Главная страница
Навигация по странице:

  • 25.15.5. Использование методов гид­рометаллургии.

  • 25.15.6. Получение стекол.

  • 25.16. ПРЯМОЕ ЛЕГИРОВАНИЕ СТАЛИ

  • 25.17. ПЕРЕРАБОТКА ОТХОДОВ СМЕЖНЫХ ПРОИЗВОДСТВ

  • 25.17.1. Использование отходов аб­разивного производства.

  • 25.17.2. Использование отходов про­изводства первичного алюминия.

  • 25.17.3. Использование отходов, об­разующихся в процессе производства (переплава) вторичного алюминия.

  • 25.17.4. Использование отработан­ных катализаторов, применяемых в нефтехимической промышленности.

  • 25.17.5. Использование золы, обра­зующейся в виде отходов на тепловых электростанциях.

  • 25.17.6. Использование отходов пред­приятий по производству электродов.

  • 25.17.7. Получение шлакообразую­щих комплексных материалов

  • 25.17.8. Утилизация объектов воен­ной техники.

  • 25.17.9. Утилизация автомобильного металлолома.

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница72 из 88
    1   ...   68   69   70   71   72   73   74   75   ...   88

    25.15.4. Переработка пыли в процес­сах ПЖВ. Существует несколько ва­риантов организации процесса жидко-фазного восстановления железа из же­лезорудных материалов. В некоторых из них предусмотрена возможность использования в шихте плавильной пыли.

    При разработке технологии ROMELT на Новолипецком металлургическом комбинате проводились спе­циальные плавки по переработке цинк-содержащих шламов из газоочисток конвертерных цехов. Шихта содержа­ла 24 % Fe, 7,6 % ZnO, 0,85 % РЬО, а также щелочные элементы в виде ок­сидов калия и натрия в пределах 1,0— 1,1%. Получался нормальный чугун, в котором содержание цинка было ме­нее 0,02 %. Содержание цинка' в тон­кой фракции пылей газоочистки пре­вышало 70 %.

    Японской фирмой Kawasaki Steel Corp. разработан процесс жидкофаз-ного восстановления, специально предназначенный для переработки пыли и шламов конвертерного произ­водства (рис. 25.12). Печь содержит два ряда фурм: нижний — для перегре­ва жидкой ванны до температуры бо­лее 1500°С, верхний —для вдувания пыли. Между фурмами находится зона интенсивного восстановления трудно­восстановимых оксидов.

    При переработке хром- и никель-содержащих пыли и шлама достигнута степень извлечения хрома 98 % и ни­келя 100 % (табл. 25.3).



    Рис. 25.12. Схема процесса жидкофазного

    восстановления для переработки пыли и

    шламов конвертерного производства:

    1 — пыль; 2 — горячее дутье; 3 — воздух для дожига­ния; 4— кокс; 5—брызгала; 6— коксовый пирог; 7—жидкий шлак; 8— жидкий металл; 9— газ для использования; 10— цинк на утилизацию; 11 — шлак; 12— металл; 13 — восстановление и испаре­ние цинка
    Таблица 25.3. Состав пыли и продукта, ' в процессе Kawasaki Steel Corp.

    . Материал

    **,

    СГ5Ш

    nu.

    С

    Перерабаты­ваемая пыль

    63,5

    7,1

    0,5



    Жидкий продукт

    Ос­нова

    7,7-8,5

    1,4-1,8

    3,9-4,2


    Состав выпускаемого из печи шла­ка, %: СаО 37-38; SiO2 36-37; А12О3 14; Реобщ 0,18-0,27; Сгобщ 0,12-0,18.

    25.15.5. Использование методов гид­рометаллургии. Извлечение цинка, свинца и других примесей цветных металлов из сталеплавильных пылей может быть осуществлено и с исполь­зованием методов гидрометаллургии. По одному из вариантов технология включает в себя выщелачивание цин­ка, свинца, меди, кадмия и кальция раствором уксусной кислоты с образо­ванием соответствующих растворимых комплексов металлов и последующее сульфидное осаждение тяжелых ме­таллов сероводородом H2S. Перера­ботка цинксодержащей пыли метода­ми гидрометаллургии реализована на некоторых заводах Италии и США.

    Пыль подвергают выщелачиванию в растворе хлорида аммония. Для цин­ка реакция имеет вид
    ZnO + 2NH4C1 = Zn(NH3)2Cl2 + Н2О.
    Другие металлы (свинец, кадмий, медь) реагируют с хлоридом аммония аналогично. Степень экстракции цин­ка составляет 60—80 %. Твердый оста­ток (состоящий в основном из окси­дов железа и ферритов цинка) высу­шивают, окомковывают с углем и вво­дят в шихту дуговой печи, при плавке в которой ферриты цинка диссоции­руют, цинк испаряется и удаляется вместе с технологическими газами в систему газоочистки (где цинксодер-жащая пыль опять улавливается).

    Выщелачивающий раствор, в свою очередь, поступает в электролизные ванны, где цинк осаждается на тита­новых катодах:
    Zn(NH3)2Cl2 + 2/3NH3 →Zn + 2NH4C1 + 1/3N2.
    В названиях ряда процессов по из­влечению цинка используется аббревиатура ZINCEX (от англ. &пс + extractизвлекать).

    По мнению многих специалистов, наиболее экономичный процесс ути­лизации цинка из отходов должен включать предварительный отбор оцинкованных изделий, обработку их в растворе горячей щелочи и проведе­ние последующей электрохимической обработки.

    25.15.6. Получение стекол. Утили­зация сталеплавильной пыли может быть организована совершенно поиному. Так, в 1991 г. в США органи­зована фирма по производству стекла и стеклянных изделий. Используе­мый в данном производстве процесс заключается в том, что отходы стале­плавильных цехов (пыль, шлаки, от­ходы огнеупоров) дробят, перемеши­вают и затем расплавляют в пламен­ных печах, в которых получают рас­плавы, идущие на изготовление цветных стеклянных изделий, ис­пользуемых в декоративных целях, а также цветного кирпича, стеклянных фильтров и др.

    В зависимости от состава шихты получаемый материал содержит раз­личное количество таких примесей, как медь, кобальт, хром, никель, сурь­ма, цинк, ванадий и т. д.

    25.16. ПРЯМОЕ ЛЕГИРОВАНИЕ СТАЛИ
    Одним из вариантов ресурсосберегаю­щей и природоохранной технологии, позволяющей эффективно использо­вать отходы, является так называемое прямое легирование, при котором ле­гирование стали проводится непос­редственно из сырых (природных) ма­териалов или отходов некоторых про­изводств, минуя стадии производства ферросплавов.

    В настоящее время для прямого ле­гирования используется много техно­логий. Для прямого легирования при­годны такие материалы, как конвер­терный ванадиевый шлак (18—10% V2O5), молибденовый концентрат (82— 90 % МоО2), хромовая руда (45-53 % Сг2О3), ниобиевый концентрат (38— 43 % Nb2O5) и др. Эти материалы вво­дят в металл различными способами (на дно ковша, на шлак в печь, путем вдувания в глубь металла в печи или в ковше и т. п.). Материалы вводят обычно или в виде порошка, или в виде брикетов, в состав которых кро­ме основного материала вводят силь­ные восстановители (алюминий, кальций и т. п.) с тем, чтобы в момент контакта материала с расплавленным металлом протекали реакции восста­новления.

    Внедрение современных методов внепечной обработки позволяет про­изводить высококачественные легиро­ванные марки стали либо при исполь­зовании более простых и более деше­вых ферросплавов, либо путем прямо­го легирования.

    Аргоно-кислородный и вакуумно-кислородный методы обработки обес­печивают эффективное использование углерода для восстановления содержа­ния в этих отходах ценных металлов, сдвигая вправо равновесие реакции МеО + С = Me + СО.

    25.17. ПЕРЕРАБОТКА ОТХОДОВ СМЕЖНЫХ ПРОИЗВОДСТВ
    Проблема рационального использова­ния отходов любого производства — проблема межотраслевая. Черная ме­таллургия имеет широкие возможнос­ти для полезного использования и «своих» отходов, и отходов многих смежных производств.

    Необходимо отметить важность организации комплексной переработ­ки используемого в производстве сы­рья, и прежде всего комплексного ис­пользования руд.

    Существовавшая в течение ряда лет система организации отрасли, ориен­тированная в основном на получение лишь целевой продукции, ушла в про­шлое. Новые методы хозяйствования заставляют активно изыскивать новые технические решения, в том числе по поиску новых сырьевых материалов. В первую очередь это относится к поис­ку отходов, содержащих: а) оксиды металлов (их можно восстановить); б) примеси, которые могут служить раскислителями и восстановителями (Al, Si, С и др.); в) углеродсодержащие компоненты; г) компоненты, исполь­зование которых может ускорить процессы шлакообразования, десульфурации и т. п.

    Поле деятельности в этом направле­нии поистине неограниченное. При­ведем несколько примеров поисков и решений, уже реализованных на прак­тике.

    25.17.1. Использование отходов аб­разивного производства. Для целей стабилизации окисленности ванны успешно используют отходы — от­вальные карбидсодержащие шлаки абразивного производства, содержа­щие 25-45 % SiC2 и 10-25 % Сграфит. Введение на шлак отходов абразивно­го производства за несколько минут заметно снижает окисленность шла­ка. Снижение окисленности ванны достигается в результате протекания реакций:
    SiC2 + 4(FeO) = SiO2 + 2СО + 4Fe;

    СГрафит + (FeO) = CO + Fe.
    Образующиеся пузыри СО переме­шивают ванну и обеспечивают более эффективное усвоение добавок.

    25.17.2. Использование отходов про­изводства первичного алюминия. Преж­де всего это касается утилизации в сталеплавильном производстве спе­цифических отходов заводов по производству алюминия — отрабо­танной угольной футеровки алюми­ниевых электролизеров. Обычно алю­миний выплавляется из глинозема электролизом расплавленных в крио­лите (Na3AlF6) составляющих шихты. Электролизеры футеруют прессован­ными угольным и блоками (они слу­жат катодами). В процессе эксплуа­тации футеровка пропитывается жид­ким электролитом (криолитоглино-земным расплавом с добавками фторидов магния и кальция). Отрабо­танная футеровка представляет собой механическую смесь угольных като­дов, огнеупоров (обычно шамотных) и остатков электролита. Состав смеси: 40—75 % углерода и 15—35 % глинозе­ма и фтористых солей. В отходы также подают остатки угольных анодов (огарки), содержащие 90—95 % углеро­да. На некоторых заводах все эти отхо­ды успешно используют: углеродную составляющую — как дополнительный теплоноситель, а фторсодержащие материалы и глинозем — для интенсифи­кации процессов шлакообразования. Опыт ряда конвертерных цехов также показал, что рациональное использова­ние этих отходов позволяет исключить из технологического цикла плавико­вый шпат, сократить расход извести, уменьшить расход жидкого чугуна.

    25.17.3. Использование отходов, об­разующихся в процессе производства (переплава) вторичного алюминия. Прежде всего это касается утилизации в сталеплавильном производстве тако­го отхода, как шлак производства вто­ричного алюминия. Шлак содержит, %: А12О3 50-70; SiO2 до 8; СаО 4-6; FeO 6-8; (К2О + Na2O) 2-4. Помимо этого в шлаке содержится 8—15 % ко­рольков и кусков металлического алю­миния. В случае присадки такого шла­ка имеют место: а) кратковременное снижение скорости обезуглерожива­ния вследствие раскисления стале­плавильного шлака алюминием по реакции 3(FeO) + 2А1 = (А12О3) + 3Fe; б) нагрев шлака, так как окисление алюминия сопровождается выделени­ем тепла; в) снижение температуры плавления шлака и повышение его жидкоподвижности вследствие влия­ния А12Оз; г) ускорение усвоения шла­ком извести вследствие повышения температуры шлака и снижения его вязкости, что сопровождается улучше­нием условий десульфурации.

    Так как повышение температуры шлака и снижение его вязкости спо­собствуют росту его кислородопрони-цаемости, скорость окисления углеро­да в целом за плавку также возрастает. Поскольку условия удаления серы улучшаются, сокращается длитель­ность плавки в целом. Учитывая, что при этом снижается расход других шлакообразующих добавок (напри­мер, боксита), использование отходов производства вторичного алюминия оказывается весьма рентабельным.

    В ряде случаев в отходах производ­ства вторичного алюминия содержит­ся заметное количество этого металла (до 30 %). Использование такого мате­риала позволяет заметно сократить расходы дорогих раскислителей.

    25.17.4. Использование отработан­ных катализаторов, применяемых в нефтехимической промышленности. Некоторые катализаторы содержат до 20 % триоксида молибдена, до 6 % ок­сида никеля и некоторые другие по­лезные компоненты. Использование такого материала (его можно вводить в завалку при выплавке стали соответ­ствующих марок) весьма эффективно.

    25.17.5. Использование золы, обра­зующейся в виде отходов на тепловых электростанциях. Зола, образующаяся при сжигании углей ряда месторожде­ний, содержит ценные оксиды метал­лов.

    Так, зола Углегорской ГРЭС содер­жит 33-35 % V2O5 и 8-10 % NiO. Ис­пользование этого материала позволя­ет утилизировать до 90 % содержаще­гося в нем ванадия и до 100 % никеля.

    Зола углей Экибастузского место­рождения содержит после сжигания 10—15 % Fe. Уральские металлурги разработали технологию получения из этой золы концентрата с содержанием 49-52 % Fe.

    25.17.6. Использование отходов пред­приятий по производству электродов. При производстве электродов образу­ется значительное количество пыли и других отходов, состоящих в основном из углерода. Эту пыль успешно ис­пользуют для вдувания в металл с це­лью его науглероживания.

    25.17.7. Получение шлакообразую­щих комплексных материалов (ожелез-ненной извести, железофлюса, марга-нецсодержащих флюсов и т. п.). В ка­честве примера приведем факт полу­чения железофлюса на Новотроицком цементном заводе во вращающейся печи из известняка и колошниковой пыли. Состав флюса, %: Fe2O3 16—17; СаО 69-71; SiO2 8,0-9,5; S 0,01; Р2О5 0,08. Флюс используют для наводки жидкоподвижного основного шлака.

    Можно привести ряд других подоб­ных примеров, свидетельствующих о перспективности поисков путей ути­лизации отходов на всех ступенях ме­таллургического производства.

    25.17.8. Утилизация объектов воен­ной техники. Проблема старения, вы­хода из строя и т. п. военной техники относится к числу «вечных проблем» во всех странах. В нашей стране в на­стоящее время основными методами утилизации металлоконструкций и из­делий военной техники из легированных сталей и сплавов, таких, как кор­пуса и башни танков, артиллерийские стволы, крупные узлы силовых транс­миссий и др., являются разделка их на куски и дальнейший переплав в от­крытых сталеплавильных агрегатах (конвертерах, дуговых, мартеновских и индукционных печах).

    Главный недостаток этих мето­дов — безвозвратные потери ряда ле­гирующих элементов при переплавке в открытых агрегатах. Теряются хром, титан, вольфрам, ванадий и др., со­держащиеся в легированных сталях, из, которых была изготовлена эта военная техника.

    При использовании в качестве шихты легированного скрапа военной техники в кислородных конвертерах необходимо учитывать, что доля стального металлолома в завалку обычно не превышает 20—27 % от мас­сы металлической шихты; остальное составляет жидкий чугун. При таком соотношении компонентов в металли­ческой шихте и с учетом безусловного угара хрома, ванадия и др. при выпус­ке стали остаточное содержание леги­рующих компонентов в готовом ме­талле невелико и практически не пре­вышает уровня, установленного стан­дартами для примесных легирующих элементов.

    Утилизация легированного лома в дуговых печах имеет преимущества перед утилизацией в конвертерах и мартеновских печах, так как снимает ограничения на долю металлолома в шихте. Однако и в этом случае имеет место угар отдельных легирующих элементов (в зависимости от техноло­гических условий процесса дуговой плавки (по элементам) угар может со­ставлять, %: А1 100; Ti 80-90; Si 40-60; V 15-25; Cr 10-15; W 5-15). Перед практиками стоит вопрос: как рацио­нально утилизировать отходы такой техники?

    Специалисты института им. Патона разработали электрошлаковую тех­нологию утилизации бывших в упот­реблении артиллерийских стволов танковых пушек. Один из вариантов технологии — переплав артиллерий­ских стволов с одновременным леги­рованием металла азотом — представ­лен на рис. 25.13. Легирование металла



    Рис. 25.13. Принципиальная схема получе­ния легированных азотом слитков методом ДШП с подачей азота в зону горения дуги че­рез канал в расходуемом электроде:

    / — слиток ДШП; 2 — металлическая ванна; 3 — шлаковая ванна; 4— электрическая дуга; 5— расхо­дуемый электрод; 6— жидкая металлическая плен­ка; 7—капли металла; 8 — водоохлаждаемый крис­таллизатор
    азотом непосредственно из газовой фазы происходит одновременно с формированием слитка в шлаковом гарнисаже.

    Методами ЭШП из объектов воен­ной техники получают слитки штам-повых сталей марки ХНМ и других марок требуемого размера и заданного химического состава с сохранением значительной доли легирующих эле­ментов переплавляемых изделий.

    25.17.9. Утилизация автомобильного металлолома. Использование метал­лургических технологий для утилиза­ции вышедших из строя автомобилей является неотъемлемой частью совре­менного сталеплавильного производ­ства. Ежегодно в мире производится не менее 50 млн. автомобилей, и если принять, что в среднем автомобиль ве­сит 1200 кг, то окажется, что ежегодно более 60 млн. т материалов расходует­ся на их изготовление. Сроки эксплуа­тации автомобилей непрерывно со­кращаются, и современный мир стол­кнулся с проблемой повторного ис­пользования (рециклинга) этих материалов.

    Еще несколько лет назад данная проблема не очень интересовала нашу страну. Но в последние годы ситуация изменилась. На полную мощность ра­ботают автозаводы в Тольятти, Ниж­нем Новгороде, Набережных Челнах и др.; значительное количество автомобильной техники приобретается за ру­бежом. Решая возникшую проблему рационального использования и ути­лизации автомобильного металлоло­ма, необходимо учитывать опыт, на­копленный по этой проблеме за рубе­жом.

    В зависимости от конструкции ав­томобиля и технологии его изготовле­ния он состоит на 60—80 % из железа, остальное — другие материалы, также требующие утилизации.

    Материалы, используемые при из­готовлении автомобиля, содержатся в следующих его деталях.

    Латунь— радиатор, части водяного насоса, теплообменник отопления, вентили теплообменника, втулки.

    Резина — шины, камеры, элементы подвески, уплотнения, коврики для ног, опоры педалей, приводной ре­мень, амортизаторы.

    Железо — кузов, моторный блок, детали мотора, коробка передач, при­водной вал, оси (валы), подвески ко­лес, пружины (рессоры), амортизаци­онные стойки, детали тормозов, пане­ли, части выхлопной трубы, дверная и оконная механика, рамы сидений, ша­рикоподшипники, детали крепления, резервуары.

    Свинец — батареи и балансиры.

    Алюминий — моторный блок, голов­ки цилиндров, корпус коробки пере­дач, пружины, декоративные наклад­ки, навесные детали мотора.

    Медь — кабели, стартер, генератор, катушка зажигания, мотор нагревате­ля, мотор вентилятора, мотор стекло­очистителя, стеклоподъемник, пере­ключатели, провода.

    Цинк — корпуса навесных деталей мотора, ручки дверей, рукоятки стек­лоподъемников, детали замков, рамка стекла заднего вида.

    Стекло и керамика — остекление, зеркала, лампы, монолит катализато­ра, фарфоровые изоляторы.

    Пластмассы — обивка из искусст­венной кожи, люк в крыше, прибор­ная доска, детали системы отопления, обивка сидений, изоляционные мате­риалы, решетка радиатора, наружная облицовка, колпаки колес, вкладыши колес, корпус зеркала, задние фонари, планки боковой защиты, отражатели, электроизоляторы, корпус воздушного фильтра, корпус батареи, решетка вентилятора, обтекатель.

    Текстильные материалы — обивка сидений, коврики, изоляционные ма­териалы, обивка салона.

    Технические жидкости — моторное масло, трансмиссионное масло, жид­кость для автоматики, тормозная жид­кость, масло для гидравлических сис­тем, жидкость для кондиционера, жидкость для стеклоомывателя, кислота для батарей, топливо.

    На создание среднего автомобиля расходуется не менее 50 разных мате­риалов и не менее 10 тыс. отдельных деталей.

    Последовательность операций при переработке автомобилей на металло­лом: удаление технических жидкостей; извлечение поношенных запасных ча­стей; сбыт их мастерским и частным клиентам; извлечение пригодных де­талей для переработки на смежных предприятиях автомобильной про­мышленности до качества новых дета­лей; извлечение старых шин для даль­нейшей переработки; извлечение ста­рых аккумуляторов для рециклинга; извлечение пластмассовых частей для повторного использования или для утилизации; сдача остатка корпуса на шредерное предприятие.

    В заключение на предприятии-реа­лизаторе образуются остатки кузовов, которые пакетируются на специаль­ных пакетировочных прессах, а затем прессованные остатки кузовов постав­ляются для дальнейшей обработки на шредерные' установки.

    Шредерная обработка заключается в измельчении всех остатков автомо­биля на куски размером 5—15 см.

    Материал, прошедший шредерную обработку, состоит из кусков разме­ром 5—150 мм. В дробленом материале содержится в среднем -64 % железа и 6 % цветных металлов. Остальные 30 % — это смесь, состоящая из 30—40 различных синтетических материалов, текстиля, стекла, резины, дерева, яче­истых материалов, грязи, остатков лака и обломков металла. Чтобы ме­таллолом очистить от этих материа­лов, используют пневматическую очи­стку, для проведения которой как во время, так и после шредерной обра­ботки металлолом очищают сильным потоком воздуха'. Пыль и неметалли­ческие обломки, которые отсасывают­ся при такой обработке, большей час­тью удаляются потоком воздуха. Далее в ленточных барабанах проводится от­деление инертных материалов, таких, как песок и стекло. Остается легкая шредерная фракция, которая в основ­ном состоит из искусственных мате­риалов.
    1 От англ, shreddingизмельчение.
    Сталь и железо, являясь магнитны­ми, могут быть легко удалены из ме­таллолома. К регенерации цветных металлов (путем сортировки) предъяв­ляют высокие технические требова­ния, в первую очередь по алюминию, меди, цинку. Для их сортировки ис­пользуют установки падающей воды, в которых в растворе с высокой плотно­стью (например, ферросилициевая пульпа) всплывают легкие материалы, а более тяжелые опускаются вниз. На следующей ступени процесс повторя­ется в еще более тяжелой жидкости. Этот метод практичен, но связан с большим расходом воды.

    В последние годы разрабатывают методы сортировки без образования сточных вод, с высокочастотной сепа­рацией цветных металлов из металло­лома.

    Использование материалов после шредерной обработки имеет свои осо­бенности и зависит от их природы. Так, черные металлы при шредерной обработке и магнитном отделении можно без проблем отделить от других материалов.

    Из-за высокой чистоты и высокой насыпной массы шредерный лом яв­ляется предпочтительным сырьем для производства стали. С этим ломом удобно работать при введении его (ссыпании из бункеров) в сталепла­вильные агрегаты по ходу плавки. Од­нако при этом следует иметь в виду, что полностью медь, которая содер­жится в старом автомобиле, выделить трудно. Стальной лом после шредер­ной обработки не должен содержать больше 0,06 % меди. Фактически же сталеплавильные цехи часто получают разделанный на шрединг-установках автомобильный лом, содержащий около 0,25 % Си.
    1   ...   68   69   70   71   72   73   74   75   ...   88


    написать администратору сайта