Главная страница
Навигация по странице:

  • 25.8. ПРОИЗВОДСТВЕННЫЕ ОТХОДЫ НА ПРЕДПРИЯТИЯХ ЧЕРНОЙ МЕТАЛЛУРГИИ

  • 25.8.1. Потери при переработке же­лезной руды в процессе обогащения.

  • 25.8.2. Отходы на металлургических комбинатах.

  • Таблица 25.1

  • 25.9. КРАТКАЯ ХАРАКТЕРИСТИКА ВЫДЕЛЕНИЙ И ВЫБРОСОВ В ОСНОВНЫХ ПОДОТРАСЛЯХ ЧЕРНОЙ МЕТАЛЛУРГИИ Таблица 25.2

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница68 из 88
    1   ...   64   65   66   67   68   69   70   71   ...   88

    25.7. КОМПЛЕКСНОЕ

    ИСПОЛЬЗОВАНИЕ ПРОДУКТОВ, ПОЛУЧАЕМЫХ НА КИСЛОРОДНЫХ СТАНЦИЯХ
    Начало широкого применения кисло­рода в сталеплавильном производстве относится к концу 40-х годов XX в. К этому времени относится и развитие методов получения кислорода в масш­табах, удовлетворяющих потребности металлургов.

    Основным способом получения кислорода в современной технике яв­ляется метод разделения воздуха через стадию его сжижения (методом глубо­кого охлаждения). Сначала воздух сжи­мается компрессором, затем, после прохождения теплообменников, рас­ширяется в машине-детандере или дроссельном вентиле, в результате чего, охлаждаясь до температуры ниже —180 °С, превращается в жидкий воздух'. Дальнейшее разделение жидкого воздуха основано на различии темпе­ратуры кипения его компонентов: кислорода —182,9 ºС и азота —195,8 ºС. При постепенном испарении жидкого воздуха сначала выпаривается преиму­щественно азот, а остающаяся жид­кость все более обогащается кислоро­дом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных ко­лонн, получают жидкий кислород нужной чистоты (концентрации). В зависимости от чистоты получаемый продукт (в жидком или газообразном виде) принято делить на технологичес­кий кислород (95—98 % О2), техничес­кий (до 99,9 % О2) и медицинский (практически без примесей).

    В тех случаях, когда особая чистота кислорода не требуется (например, для интенсификации горения топли­ва), экономически целесообразнее ис­пользовать более дешевый технологи­ческий кислород.

    Помимо кислорода и азота в воздухе содержится аргон (объемная концент­рация аргона в воздухе 0,93 %). Темпе­ратура кипения аргона - 185,9 °С; он также может быть выделен в процессе ректификации. Азот и аргон являются как бы побочными продуктами при производстве кислорода, но причис­лить их к отходам в настоящее время нельзя. По мере развития технологий сталеплавильных процессов газооб­разные аргон и азот находят все новые и новые области применения (для пе­ремешивания жидкого металла, для предохранения его от повторного окисления при разливке2, для интенсификации процесса обезуглерожива­ния и т. д.).
    1 Детандер (от. фр. detendreуменьшать давление). Наиболее распространен реактив­ный одноступенчатый центростремительный детандер, разработанный нашим соотече­ственником акад. П. Л. Капицей.

    2 Плотность аргона (1,78 кг/м3) несколько выше плотности воздуха; об этом необходи­мо помнить, используя аргон для защиты ме­талла от вторичного окисления при разливке (например, на вертикальных УНРС с заглуб­лением установки ниже пола цеха). Изолиро­ванные емкости постепенно могут оказаться заполненными аргоном (с вытеснением не­обходимого для дыхания кислорода).
    Получение кислорода на кислород­ных станциях — процесс весьма энер­гоемкий (около 0,5 кВт • ч/м3 кислоро­да, а с учетом затрат на повышение давления и транспортировку — около 0,75 кВт • ч/м3), поэтому любое изме­нение в стоимости электроэнергии за­метно влияет на стоимость кислорода и соответственно на себестоимость стали. Для грубых расчетов можно принять средний расход кислорода на 1 т стали равным 50 м3 (несколько выше он будет в конвертерном произ­водстве и ниже — в электросталепла­вильном). Расход кислорода в некото­рых новых процессах жидкофазного восстановления существенно выше: 500—600 м3/т продукта.

    25.8. ПРОИЗВОДСТВЕННЫЕ ОТХОДЫ НА ПРЕДПРИЯТИЯХ ЧЕРНОЙ МЕТАЛЛУРГИИ
    Предприятия черной металлургии по­требляют (перерабатывают) огром­ную массу сырья и полуфабрикатов, в числе которых железная руда, извест­няк, каменный уголь для получения кокса или готовый кокс, огнеупоры или сырье для их производства, ме­таллолом и т. д. и т. п. К сожалению, пока еще нельзя назвать металлурги­ческое производство полностью без­отходным, определенная (а иногда зна­чительная) доля поступивших на предприятия материалов после пере­работки оказывается в числе отходов производства.

    Ниже приведен краткий перечень основных этапов потерь в технологи­ческой цепи производства стали.

    25.8.1. Потери при переработке же­лезной руды в процессе обогащения. Долгие годы традиционно отечествен­ная металлургия была ориентирована на использование богатых железных руд Приднепровья (Криворожское), Урала (горы Благодать, Магнитная и др.), менее богатых руд (Керченское месторождение, р-ны Карелии и Кольского п-ва, Горной Шории и Горного Алтая). Сейчас многие место­рождения богатых (60 % Fe и более) руд уже выработаны. Кроме того, отдельные месторождения оказались в последние годы на территории других государств (Украины, Казахстана). Основная масса используемой в на­стоящее время железной руды посту­пает из рудников Карелии, Мурманс­кой области и Курской магнитной аномалии (КМА). Содержание железа в основной массе этих руд 30-40 %. Еще меньше содержание железа в ру­дах Качканарского месторождения на Сев. Урале (16—17 %). Естественно, что такие руды требуют обогащения, т. е. подвергаются дроблению, магнит­ной сепарации, флотации и др. Полу­чаемые на обогатительных фабриках концентраты содержат до 65—68 % Fe. (Напомним, что продукт обогатитель­ных фабрик называют концентратом^ а отходы — хвостами.) Для таких бед­ных руд, как качканарские, выход концентрата составляет около 17 %, а выход хвостов — более 80%. Таким образом, масса отходов при перера­ботке небогатых руд огромна. Хими­ческий состав отходов колеблется в очень широких пределах; при этом со­держание железа в них может дости­гать 15, иногда 20%. В настоящее время отходы обогатительных фабрик используют главным образом в строи­тельстве (щебень, бетон); металлур­гическая их переработка — дело буду­щего.

    25.8.2. Отходы на металлургических комбинатах. Перевозки бедных желез­ных руд на значительные расстояния экономически нецелесообразны, по­этому обогащение бедных руд обычно организуют на небольшом расстоянии от места добычи, и на комбинаты, имеющие в своем составе доменное производство, руды поступают уже после обогащения.

    Отходы на металлургических заво­дах включают бракованную продук­цию, обрезь металла после проката. Значительную долю отходов составля­ют так называемые выбросы в атмос­феру. Для иллюстрации приведем со­ответствующие данные для условий Новолипецкого металлургического комбината (НЛМК) (табл. 25.1).

    Всего по комбинату выбросы со­ставили 332 тыс. т в год, в том числе 25,6 тыс. т в виде уловленной пыли и 306,4 тыс. т — газов.
    Таблица 25.1. Выбросы в атмосферу на НЛМК в 1996 г. (по основным производствам), тыс. т/год

    Производство

    Всего выброосов

    В том числе





    пыль

    газы

    Доменное

    23,7

    3,5

    20,2

    Конвертерное Агломерационное

    74,7 180,4

    3,8 11,8

    70,9 168,6

    Коксохимическое

    21,8

    2,9

    18,9

    ТЭЦ

    13,82

    0,02

    13,8



    25.9. КРАТКАЯ ХАРАКТЕРИСТИКА ВЫДЕЛЕНИЙ И ВЫБРОСОВ В ОСНОВНЫХ ПОДОТРАСЛЯХ ЧЕРНОЙ МЕТАЛЛУРГИИ

    Таблица 25.2

    Выделения, выбросы в атмосферу

    Характер сточных вод, загрязняющих водоемы

    25.9.1

    Применяемые методы защиты Производство кокса

    Утилизация выделений и выбросов

    Отходящие газы со­держат SO2, СО, H2S, цианиды, аммиак, фенол, углеводороды (в том числе особо вредный бензопи-рен), а также пыль (до 0,4 кг/т кокса). При тушении кокса в атмосферу вместе с парами воды выбра­сываются аммиак, сероводород, оксиды серы, фенолы и др. При замене мокрого тушения кокса сухим количество вредных выбросов существен­но уменьшается

    Большое коли­чество сильно загрязненных сточных вод. Около 1/3 сточ­ных вод — над-смольные воды, содержащие фенолы до 3 г/л, Кроме того, сточ­ные воды содер­жат смолы, масла, цианиды, аммиак и его соли, сульфиды, сульфиты, бен­зол, толуол, кси­лол, нитраты и др.

    Оборудование углеподго-товки и коксосортировки оснащается аспирационны-ми системами. Удаляемые газы перед выбросами в атмосферу подвергаются двухступенчатой очистке (вначале сухой, затем мок­рой). Коксовый газ очища­ется от смолы, масляных туманов и пыли в электро­фильтрах. Извлечение из газа ароматических углево­дородов, аммиака H2S, сер­нистых соединений и др. осуществляется промывкой в скрубберах поглощающи­ми растворами. Сточные воды сначала подвергают осветлению (отстаиванию), затем физико-химическим и биохимическим методам очистки

    Из 1 т каменноугольной шихты получают 760-800 кг кокса, 320-330 м3 коксового газа, а также такие про­дукты, как бензол, ам­миак, смола, пек, нафта­лин. Коксовый газ ис­пользуют в качестве топлива. Из других про­дуктов получают пре­параты: аспирин, нашатырный спирт, красители, карболку, каменноугольный лак, шпалопропиточное масло, материалы для парфюмерной промыш­ленности и др.




    25.9.2. 1

    1роизводство агломерата




    Агломерационное производство — один из главных источни­ков загрязнения воз­духа на предприятия> черной металлургии. Просос воздуха для спекания составляет 2500-3000 м3 на 1 т агломерата. В процес се спекания воздух насыщается соедине­ниями серы, углерод и др. Образующийся газ увлекает большое количество пыли, состоящей в основ­ном из оксидов желе за. На 1 т агломерата образуется до 7 кг пылевых выбросов

    Расход воды (на увлажнение руды очистку газов и др.) на 1 т агло l мерата 3,5—7,0 м3. Сточные воды содержат хлори­ды, сульфиды, кальций, железо - и др. Содержани взвешенных час­тиц 12-20 г/л. а Грубодисперсно-сть шламов опре деляет достаточ­но высокие ско­рости выпадения - взвешенных ве­ществ

    Для oMHCTKti агломерацион-, ных газов используют раз­личные аппараты, в том - числе циклоны, скрубберы, электрофильтры. Недо­статками мокрых пылеуло­вителей являются необхо­димость создания водно-шламового хозяйства, Труд-; ность утилизации уловлен­ной в виде шлама пыли. Целесообразно применение сухих электрофильтров с - высокой степенью очистки Для очистки сточных вод в основном применяются процессы отстаивания, для ускорения которых исполь зуют различные флокулян-ты

    ционной установки от­сасывают горячие газы, тепло которых исполь­зуют для предваритель­ного подогрева шихты и воздуха. Подача на ленту подогретого воздуха по­вышает температуру верхней части слоя и прочность агломерата. Улучшаются также усло­вия удаления сульфатной серы из шихты агломера­та. Железосодержащие шламы, извлекаемые из сточных вод, утилизиру-- ются

    415 Продолжение табл. 25.2

    Выделения, выбросы в атмосферу

    Характер сточных вод, загрязняющих водоемы

    Применяемые методы защиты

    Утилизация выделений и выбросов

    25.9.3. Доменное производство

    При работе на дутье без обогащения его кислородом на 1 т чугуна образуется около 2000 м3 доменного (колошникового) газа. Его состав: 25-32 % СО, 10-18 % С02, 1-2 % Н2, остальное — азот. При обогащении дутья кислородом содержание СО и Н2 в доменном газе возрастает

    В доменном цехе расходуется воды до 30 М3/т чугуна, из которых 60—65 % идет на охлаждение печи, 20-30 % - на очистку доменно­го газа. При очист­ке газа образуется 4-6 м3 сточных вод на 1000 м3 газа. Эти воды содержат пыль (частицы руды, агломерата, кок­са, известняка), а также сульфаты, хлориды и т. п. Сточные воды образуются также на разливочной машине, при гра­нуляции домен­ного шлака (около 2 М3/т чугуна) и др.

    Доменный газ подвергают последовательно грубой, полутонкой и тонкой очистке. На современных доменных печах обеспе­чивается практически пол­ная герметизация, исклю­чающая выбросы в атмо­сферу

    В доменных печах на 1 т чугуна образуется (в за­висимости от состава ших­ты) от 0,3 до 0,6 т шлака состава (в среднем), %: ALO, 6-22, SiO, 38-42, Cab 38-48, MgO 2-12. Основную часть жидкого шлака подвергают грану­ляции (быстрое охлажде­ние водой или воздухом) с получением гранул, ис­пользуемых для производ­ства цемента и известко-во-вяжущих веществ. Часть шлака используют для получения балласта в дорожном строительстве, получения шлаковой пем­зы или термозита, шлако­вой ваты. Колошниковый (доменный) газ использу­ют как топливо. При рабо­те доменной печи на воз­духе, обогащенном кис­лородом, теплота сгора­ния газа возрастает (уменьшается содер­жание азота)

    25.9.4. Сталеплавильное производство

    Количество и состав отходящих газов опре­деляются рядом фак­торов: 1) наличием или отсутствием топ­лива, состав которого определяет состав от­ходящих газов; 2) ис­пользованием кисло­рода (по мере замены воздуха кислородом в отходящих газах уменьшается содер­жание азота); 3) под­сосом воздуха через неплотности и щели; 4) спецификой про­цесса (например, в случае продувки ме­талла аргоном в отхо­дящих газах будет ар­гон); 5) степенью до­жигания СО до СО2. Как правило, отходя­щие газы содержат СО, СО2, Н2О и N2, а так­же некоторое коли­чество NO 8О2иО2. Пылевыбросы состо­ят в основном из окси­дов железа. Помимо пылегазовых выбро­сов в процессах про-

    В сталеплавиль­ном производстве сточные воды об­разуются в про­цессе очистки га­зов мартеновских печей, конверте­ров, дуговых пе­чей, при охлаж­дении и чистке изложниц, на установках не­прерывной раз­ливки. Размеры частиц пыли в сточных водах от 0,01 до 0,1 мм при концентрации (в зависимости от условий работы) зт 3 до 20 г/л. В электростале­плавильных цехах значительная масса частиц пы­ли в сточных во­дах имеет разме­рь^ 10 мкм; взвесь такой пыли трудно эсаждается

    Все сталеплавильные цехи оснащены системами газоочистки, а также комплексом оборудования для очистки сточных вод

    Образующиеся в процес­сах сталеварения шлаки перерабатываются: а) на изготовление щебня (примерно 50 % от всей массы шлаков); б) в ка­честве флюсов; в) для удобрения или извест­кования почв. Железо­содержащие шламы (и пыли) после пылеочист-ных установок исполь­зуются как добавки в агломерационную шихту. Теплота выделяющихся газов используется для нагрева воздуха (в мар­теновских печах) и для получения пара

    Продолжение табл. 25.2

    ВВДВеЬЫ £»£££ в атмосферу водоемы

    Применяемые методы защиты

    Утилизация выделений и выбросов

    изводства стали обра­зуются шлаки (в зави­симости от техноло­гии в количестве 10—20 % от массы металла). Состав шлаков меняется в широких пределах в зависимости от технологии





    25.9.5. Ферросплавное производство

    При производстве Стоки ферро-ферросплавов как в сплавного произ-открытых, так и в водства содержат закрытых печах обра- цианиды, рода-зуются газы, содер- ниды, фенолы, жащие цианиды, марганец, хром, фториды, сернистые мышьяк, вана-и другие вредные дий и др., атак-вещества, а также же чрезвычайно большое количество мелкие частицы пыли. Наибольшее пыли (основная количество пылегазо- масса частиц выделений приходит- пыли размером ся на углетермические < 10 мкм), что процессы. В составе затрудняет газов 70—90 % СО. осаждение Состав пыли опреде­ляется маркой ферро­сплава (например, при производстве ферро­силиция ФС90 — 75-90 % SiO2). Коли­чество выбросов за­висит от типа печей (при производстве сплава ФС45 в закры­той печи удельные выбросы пыли 3,4— 6,0 кг/т, при произ­водстве сплава ФС90 в открытой печи 340— 480 кгД). Отличие пыли ферросплавных производств — ее мелкодисперсность, что затрудняет реше­ние задачи глубокой очистки газов

    Для очистки газов в ферро­сплавном производстве применяются мокрая и сухая схемы газоочистки. Недостаток мокрой очист­ки — необходимость после­дующей очистки воды; недостаток сухой очистки газов с тканевыми фильтра­ми — низкая стойкость ткани и высокие расходы, связанные с эксплуатацией. В открытых печах отходя­щие газы в воздухе сгорают с дожиганием СО и СО2; при этом почти полностью разлагаются цианиды

    «•

    Установки улавливания пыли для ряда дорогих ферросплавов (ферро­вольфрама, ферромолиб­дена и др.) используются не только с целью охра­ны природы, но и глав­ным образом для улавли­вания дорогих и дефицит­ных составляющих. Ос­новная масса уловлен­ной пыли возвращается в производственный про­цесс. Уловленная при производстве ферро­силиция пыль исполь­зуется также в огнеупор­ном производстве и других целях

    Примечание. Ферросплавные дуговые печи, мощность которых достигла 75 МВА, — мощный источник шума, сильных электромагнитных полей, которые отрицательно воздействуют на персонал. Проблема решается использованием экранов, звукопоглощающих материалов и т. п. Конструктивно эти устройства связываются с оборудованием для пылеулавливания.


    1   ...   64   65   66   67   68   69   70   71   ...   88


    написать администратору сайта