Главная страница
Навигация по странице:

  • 3.2.1. Маркировка сталей в США.

  • 3.2.2. Маркировка сталей в Герма­нии.

  • Маркировка с помощью букв и цифр (марка стали)

  • Маркировка сталей в Японии.

  • 4. ОСНОВНЫЕ ШИХТОВЫЕ МАТЕРИАЛЫ 4.1. МЕТАЛЛОШИХТА

  • 4.3. МИКСЕРЫ

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница6 из 88
    1   2   3   4   5   6   7   8   9   ...   88


    3.2. МАРКИРОВКА СТАЛЕЙ ЗА РУБЕЖОМ
    3.2.1. Маркировка сталей в США. Обо­значение государственного стандар­та — ASA (American Standards Association). Ведущие организации по стандартизации: ASTM (American Society for Testing and Materials); AISI (American Iron and Steel Institute). По ASA стали маркируют цифрами, до­бавляя в некоторых случаях пропис­ную букву. По ASTM конструкцион­ные стали, за исключением коррози-онностойких и жаростойких, обо­значают четырехзначным числом, в котором две последние цифры — сред­нее содержание углерода в сотых до­лях процента.

    Марки коррозионностойких и жа­ростойких сталей обозначают трех­значным числом, из которых первая цифра имеет следующее значение:

    2 — хроммарганецникелевые стали с азотом;

    3 — хромникелевые стали;

    4 — хромистые стали;

    5 — хроммолибденовые стали;

    6 — хромникельмолибденовые ста­ли и хроммолибденовые стали с содер­жанием других элементов.

    Пример: сталь марки 302 — хромни-келевая сталь, содержащая 17—19 % Сг и 8-10% Ni.

    3.2.2. Маркировка сталей в Герма­нии. Обозначение государственного стандарта — DIN (Deutsche Industrie-norm). Организация по стандартиза­ции — DNA (Deutsche Normenaus-shuss).

    Стали маркируют двумя способа­ми: с помощью цифр, которыми обо­значают номер материала, и с помо­щью комбинации букв и цифр, кото­рая обозначает марку стали.

    Маркировка с помощью букв и цифр (марка стали) — при этом способе мар­кировки стали подразделяют на груп­пы в зависимости от степени легиро­вания и вида термической обработки:

    Группа 1. Маркировка углеродистых неулучшаемых сталей. На первом месте в марке стали ставится заглавная буква (по способу разливки стали: U — ки­пящая сталь, R — спокойная или по­луспокойная, RR —сталь, успокоен­ная по специальной технологии), на втором месте ставятся буквы St (от слова «сталь»), на третьем месте — дву­значное число, указывающее мини­мальный предел прочности (кгс/мм2), на четвертом месте — номер группы качества. По содержанию фосфора, серы, а иногда и углерода стали разде­ляются на три группы, обозначаемые цифрами 1, 2, 3, из которых 3-я группа имеет самое низкое содержание фос­фора, серы, а также углерода. Номер группы качества отделяется от показа­теля минимального предела прочнос­ти дефисом. Приведенные четырех-компонентные обозначения составля­ют основу марки, которая может быть дополнена перед первым обозначени­ем буквами: Е (указание на то, что сталь выплавлена в электропечах), М (сталь выплавлена в мартеновских пе­чах), Y (при выплавке стали примене­на продувка кислородом).

    Пример: сталь марки RSt42-2 — уг­леродистая неулучшаемая сталь с ми­нимальным пределом прочности 42 кгс/мм2 2-й группы качества. Сталь MRSt42-2N — та же сталь, мартенов­ская, после нормализации.

    Группа 2. Маркировка углеродистых качественных сталей. Сначала в марке приводится буква С, а затем двузначное число, указывающее среднее содержа­ние углерода, умноженное на 100.

    Пример: сталь С35 — углеродистая качественная сталь со средним содер­жанием углерода 0,35 %.

    3.2.3. Маркировка сталей в Японии. Обозначение государственного стан­дарта — JIS (Japanese Industrial Stan­dards). Организация по стандартиза­ции — JISC (Japanese Industrial Stan­dards Committee).

    Марки конструкционных сталей в Японии состоят из нескольких про­писных букв и однозначного или дву­значного числа. В зависимости от ха­рактеристик стали делятся на группы, причем каждую группу обозначают несколькими заглавными буквами.

    Примеры обозначения сталей обыч­ных групп:

    1) стали марок SSxx—углеродис­тые рядовые стали, где хх — двузнач­ное число, указывающее минималь­ный предел прочности (кгс/мм2), на­пример SS34;

    2) стали марок SxxCуглеродис­тая сталь гарантированного химичес­кого состава (хх — двузначное число, указывающее среднее содержание уг­лерода в сотых долях процента; на­пример, в стали S20C среднее содер­жание углерода составляет 0,20 %);

    3) стали марок SUMx— автоматная сталь (х— однозначное число, указы­вающее на порядковый номер стали в группе);

    4) стали марок SFxx —углеродис­тая сталь для поковок и т. д. в зависи­мости от назначения (хх — двузначное число, выражающее минимальный предел прочности, кгс/мм2; например, сталь марки SF42).
    4. ОСНОВНЫЕ ШИХТОВЫЕ МАТЕРИАЛЫ
    4.1. МЕТАЛЛОШИХТА
    Производство стали связано с исполь­зованием значительных количеств раз­личных материалов и в первую очередь металлошихты (включает чугун, метал­лолом, различные металлодобавки), а также добавочных материалов или флюсов (известь, известняк, боксит, плавиковый шпат и др.), окислителей (воздух, кислород, железная руда, ока­лина и др.), топлива (природный газ, мазут, коксовый газ, доменный или ко­лошниковый газ), электроэнергии, воды, инертных газов (аргон), огне­упорных материалов, электродов и др. Расход каждого из этих материалов на­ряду с затратами на электроэнергию влияет на себестоимость стали.

    Более чем на 80 % себестоимость стали определяется стоимостью ис­пользуемого сырья, прежде всего рас­ходом и стоимостью металлошихты.

    В качестве металлошихты использу­ют: а) чугун (жидкий или твердый); б) металлолом (в технической литературе часто используют термин «скрап»');

    в) металл одобавки, например продук­ты прямого восстановления железа и др.

    Расход металлошихты, составляю­щий 1100—1150 кг/т жидкой стали, определяется: 1) составом шихты (доля чугуна, доля скрапа в шихте и т. п.); 2) характером шихты и хими­ческим составом ее составляющих (степень «зашлакованности» чугуна, концентрация в нем легкоокисляю­щихся примесей, «замусоренность» скрапа и т. п.); 3) технологией плавки (будет применяться кислород для продувки ванны или нет, большое или умеренное количество образую­щегося шлака и т. п.). Расход метал­лошихты снижают при использова­нии в качестве окислителей железной руды, окалины или других материа­лов, в состав которых входит железо (оно частично восстанавливается и переходит в металл).

    Выход жидкой стали (по отноше­нию к массе металлошихты) суще­ственно возрастает в тех случаях, ког­да в ванну вводится большая масса ле­гирующих элементов (обычно в виде ферросплавов, т. е. сплавов с желе­зом).
    1 От англ, scrap— остатки (отходы метал­лургических производств), металлический лом.


    4.2. ЧУГУН
    Напомним, что чугун получают в до­менных печах восстановлением железа из железорудных материалов (агломе­рата, окатышей и др.). При горении кокса идут реакции
    С + О2 + 3,762N2 = С02 + 3,762N2,

    С + СО2 + 3,762N2 = 2CO + 3,762N2.
    При частичном обогащении возду­ха кислородом коэффициент 3,762 со­ответственно уменьшается (это соот­ношение долей азота и кислорода в воздухе: 79/21 = 3,762).

    В области высоких температур при наличии углерода идет реакция
    С02 + С = 2СО.
    Образующийся оксид СО — вос­становитель, и атмосфера в домен­ной печи восстановительная. В зоне высоких температур идет прямая ре­акция восстановления железа угле­родом кокса:
    FeO + С = Fe + СО - Q.
    Степень восстановления железа в доменной печи 99—99,9 %, поэтому доменный шлак содержит < 1 % FeO. В восстановительных условиях печи восстанавливаются и другие оксиды, поступающие в доменную печь с ших­той (оксиды кремния, марганца, фос­фора и др.):
    SiO2 + 2С = [Si] + 2CO - Q,

    МпО + С = [Мп] + СО - Q,

    ЗСаО • Р2О5 + 5С = 2[Р] + ЗСаО + SCO - Q.
    Используемый в доменной печи кокс содержит некоторое количество серы. Сера содержится и в железоруд­ных материалах (в виде FeS, CaS, CaSO3). Около 10 % содержащейся в шихте серы удаляется из печи вместе с газами. .

    Оставшаяся сера распределя­ется между металлом (чугуном) и шла­ком в соответствии с коэффициентом распределения LS = (S)/[S], величина которого в значительной мере зависит от основности шлака:

    [S] + Реш+ (СаО) = (CaS) + (FeO).

    При наличии в доменной шихте оксидов марганца возможна реакция

    (МпО) + [S] + С = (MnS) + CO.

    Из предыдущей формулы видно, что в доменной печи благоприятные условия для удаления серы в шлак, так как благодаря восстановительной ат­мосфере содержание FeO в шлаке ми­нимально. При этом важно по воз­можности повысить а(СаО) т.е. работать со шлаками высокой основности. В то же время при повышении основ­ности растет вязкость шлака, т. е. со­ответственно требуется увеличить расход кокса для поддержания более высокой температуры и расход из­вестняка. При этом снижается произ­водительность печи, так как часть объема печи занята дополнительными количествами кокса, известняка и шлака. Практически величина LS ко­леблется в пределах 30—70, а содержа­ние серы в чугуне составляет 0,015— 0,050 %. При работе на сернистом коксе (например, из углей Донбасса) содержание серы выше.

    Таким образом, выплавляемый в доменных печах чугун содержит неко­торое количество серы, фосфора (практически весь фосфор, содержа­щийся в доменной шихте, восстанав­ливается и переходит в чугун), крем­ния, марганца. Кроме того, в процессе контакта капель жидкого чугуна, сте­кающих в горн печи через слой раска­ленного кокса, происходит науглеро­живание металла. Содержание углеро­да в чугуне во многом определяется наличием в чугуне тех или иных при­месей. Мп, Сг, V образуют карбиды, способствуя увеличению содержания углерода в чугуне. Si, P, Си способ­ствуют снижению содержания углеро­да. Поэтому в ферромарганце и в вы­сокомарганцовистом чугуне содержа­ние углерода выше, чем в обычном передельном (до 7 %), а в литейных чугунах с повышенными концентра­циями кремния содержание углерода ниже (3,5-4,5 %).

    Одна из эмпирических формул для расчета содержания углерода в чугуне:
    %С = 4,8 + 0,03 %Мп - 0,27 %Si -- 0,32 %Р-0,03 %S.


    Рис. 4.1. Отношение цены скрапа к стоимо­сти чугуна в Германии 1975-1995 гг.
    Обычно передельный (используе­мый для передела чугуна в сталь) чу­гун имеет состав, мас.%: С 4,4—4,6; Si 0,2-0,8; Мп 0,2-0,6; Р < 0,3; S < 0,05.

    Таким образом, в чугуне

    94 % Fe и 6 % различных примесей. В процессе передела чугуна в сталь в окислитель­ных условиях основная масса приме­сей окисляется. Кроме того, при ис­пользовании кислорода для продувки сталеплавильной ванны часть железа (1—2%) испаряется, окисляется и в виде пылегазовых выбросов покидает агрегат. Масса шлака в момент окон­чания плавки стали составляет 10— 20 % от массы металла. Шлак содер­жит 20—25 % оксидов железа, или 1,5— 2,5 % Fe от массы металла. Этот расчет показывает, что при плавке стали из шихты, состоящей на 100 % из жидко­го чугуна, около 10 % ее массы перехо­дит в шлак и в газовую фазу и расход металлошихты на 1 т жидкой стали превышает 1100 кг.

    Мировая цена 1 т жидкого чугуна 140—160 долл. США, цена металлоло­ма ниже, она меняется в зависимости от конъюнктуры рынка (рис. 4.1). Этим объясняется стремление метал­лургов гибко реагировать на колеба­ние цен и максимально использовать в шихте металлолом.

    4.3. МИКСЕРЫ
    Практически на всех заводах, в соста­ве которых имеются доменные печи, смонтированы специальные разливоч­ные машины для получения из жидко­го чугуна так называемых «чушек». Полученные чушки твердого чугуна направляют для использования на за­воды, не имеющие доменных печей. Однако основная масса выплавляемого чугуна поступает в сталеплавильные цехи в жидком виде — использование в качестве шихты жидкого чугуна эко­номически более выгодно, так как при этом снижаются затраты энергии и со­кращается продолжительность плав­ки. Состав и температуру чугуна не­скольких плавок (выпусков из домен­ной печи) необходимо выравнять. Для этой цели служат специальные агрега­ты—миксеры1. Использование мик­сера позволяет иметь некоторый запас чугуна, что гарантирует ритмичную работу сталеплавильного цеха. Если доменный цех не обеспечивает выпуск чугуна строго определенного состава и температуры и сталеплавильному цеху необходимо все время иметь опреде­ленный запас жидкого чугуна, строят специальное миксерное отделение, в котором устанавливают один или два стационарных миксера. Вместимость типовых стационарных миксеров со­ставляет 1300 и 2500 т.
    1 От англ, mixer— смеситель.

    В миксер с одной стороны залива­ют чугун, поступающий в чугуновозных ковшах из доменного цеха, а сдругой (противоположной) стороны по мере необходимости чугун из него сливают в ковши для подачи к стале­плавильным агрегатам. Миксерное отделение связано эстакадой с рабо­чей площадкой сталеплавильного цеха. По эстакаде составы с чугуно-возными ковшами транспортируются непосредственно к печам или конвер­терам. Миксеры, в которых проводят какие-либо технологические опера­ции (например, удаление кремния), называют активными (в отличие от обычных, которые можно назвать не­активными).

    На рис. 4.2 приведены план и раз­рез миксерного отделения с двумя миксерами вместимостью по 2500т, входящего в состав цеха с 350-т кон­вертерами. В миксерном отделении установлены два миксера 5 и 10, два миксерных (заливочных) крана 7 и 11, машины 75 для скачивания шлака из миксеров, машина 8 для скачивания шлака из чугуновозных ковшей, уста­новки 16 для улавливания графита, весы 2 для взвешивания жидкого чугу­на, стенды 7 для шлаковых ковшей и




    Рис. 4.2. План и разрез миксерного отделения
    тельфер 17 для проведения ремонтных работ. Железнодорожные пути 3 и 4 служат для подачи чугуновозов 14, прибывающих из доменного цеха. Рельсовые пути 12 и 13 широкой ко­леи предназначены для передвижения самоходных чугуновозов 9, доставляю­щих чугун к конвертерам.

    На поверхности жидкого чугуна в миксерах всегда имеется слой шлака, называемого миксерным шлаком, со­став которого может меняться в очень широких пределах, %: SiO2 35—55; CaO 20-35; MgO 3-15; A12O3 4-8; MnO 2—10; S до 2. Содержащиеся в миксерном шлаке сера, а также крем­незем являются нежелательными ком­понентами. Теоретически этот шлак не должен попадать в сталеплавиль­ный агрегат, так как обычно он почти не содержит железа и в нем суще­ственное количество SiO2 и серы. Кроме того, этот шлак, по существу, является балластом.

    Рис. 4.3 иллюстрирует трудность обеспечения десульфурации стали в конвертере при попадании в конвер­тер значительных количеств доменно­го шлака. Существующие сегодня уст­ройства часто не обеспечивают полно­го скачивания шлака перед заливкой жидкого чугуна в сталеплавильный аг­регат, и это обстоятельство необходи­мо принимать во внимание при прове­дении различных расчетов. Обычно шлак скачивают из чугуновозных ков­шей и перед заливкой чугуна в мик­сер, и из миксера по мере накопления в нем шлака. Шлак из миксера скачи­вают машиной 15 (см. рис. 4.2) в ковш шлаковоза 6, убираемого самоходным чугуновозом. Скачивание шлака из чугуновозных ковшей осуществляют машиной 8 в шлаковый ковш, уста­новленный на стенде 7.

    Количество шлака в миксере мож­но уменьшить, если перед заливкой чугуна в миксер удалить шлак с поверх­ности чугуна в чугуновозных ковшах. Содержащийся в миксерном шлаке кремнезем воздействует на футеровку миксера, снижая ее стойкость. Обыч­но футеровку миксера выполняют из магнезитового кирпича, а для свода используют шамотный кирпич. Стой­кость футеровки миксера составляет около одного года. При системати­ческом торкретировании ее можно продлить до пяти лет.

    Форма миксера определяется усло­виями минимальной теплоотдачи и рационального размещения заливоч­ного и выпускного отверстий. Наибо­лее часто встречающийся тип конст­рукции миксера — цилиндр с отноше­нием длины к диаметру -1,3.

    Для уменьшения потерь тепла ис­пользуют слой теплоизоляционного материала между металлическим кожухом и футеровкой; в торцовых стенках миксера устанавливают го­релки для



    Рис. 4.3. Зависимость степени десульфура­ции в конвертере (300-т конвертеры НЛМК) от количества доменного шлака, попавшего в конвертер с жидким чугуном
    его отопления. Расход топ­лива на горелки невелик, и продукты сгорания выходят прямо в миксерное отделение. Несмотря на большой слой футеровки (-700 мм) и подачу топлива для отопления миксера, чу­гун в миксере несколько охлаждается. Особенно велики потери тепла во время переливов чугуна из ковшей в миксер и из миксера в ковш.

    К достоинствам стационарных миксеров относятся: возможность за­паса чугуна, необходимого для рит­мичной работы цеха, хорошее переме­шивание и усреднение состава чугуна и его температуры. Однако в условиях современных высокопроизводитель­ных цехов проявились и основные не­достатки стационарных миксеров: 1) необходимость существенных зат­рат на строительство миксерного отде­ления и соответствующего оборудова­ния; 2) потери тепла чугуна при пере­ливах; 3) недостаточное усреднение состава и температуры чугуна. Приня­то считать, что удовлетворительное усреднение состава и температуры чу­гуна в миксере имеет место в том слу­чае, если продолжительность пребы­вания чугуна в миксере составляет -8 ч (т. е. если чугун в миксере обнов­ляется полностью не более трех раз в сутки).

    Современный конвертерный цех потребляет в сутки 12—20 тыс. т чугу­на, в то время как даже миксер вмес­тимостью 2500 т может в сутки усреднить не более 2500 • 3 = 7,5 тыс. т чугу­на. По мере совершенствования рабо­ты современных мощных доменных печей объемом 4000—5000 м3 улучша­ется обеспечение снабжения сталепла­вильного цеха чугуном постоянных состава и температуры. При четкой и равномерной работе доменных печей, а также при постоянстве состава и температуры чугуна вместо стацио­нарных миксеров используют чугуно-возные ковши миксерного типа, назы­ваемые передвижными миксерами (рис. 4.4). К преимуществам пере­движных миксеров по сравнению со стационарными относятся: 1) сниже­ние капитальных затрат при строи­тельстве и уменьшение сроков строи­тельства; 2) уменьшение потерь тепла чугуна на 25-30 ºС вследствие исклю­чения одного перелива (это позволяет увеличить долю лома в металлозавалке примерно на 2 %); 3) возможность приема всей плавки доменной печи в один ковш-миксер, что позволяет уп­ростить организацию работ в домен­ном цехе; 4) улучшение условий для организации внедоменной обработки чугуна.

    Основным недостатком пере­движных миксеров является невоз­можность усреднения состава и тем­пературы чугуна различных плавок. В нашей стране для новых сталепла­вильных цехов изготавливают ковши миксерного типа вместимостью 600 т. Такая грузоподъемность обус­ловлена, с одной стороны, возмож­ностью приема всей плавки домен­ной печи объемом 5000-5500 м3, с другой — возможностью обеспечить чугуном сразу две плавки в цехе с конвертерами вместимостью 300— 350 т. Передвижной 600-т миксер яв­ляется довольно массивным соору­жением — его масса (включая футе­ровку и оборудование) более 1,2 тыс. т; габаритные размеры, м: длина 39,56, ширина 3,5, высота от уровня головки рельсов 4,7 (рис. 4.4). Эксплуатация передвижных миксе­ров такой грузоподъемности предус­мотрена лишь на внутризаводских железнодорожных путях (стандарт­ной колеи). При перевозке чугуна на большие расстояния и из города в город обычно используют передвиж­ные миксеры меньшей грузоподъем­ности.

    В тех случаях, когда сталепла­вильный цех входит в состав завода, не имеющего доменного цеха, в ка­честве шихты в сталеплавильных аг­регатах используют твердый чугун, который привозят на завод в чуш­ках. В некоторых (редких) случаях для ускорения плавки и повышения производительности сталеплавиль­ных агрегатов чушковый чугун предварительно расплавляют в спе­циальных агрегатах (обычно шахт­ного типа).


    1   2   3   4   5   6   7   8   9   ...   88


    написать администратору сайта