавкой ферросплавов, лигатуры и некоторого количества шлакообразующих добавок.

    Футеровка тиглей может быть кислой (кварцевый песок, кварцит) или основной (порошок магнезита или хромомагнезита). В огнеупорах для печей высокой частоты должны от­сутствовать токопроводящие и маг­нитные примеси, так как в высокоча­стотном поле они нагреются, опла­вятся, что может привести к прогора­нию тигля. Стойкость основной футеровки может достигать 100 пла­вок, стойкость кислой футеровки выше.
    а

    18. ПРОИЗВОДСТВО СТАЛИ В АГРЕГАТАХ НЕПРЕРЫВНОГО ДЕЙСТВИЯ
    Существующие в настоящее время сталепла­вильные агрегаты (конвертеры, мартеновс­кие, дуговые, индукционные печи и т. д.) яв­ляются агрегатами периодического действия. Из опыта многих производств следует, что замена периодического процесса непрерыв­ным способствует увеличению производи­тельности, снижению эксплуатационных зат­рат, повышению качества и однородности (стандартности) продукции, уменьшению технологических отходов, более эффективно­му использованию добавочных материалов. Современная технология позволяет осуще­ствлять непрерывную разливку многих десят­ков плавок, тысяч тонн стали. Успешными оказались попытки создания непрерывной линии: непрерывная разливка стали —про­катный стан. Производства, смежные со ста­леплавильным (доменное, прокатное), по су­ществу, непрерывные. Процессы подготовки железорудного сырья (агломерация и получе­ние окатышей) также являются непрерывны­ми, поэтому вся схема современного метал­лургического производства, включающая подготовку сырья, выплавку чугуна, стали и получение проката, близка к переводу на не­прерывный процесс.

    Проблемы, связанные с организацией не­прерывного сталеплавильного процесса, вы­бором удобной для практического использо­вания конструкции сталеплавильного агрега­та непрерывного действия (САНД) и отра­боткой технологии выплавки стали в этом агрегате, пока еще не решены. В частности, основные трудности, возникающие при раз­работке конструкции САНД, можно подраз­делить на две группы:

    1. Технологические, заключающиеся в необходимости организации одновременного удаления из чугуна разнородных по своим термохимическим свойствам элементов: для удаления углерода требуются окисли­тельная атмосфера, железистые шлаки, дос­таточный уровень перегрева металла; для удаления фосфора желательно иметь же-лезистоизвестковые шлаки и умеренные тем­пературы; для удаления серы важно ин­тенсивное перемешивание основного шлака с металлом при достаточно высоком уровне нагрева ванны, а содержание оксидов железа в шлаке и кислорода в металле при этом дол­жно быть минимальным; для удаления кремния требуется иметь окислительную атмосферу и железистый шлак; заданная степень раскисления металла дос­тигается при минимальной окисленности шлака и т. д.

    2. Конструктивные, заключающиеся в не­обходимости создания агрегата, который бы обеспечивал возможность проведения техно­логических операций в требуемой последова­тельности. При этом одновременно должна быть обеспечена высокая стойкость аг­регата и отдельных его элементов в условиях высоких температур и непрерывной работы при отсутствии даже кратковременных остановок для профилактического ре­монта конструкций и т. д.

    18.1. КОНСТРУКЦИИ САНД
    К настоящему времени предложено множе­ство различных вариантов конструкций САНД и технологий выплавки в них стали. Можно дать следующую условную классифи­кацию непрерывных сталеплавильных про­цессов.

    18.1.1. По организации процесса: 1) мно­гостадийные (с разделением операции на стадии), при этом в каждой емкости или час­ти агрегата проводится одна или несколько технологических операций: дефосфорация, десульфурация, раскисление и т. п.; 2) одно­стадийные, когда все операции удаления примесей и превращения чугуна в сталь про­текают одновременно или почти одновре­менно.

    18.1.2. По конструкции агрегата: 1) опе­рация проводится на поду; при этом газо­образные и твердые реагенты (кислород, флюсы, руды и т. п.) поступают в так назы­ваемые подовые, желобные реакторы; 2) операция проводится таким образом, что металл, шлак, добавочные материалы нахо­дятся во взвешенном распыленном каплеобразном состоянии (так называемые струйные реакторы).

    18.1.З. По организации технологии: 1) дви­жение шлака и металла происходит в одном направлении; 2) встречное движение шлака и металла (принцип противотока) (рис. 18.1).

    Примером одностадийного непрерывно­го сталеплавильного процесса может служить схема, разработанная BISRA (Британским научно-исследовательским институтом чер­ной металлургии). В процессе BISRA падаю­щую струю чугуна окружает кольцевая струя кислорода, которая разбивает металл на ка­пельки диаметром 1—2мм. Поверхность контакта между каплями металла и кислоро­дом оказывается настолько большой, что вы­горание примесей происходит мгновенно. Процесс обработки металла в струе называют струйным рафинированием.

    Схема процесса представлена на рис. 18.2. Падающая вниз струя чугуна, непре­рывно поступающая в установку, обрабаты­вается тонкоизмельченными флюсами и кис­лородом. Капельки рафинированного метал­ла и шлака падают в приемный ковш; металл собирается внизу под пенящимся шлаком, отстаивается и непрерывно выпускается в ковш для последующей разливки. Последую­щие капельки металла должны проходить че­рез этот шлаковый слой, дополнительно ра­финирующий металл. Отработанный шлак непрерывно стекает в шлаковую чашу. В процессе рафинирования происходит окис­ление капелек металла; это имеет место: 1)в зоне распыления струи чугуна; 2) при сво­бодном падении капель в окислительной ат­мосфере; 3) при прохождении через слой вспененного шлака; 4) в ковше. Опыты пока­зали, что при температуре металла 1500— 1600 "С и диаметре капли металла 2—3 мм скорость обезуглероживания превышает 3 %С/с; при образовании капель размером < 3 мм степень десульфурации превышает 50%.

    Достоинством процесса струйного рафи-


    Рис. 18.1. Технологическая схема САНД конструкции МИСиС:

    а принцип прямотока; б — принцип противотока;

    1 — чугун; 2 — ввод шлакообразующих смесей; 3 —

    спуск шлака; 4— выпуск металла



    Рис. 18.2. Установка струйного типа для не­прерывного рафинирования жидкого чугуна института BISRA:

    1 — промежуточное устройство; 2 —чугун; 3— кис­лород; 4— известь; 5— реакционная камера; 6— от­ходящие газы; 7—шлак; 8— отстойник; 9— сталь; 10— шиберный затвор; 11 — ковш для УНРС
    нирования является то обстоятельство, что основные реакции здесь протекают в усло­виях отсутствия контакта металла с огне­упорной футеровкой. Однако условия эксп­луатации футеровки приемного ковша (от­стойника) сложны, так как происходит взаи­модействие футеровки с высокоактивным окислительным шлаком. Трудной задачей яв­ляется также разработка технологии, при ко­торой спускаемый из агрегата шлак содержит минимальное количество оксидов и, следова­тельно, обеспечивается максимальный выход годного металла. Из-за этих недостатков предложенный процесс в промышленность не внедрен.

    В большинстве конструкций САНД пре­дусмотрена возможность организации веде­ния плавки на поду. Широкую известность получила конструкция САНД, разработанная Французским институтом черной металлур­гии IRSID. Агрегат (рис. 18.3) состоит из трех частей: реакционной камеры 1, отстойника 3 и камеры доводки 5. Чугун непрерывной струей поступает в камеру по желобу. Одно­временно при помощи водоохлаждаемого устройства (фурмы) 2 в камеру непрерывно подается кислород с молотой известью. Ре­акционная камера содержит небольшое ко­личество жидкого металла и слой металл-шлак-газовой эмульсии. Под действием подъемной силы пузырей газа эта эмульсия поднимается и перетекает в отстойник, где шлак отделяется от металла. Шлак стекает через отверстие 4, а металл сифоном переда­ется в камеру доводки, где подвергается рас­кислению и доводке по составу. В конструк­ции установки предусмотрена возможность устройства желоба, по которому шлак из вто-



    Рис. 18.3. Схема установки для непрерывно­го рафинирования конструкции IRSID
    рой камеры (отстойника) мог бы перетекать в первую камеру для повышения степени ис­пользования шлакообразующих и уменьше­ния потерь железа с уходящим шлаком.

    В 1971—1976гг. проводили испытания САНД конструкции МИСиС. Установка включала четыре ванны, соединенные после­довательно (см. рис. 18.1). В первых трех осу­ществлялось рафинирование вдуванием газо­образного кислорода через верхние фурмы, а в последней — регулирование содержания уг­лерода и раскисление. Вместимость каждой ванны составляла 0,86м3 при глубине рас­плава 600 м и массе 6 т. Производительность этого опытно-промышленного агрегата дос­тигала 21 т/ч, степень удаления серы — 21 %, фосфора —93 %.

    Окончательные выводы о показателях ра­боты агрегатов такого типа в промышленных условиях и соответственно о перспективах внедрения сделать пока трудно.


    18.2. ПЕРЕПЛАВ МЕТАЛЛОЛОМА
    Если САНД, основанные на переработке в сталь жидкого чугуна, не вышли из стадии полупромышленных испытаний, то САНД с использованием в качестве шихты дешевого



    Рис. 18.4. Схема CSM-процесса:

    /—плавление; //—рафинирование; ///—легирование; IVразливка; / — кокс и известняк; 2— окалина;

    3— вагранка; 4 — десульфурация; 5 —копильник; 6— ковш; 7—рафинировочный агрегат; 8— раскисление;

    9— доводка; 10— УНРС; // —заготовки; 12 — десульфурирующие реагенты; 13 — охладители; 14— флюсы;

    /5—ферросплавы; 16— теплообменник; /7—пылесборник; 18— эксгазустер; 19— труба



    Рис. 18.5. Общий вид установки Consteel:

    / — загрузочный конвейер; 2 —тепловой затвор; 3 — бункера для стружки, скрапин, известняка и др.; 4 — бункера для добавок; 5— подогрев; 6— сталевоз
    металлического лома (скрапа) получают все большее распространение. Работы ве­дутся во многих странах мира. Изыскание рациональных методов непрерывной пере­работки металлолома происходит в основ­ном по двум направлениям. В одном случае в качестве плавильного агрегата ис­пользуют высокомощную дуговую стале­плавильную печь с периодической выда­чей порции металла. В другом в каче­стве плавильного агрегата используют шахтную печь (типа вагранки). В обоих случаях получаемый полупродукт доводит­ся затем во вспомогательных агрегатах. В качестве примера организации непрерыв­ного сталеплавильного процесса может служить процесс, разработанный Японс­ким научно-исследовательским институ­том металлургии NRIM.

    Построенный по предложенной схеме комплекс (рис. 18.4) включает металлур­гическую вагранку, работающую на подо­гретом до 500 °С дутье, производительно­стью 20 т/ч. В качестве шихты используют металлолом и пакеты. Полученный в ваг­ранке углеродистый полупродукт (2,7— 3,5 %С) попадает в ковш, где обрабатыва­ется десульфурирующими смесями, после чего переливается в канальную (с индук­тором для подогрева) индукционную печь — копильник. Из копильника металл попадает в рафинировочную печь, обору­дованную сводовыми кислородными фур­мами и устройствами для присадки охла­дителей и флюсов. После рафинировоч­ной печи металл попадает в оборудован­ный пористой пробкой для вдувания инертного газа ковш, где производится его раскисление.

    На рис. 18.5 показан общий вид агрегата непрерывного сталеплавильного процесса Consteel на базе ДСП. Шихту (металлолом или металлизованные окатыши), подогре­ваемую за счет дожигания СО, выделяюще­гося из ванны дуговой печи при ее продув­ке кислородом, подают непрерывно в печь. Температура металлолома перед поступле­нием в печь составляет 500—700 °С. Печь с эркерным выпуском обеспечивает периоди­ческую выдачу порций стали, поступающих далее на установки внепечной обработки. Процесс Consteel был создан в начале 80-х годов XX в. в США. Различные варианты процесса с непрерывной подачей подогре­ваемой отходящими газами металлошихты в печь получают все большее распростране­ние во многих странах.

    В начале 80-х годов в Германии разра­ботан процесс (Energy Optimizing Furnace) (с оптимальным расходом энергии), на­званный процессом EOF. Первый про­мышленный агрегат (рис. 18.6) был введен на одном из заводов Бразилии. Емкость этого агрегата 30 т, производительность 200 тыс. т стали в год, стойкость футеров­ки > 500 плавок, расход жидкого топлива 8—9 кг, кокса 1,0кг на 1т стали, расход кислорода 60—78 М3/т, расход огнеупоров 6 кг/т стали.

    Опыт показал, что утилизация тепла отхо­дящих газов позволяет нагреть подаваемую твердую металлошихту до 850 °С. Состав ших­ты (соотношение расхода чугуна и металлоло­ма), как и в мартеновских печах, может ме-



    Рис. 18.6. Печь с оптимальным расходом энергии (EOF):

    а —схема (1 — металлолом; 2 — нагретый лом; 3 — холодный воздух; 4 — рекуператор; 5— нагретый воздух; 6— добавка кислорода; 7—кислородные фурмы; 6— об­щий вид (см. на цветной вклейке)
    няться в широких пределах. К 1993 г. в мире работало 10 установок EOF (в Бразилии, Индии, Италии, США, Венгрии) производи­тельностью 200—600 тыс. т/год каждая.

    18.3. ПЕРСПЕКТИВЫ РАЗВИТИЯ НЕПРЕРЫВНЫХ ПРОЦЕССОВ
    Пока еще не найдены окончательные реше­ния организации непрерывного процесса сталеварения и не разработаны оптималь­ные конструкции САНД, которые могли бы успешно конкурировать с современными процессами массового производства стали в конвертерах и дуговых сталеплавильных печах периодического действия. Однако усилия, затрачиваемые на разработку раци­ональных схем САНД, можно считать впол­не оправданными по следующим причи­нам.

    В современных сталеплавильных агрега­тах периодического действия развитие техно­логии достигло очень высокого уровня. Вре­мя, затрачиваемое на выполнение собствен­но металлургических операций, во многих случаях сопоставимо с продолжительностью простоя агрегатов, связанного с проведением вспомогательных операций (загрузки печи, анализа металла по ходу плавки, выпуска го­тового металла и т. д.).

    Например, для крупных конвертеров продолжительность проведения вспомога­тельных операций составляет около полови­ны длительности всей плавки. Резервы даль­нейшего повышения производительности, очевидно, следует искать в направлении со­кращения времени, затрачиваемого именно на вспомогательные операции. В этом отно­шении использование сталеплавильных агре­гатов непрерывного действия представляется одним из наиболее вероятных решений про­блемы.

    1   ...   42   43   44   45   46   47   48   49   ...   88


    написать администратору сайта