Главная страница
Навигация по странице:

  • Простые и сложные проценты

  • Задачи и решения

  • Частота начисления сложных процентов

  • Текущая стоимость денег

  • Оценка денежных потоков

  • Амортизация кредитов

  • Влияние инфляции

  • ЕН.Р.1 Фин вычисления. Учебнометодический комплекс дисциплины Финансовые вычисления 080109. 65 Бухгалтерский учет, анализ и аудит Форма подготовки (заочная)


    Скачать 1.86 Mb.
    НазваниеУчебнометодический комплекс дисциплины Финансовые вычисления 080109. 65 Бухгалтерский учет, анализ и аудит Форма подготовки (заочная)
    Дата13.09.2022
    Размер1.86 Mb.
    Формат файлаdoc
    Имя файлаЕН.Р.1 Фин вычисления.doc
    ТипУчебно-методический комплекс
    #675305
    страница2 из 17
    1   2   3   4   5   6   7   8   9   ...   17

    КОНСПЕКТ ЛЕКЦИЙ


    по дисциплине «Финансовые вычисления»

    080109.65- «Бухгалтерский учет, анализ и аудит»


    г. Дальнереченск

    2010

    Учет временной стоимости денег

    Простые и сложные проценты

    Принятие решения о вложении капитала определяется в большинстве случаев величиной дохода, который инвестор предполагает получить в будущем, При принятии таких решений весьма важную, если не решающую, роль играет фактор времени. В связи с этим возникает задача учета разнесенных во времени расходов и доходов. Для ее решения необходимо верное понимание стоимости денег во времени (time value of money) и метода дисконтирования денежных потоков (cash flow).

    Концепцию стоимости денег во времени можно сформулировать следующим образом: деньги сегодня стоят больше чем такая же сумма, которую мы получим в будущем. Данный факт обусловлен следующими обстоятельствами.

    1. Сегодняшние деньги можно инвестировать и получить дополнительные деньги в виде процентов.

    2. Покупательная способность денег со временем может упасть из-за инфляции.

    3. В получении денег в будущем нельзя быть до конца уверенным.

    Таким образом, для принятия финансовых решений эффективных во времени, необходимо использование соответствующих методов, позволяющих учитывать временной аспект стоимости денег.

    Преобразования элементов денежного потока осуществляются путем применения операций накопления и дисконтирования. Накопление – процесс определения будущей стоимости денег. Дисконтирование – процесс приведения денег к их текущей стоимости. В первом случае движутся от «настоящего» к будущему, во втором — наоборот, от будущего к настоящему. В обоих случаях с помощью схемы сложных процентов удается получить оценку денежного потока с позиции будущего или «настоящего».

    Будущая стоимость денег FV (future value), представляет собой будущую стоимость суммы средств, которой располагает инвестор в настоящий момент, исходя из предполагаемой ставки дохода, срока накопления и периодичности начисления процентов. Оценка будущей стоимости денег связана с процессом накопления, который представляет собой постепенное увеличение первоначальной стоимости путем присоединения к ней дохода, рассчитанного с учетом нормы доходности.

    Текущая стоимость (present value) денежных средств PV в инвестиционных расчетах рассматривается как текущая стоимость будущих денежных поступлений. Взаимосвязь текущей и будущей стоимости денег определяется соотношением:

    г

    де PV – текущая стоимость денег,

    FV – будущая стоимость денег,

    n – число периодов начисления процентов,

    i – процентная ставка.

    Приведенные формулы входят в число базовых в финансовых вычислениях, поэтому для удобства пользования значения множителей FM1(i,n)= (1+i)n и FM2(i,n)=1/(1+i)n табулированы для различных значений iи п (эту и другие финансовые таблицы, упоминаемые в данном разделе, можно найти в литературе по финансовому менеджменту и анализу).

    Множитель РМ1(i,п) называется мультиплицирующим множителем для единичного платежа, а его экономический смысл состоит в следующем: он показывает, чему будет равна стоимость одной денежной единицы (один рубль, один доллар и т. п.) через п периодов при заданной процентной ставке i. Подчеркнем, что при пользовании финансовыми таблицами необходимо следить за соответствием длины периода и процентной ставки. Так, если базисным периодом начисления процентов является квартал, то в расчетах должна использоваться квартальная ставка.

    Множитель РМ2(i,п) называется дисконтирующим множителем для единичного платежа, а его экономический смысл заключается в следующем: он показывает «сегодняшнюю» цену одной денежной единицы будущего, т. е. чему с позиции текущего момента равна стоимость одной денежной единицы (например, один рубль), которая будет получена или уплачена через п периодов от момента расчета, при заданных процентной ставке (доходности) i. Термин «сегодняшняя стоимость» не следует понимать буквально, поскольку дисконтирование может быть выполнено на любой момент времени, не обязательно совпадающий с текущим моментом.

    Важнейшим параметром, определяющим настоящую и будущую стоимость денег, является процентная ставка. Под процентной ставкой понимается отношение величины дохода за фиксированный отрезок времени к сумме долга. Интервал времени, к которому приурочена процентная ставка, называется периодом начисления. Чаще всего на практике используют годовые ставки. Однако в качестве периода начисления может использоваться и полугодие, квартал, месяц и даже день. Проценты могут выплачиваться по мере их начисления или присоединяться к сумме основного долга. В последнем случае говорят о капитализации процентов. Процесс увеличения суммы денег во времени в связи с присоединением процентов называют наращением.

    Размер процентной ставки по любому виду кредита или инструмента с фиксированным доходом зависит от целого ряда факторов, наиболее важными из которых являются расчетная денежная единица, срок платежа и риск невыполнения заемщиком условий кредитного соглашения.

    Абсолютную величину дохода от предоставления денег в долг называют процентом (interest). В данном случае процент является абсолютной величиной, выраженной в денежных единицах, а не сотой частью числа.

    Если обозначить за I – процент, i - процентную ставку и P – сумму долга, то взаимосвязь между величинами определяется следующим соотношением:

    i = I / P.

    Простой и сложный процент

    Простой процент – это такой процент при котором его величина начисляется на первоначально вложенную сумму средств. При этом сумма процента, начисленного в предыдущие периоды, не принимается в расчет в процессе последующего наращения.

    В случае сложного процента процент начисляется на постоянно нарастающую базу с учетом процентов, начисленных в предыдущие периоды. Он применяются в тех случаях, когда процент по кредитам (депозитам) выплачивается не сразу, а присоединяется к сумме основного долга. Такая процедура носит название капитализации.

    Величины (1+n*i) и (1+i)n называются коэффициентами (множителями) наращения простых и сложных процентов соответственно.

    Пример. Предположим, что вы положили на банковский счет 1000 руб. (PV) Процентная ставка равна 10% годовых. Необходимо рассчитать сумму, которую вы получите через 5 лет при условии, что не будите изымать проценты.

    Рассчитаем будущую стоимость поэтапно. В конце первого года у вас на счете будет сумма равная

    FV1= 1000* (1+0.1) = 1100 руб.

    Полученная сумма складывается из 1000 рублей, с которых начиналась данная финансовая операция, плюс проценты в размере 100 руб. Будущая стоимость 1000 руб. к концу первого года составила 1100 руб.

    Если вы оставите 1100 руб. еще на один год, то по окончании второго года вы будите иметь сумму

    FV2= 1100* (1+0.1) = 1210 руб.

    Данную сумму можно представить в виде трех составляющих. Исходные деньги – 1000 рублей, проценты за первый год 100 руб. и за второй год – 100 руб. Проценты, начисленные на основную сумму вклада, называются простыми процентами. Третья составляющая равна 10 руб. и представляет проценты, полученные во второй год, которые были начислены на 100 рублей, полученные в виде процентов за первый год. Проценты, начисленные на уже начисленные ранее проценты, называются сложными процентами. Общая сумма процентных начислений 210 руб. состоит из простых процентов (200 руб.) и сложных процентов (10 руб.).

    Продолжая представленную цепочку вычислений, мы можем рассчитать сумму на счете через 5 лет.

    FV5= 1000* (1+0.1)5 = 1610.51 руб.

    Таким образом, будущая стоимость 1000 руб. через пять лет при ставке ссудного процента 10% годовых составляет 1610.51 руб. Общая сумма процентных начислений за пять лет составляет 610.51 руб., из которых 500 руб. являются простыми процентами и 110.51 – сложными.

    Пример. Вам 20 лет и вы решили положить на счет 1000 руб. сроком на 40 лет при ставке 10% годовых. Сколько денег будет на вашем счете, когда вам будет 60 лет, и вы выйдите на пенсию. Сколько из этой суммы составят простые и сложные проценты.

    FV = 1000 * (1+0.1)40 = 45259.26

    Полученная сумма складывается из первоначальной суммы равной 1000 руб., простых процентов 1000*0.1*40 = 4000 руб. и сложных процентов, равных 40259.26 руб.

    Рассмотрим эффект увеличения процентной ставки до 11%.

    FV = 1000 * (1+0.11)40 = 65000.87 руб.

    В данном примере кажущееся незначительным увеличение процентной ставки на 1% привело к получению дополнительной суммы равной 24741.61 руб.

    Наряду с задачами наращения по сложному проценту в практике финансовых вычислений имеют место задачи, требующие наращения по простым процентам. В этом случае проценты начисляются только на основную сумму вклада. К ним относятся задачи определения цены краткосрочных финансовых инструментов, а также долгосрочных инструментов, если проценты не присоединяются к основному долгу, а выплачиваются. Формула для определения будущей стоимости денег для данного случая будет иметь вид:

    FV = PV * (1+n*i).

    В этой формуле мы использовали ранее принятые обозначения.

    Пример. Возвратимся к рассмотренному выше примеру. Вам 20 лет и вы решили положить на счет 1000 руб. сроком на 40 лет при ставке 10% годовых. Сколько денег будет на вашем счете, когда вам будет 60 лет, и вы выйдите на пенсию.

    FV = 1000 * (1+40*0.1) = 1000+4000 = 5000

    Полученная сумма складывается из первоначальной суммы равной 1000 руб. и простых процентов 1000*0.1*40 = 4000 руб.

    Процент может определяться не только при расчетах от настоящего к будущему, но и от будущего к настоящему. В этом случае процент представляет собой скидку с некоторой конечной суммы. Например, в банковской практике учета векселей стоимость векселя является конечной суммой, с которой производится скидка по определенной ставке, называемой учетной. Разница между стоимостью векселя и суммой, которую банк выдает по этому векселю, называется дисконтом.

    Задачи и решения

    1. На депозит на срок два года положены 10000 руб. Какую сумму должен получить вкладчик в конце срока при начислении простых (сложных) процентов по ставке 18% годовых?

    Для случая простых процентов получаем:

    FV = PV *(1+n*i) = 10000*(1+2*0,18) = 13600 руб.

    Для случая сложных процентов:

    FV = PV *(1+ i)n= 10000*(1+*0,18)2= 13924 руб.

    2. Найти период времени в течение которого первоначальная сумма вклада удвоится для случая простой и сложной процентной ставки равной 10%.

    Для случая простой ставки

    FV = 2*PV = PV *(1+n*i),

    2 = *(1+n*0,1),

    n = (2-1)/0,1 =10 лет.

    Для случая сложной ставки

    FV = 2*PV = PV *(1+i)n

    (1+i)n = 2,

    n*Ln(1+0,1) =Ln2,

    n= Ln2/ Ln(1+0,1) = 0,69/0,095 = 7,26 года.

    1. Найти процентную ставку (простую и сложную) при которой первоначальная сумма вклада удвоится за десять лет.

    Для случая простой ставки

    FV = PV *(1+n*i),

    FV = 2*PV = PV *(1+10*i),

    (1+10*i) = 2,

    i = 1/10 = 0,1.

    Для случая сложной ставки

    FV = 2*PV = PV *(1+i)10

    i = 2 1/10 – 1 = 0,072.

    4. На вашем банковском вкладе проценты начисляются на основе «плавающей» ставки, которая изменяется каждый год. Три года назад вы положили на счет 10000 руб., когда процентная ставка была 15%. В прошлом году она упала до 12%, а в этом году установлена на уровне 10%. Какая сумма будет у вас на счете к концу текущего года? Расчеты произвести для случая простых и сложных ставок.

    Для случая простой ставки

    FV = PV *(1+n1*i1 + n2*i2 + n3*i3) = 10000*(1+1*0,15+1*0,12+1*0,1) = 13700 руб.

    Для случая сложных ставок

    FV = PV *(1+ i1)n1 *(1+ i2)n2 *(1+ i3)n3 = 10000* *(1+ 0,15)1*(1+ 0,12)1*(1+ 0,1)1 = 10000* 1,15*1,12*1,1 = 14168 руб.

    5. В банк на срочный сберегательный счет положено 1000 руб. на два года по ставке 9% годовых, с дальнейшей пролонгацией на следующие три года по ставке 6%. Найти наращенную сумму через пять лет при простых и сложных ставках.

    Для случая простой ставки

    FV = PV *(1+n1*i1 + n2*i2) = 1000*(1+2*0,09+3*0,06) = 1360 руб.

    Для случая сложных ставок

    FV = PV *(1+ i1)n1 *(1+ i2)n2 = 1000* *(1+ 0,09)2*(1+ 0,06)3 = 1417 руб.
    Частота начисления сложных процентов

    Процентная ставка задается, как правило, как номинальная годовая процентная ставка – это исходная ставка, которую назначает банк для начисления процентов. Эта ставка может быть также использована для начисления процентов один раз в году. В этом случае, если начисление процента осуществляется чаще, чем 1 раз в год, например, ежеквартально, или ежемесячно, рассчитывается эффективная годовая ставка, которая эквивалентна процентной ставки при условии начисления процентов один раз в год.

    Предположим, что годовая процентная ставка составляет, например 6% в год, при этом проценты начисляются ежемесячно. Это означает, что проценты начисляются на ваш счет каждый месяц в сумме 1/12 от 6%, или 0.5%. Эффективная процентная ставка может быть найдена из выражений

    FV = (1.005)12 = 1.061678

    Iэ = 1.06168-1 = 0.061678 = 6.1678% в год.

    Общая формула для вычисления действующей годовой процентной ставки выглядит следующим образом:

    Iэ = (1+i/m)m – 1,

    I – номинальная годовая ставка, m – число начислений процента в году.

    При увеличении частоты начисления процентов эффективная процентная ставка увеличивается. Если проценты начисляются непрерывно, то эффективная процентная ставка определяется из соотношения

    Iэ = Lim (1+i/m)m – 1 = ei - 1= 2.71828i -1

    m  бесконечности.

    В нашем примере e 0.06 - 1= 6.1836 в год.

    Пример. Номинальная годовая ставка составляет 12% в год. Начисление процентов производится ежеквартально. Найти годовую эффективную ставку

    Iэ = (1+0,12/4)4 – 1 = 12,55%.
    Текущая стоимость денег

    Процедура расчета текущей (приведенной) стоимости денег противоположна вычислению будущей стоимости. С ее помощью мы можем определить, какую сумму необходимо вложить сегодня для того, чтобы получить определенную сумму в будущем.

    Общая формула для вычисления приведенной стоимости 1 руб. через n периодов имеет вид:

    г
    де PV – текущая стоимость денег,

    FV – будущая стоимость денег,

    n – количество временных интервалов,

    i – ставка дисконтирования.

    Пример. Какую сумму необходимо положить на счет, чтобы через пять лет получить 1000 руб. (i=10%)

    PV = 1000 / (1+0.1)^5 = 620.92 руб.

    Таким образом, для расчета текущей стоимости денег мы должны известную их будущую стоимость поделить на величину (1+i)n . Текущая стоимость находится в обратной зависимости от величины ставки дисконтирования. Например, текущая стоимость денежной единицы, получаемой через 1 год при ставке 8% составляет

    PV = 1/(1+0,08)1 = 0,93,

    А при ставке 10%

    PV = 1/(1+0,1)1 = 0,91.

    Текущая стоимость денег находится также в обратной зависимости от числа временных периодов до их получения.

    Рассмотренная процедура дисконтирования денежных потоков может быть использована при принятии решений об инвестировании. Наиболее общее правило принятия решений – правило определения чистой приведенной стоимости (NPV). Суть его состоит в том, что участие в инвестиционном проекте целесообразно в том случае, если приведенная стоимость будущих денежных поступлений от его реализации превышает первоначальные инвестиции.

    Пример. Имеется возможность купить сберегательную облигацию номиналом 1000 руб. и сроком погашения 5 лет за 750 руб. Другим альтернативным вариантом инвестирования является размещение денег на банковском счету с процентной ставкой 8% годовых. Необходимо оценить целесообразность инвестирования средств в приобретение облигации.

    Для расчета NPV в качестве процентной ставки или в более широком смысле ставки доходности, необходимо использовать альтернативную стоимость капитала. Альтернативная стоимость капитала – это та ставка доходности, которую можно получить от других направлений инвестирования. В нашем примере альтернативным видом инвестирования является помещение денег на депозит с доходностью 8%.

    Сберегательная облигация обеспечивает денежные поступления в размере 1000 руб. через 5 лет. Текущая стоимость этих денег равна

    PV = 1000/1.08^5 = 680.58 руб.

    Таким образом, текущая стоимость облигации составляет 680.58 руб., в то время как купить ее предлагают за 750 руб. Чистая текущая стоимость инвестиций составит 680.58-750=-69.42, и инвестировать средства в приобретение облигации нецелесообразна.

    Экономический смысл показателя NPV состоит в том, что он определяет изменение финансового состояния инвестора в результате реализации проекта. В данном примере в случае приобретения облигации богатство инвестора уменьшится на 69.42 руб.

    Показатель NPV может быть также использован для оценки различных вариантов заимствования денежных средств. Например, вам нужно взять в долг 5000 дол. для приобретения автомобиля. В банке вам предлагают заем под 12 % годовых. Ваш друг может одолжить 5000 дол., если вы отдадите ему 9000 дол. через 4 года. Необходимо определить оптимальный вариант заимствования. Рассчитаем текущую стоимость 9000 дол.

    PV = 9000/(1+0.12)^4 = 5719.66 дол.

    Таким образом, NPV данного проекта составляет 5000-5719.66= -719.66 дол. В данном случае лучшим вариантом заимствования является банковский кредит.

    Для расчета эффективности инвестиционных проектов можно использовать также показатель внутренней нормы доходности (internal rate of return) IRR. Внутренняя ставка доходности – это такое значение дисконтной ставки, которое уравнивает приведенную стоимость будущих поступлений и приведенную стоимость затрат. Другими словами, IRR равна процентной ставки, при которой NPV = 0.

    В рассмотренном примере приобретения облигации IRR вычисляется из следующего уравнения

    750 = 1000/(1+IRR)^5

    IRR = 5.92%. Таким образом, доходность облигации при ее погашении составляет 5.92% в год, что существенно меньше доходности банковского депозита.
    Оценка денежных потоков

    При принятии большинства финансовых решений приходится иметь дело с множественными денежными потоками, т.е. с денежными выплатами или поступлениями, имеющими место в течение ряда временных интервалов. В качестве примера можно рассмотреть приобретение облигации по которой ожидаются периодические процентные платежи, формирование накопительной части пенсии путем периодических отчислений работодателя и работника.

    Элементы потока С могут быть либо независимыми, либо связанными между собой определенным алгоритмом. Временные периоды чаще всего предполагаются равными. Также считается, что генерируемые в рамках одного временного периода поступления имеют место либо в его начале, либо в его конце, т. е. они не распределены внутри периода, а сконцентрированы на одной из его границ. В большинстве случаев денежные поступления считаются привязанными к концу временного интервала.

    Оценка денежного потока может выполняться в рамках решения двух задач: (а) прямой, т. е. проводится оценка с позиции будущего (реализуется схема накопления); (б) обратной, т. е. проводится оценка с позиции настоящего (реализуется схема дисконтирования).

    Прямая задача предполагает суммарную оценку наращенного денежного потока, т. е. в ее основе лежит будущая стоимость. В частности, если денежный поток представляет собой регулярные начисления процентов на вложенный капитал (Р) по схеме сложных процентов, то в основе суммарной оценки накопленного денежного потока лежит следующая формула.

    FV = Ck * (1+i)k

    П
    ример. Вы каждый год кладете 1000 руб. на счет, по которому выплачивается 10% годовых, начиная с момента вклада. Сколько денег будет у вас на счете через два года, если вы не будете изымать проценты. К концу первого года исходная сумма 1000 руб. возрастет до величины


    FV1 = 1000* (1+0,1)1 = 1100 руб.

    В начале второго года к этой сумме будет добавлена еще 1000 руб. и на счете будет 2100 руб. К концу второго года эта сумма возрастет до величины

    FV2 = 2100* (1+0,1)1 = 2310 руб.

    Обратная задача предполагает суммарную оценку дисконтированного (приведенного) денежного потока. Поскольку отдельные элементы денежного потока генерируются в различные временные интервалы, а деньги имеют временную ценность, непосредственное их суммирование невозможно. Приведение элементов денежного потока к одному моменту времени осуществляется с помощью следующей формулы

    PV = Ck / (1+i)k

    В качестве примера задачи данного вида можно рассмотреть определение текущей стоимости облигации, которая будет погашена через два года с номинальной стоимостью 1000 руб. и купонной ставкой 10%. По данной облигации предполагаются купонные выплаты в размере 100 руб. в конце первого и второго года. Кроме этого в конце второго года выплачивается номинальная стоимость облигации. С учетом этого текущая стоимость денежного потока будет равна

    PV = 100 / (1+0,1)1 + 100 / (1+0,1)2. + 1000 / (1+0,1)2 = 8438,01 руб.
    Аннуитет

    Одним из ключевых понятий в финансовых расчетах является понятие аннуитета. Логика, заложенная в схему аннуитетных платежей, широко используется при оценке долговых и долевых ценных бумаг, в анализе инвестиционных проектов, а также в анализе аренды.

    Аннуитет представляет собой частный случай денежного потока. Известны два подхода к его определению. Согласно первому подходу аннуитет представляет собой однонаправленный денежный поток, элементы которого имеют место через равные временные интервалы. Второй подход накладывает дополнительное ограничение, а именно: элементы денежного потока одинаковы по величине. В дальнейшем изложении материала мы будем придерживаться именно второго подхода. Если число равных временных интервалов ограничено, аннуитет называется срочным. В этом случае:

    С1= Сз= ... = Сп= А.

    Для оценки будущей и приведенной стоимости аннуитета можно пользоваться вышеприведенными формулами, вместе с тем благодаря специфике аннуитетов в отношении равенства денежных поступлений они могут быть существенно упрощены.

    Формула для расчета текущей стоимости аннуитета имеет вид

    PVA = A/(1+i)+A/(1+i)2 A/(1+i)3+…+A/(1+i)n.

    Введем следующие обозначения

    B=A/(1+i),

    C=1/(1+i).

    В результате получим

    PVA=B*(1+C+C2+C3+… +Cn-1) *

    Умножая левую и правую части уравнения на величину C

    PVA*С = B*(C+C2+C3+… +Cn) **

    Вычитая уравнение ** из * получим

    PVA*(1-С) = B*(1-Cn).

    Или

    PVA*[1-1/(1+i)] = A/(1+i)*[1-1/(1+i)n)].

    Умножение обеих частей уравнения на величину (1+i) дает

    PVA*i = A*[1-1/(1+i)n)]

    Или

    PVA = A*[1/i-1/(i*(1+i)n)].

    Аналогичным образом может быть получено выражение для расчета будущей стоимости аннуитета.

    FVA = A+A*(1+i)2 A*(1+i)3+…+A*(1+i)n-1.

    Введем обозначения B=A*(1+i)/ и получим

    FVA = A*(1+B +B2 B3+…+Bn-1).

    Умножим обе части уравнения на величину B.

    FVA*B = A*(B +B2 B3+…+Bn).

    Вычитая данное уравнение из предыдущего получим,

    FVA*(1-B) = A*(1-Bn).

    Или

    FVA = A/i*[(1+i)n-1].

    По аналогии с функциями FM1(i,n)= (1+i)n и FM2(i,n)=1/(1+i)n функции FM3(i,n)= 1/i*[(1+i)n-1] FM4(i,n)=[1/i-1/(i*(1+i)n)] и табулированы для различных значений iи п. Экономический смысл FМЗ(i,п), называемого мультиплицирующим множителем для аннуитета, заключается в следующем: он показывает, чему будет равна суммарная величина срочного аннуитета в одну денежную единицу (например, один рубль) к концу срока его действия. Предполагается, что производится лишь начисление денежных сумм, а их изъятие может быть сделано по окончании срока действия аннуитета. Множитель FМ4(i,п) показывает текущую стоимость аннуитета в одну денежную единицу при заданных значениях i и n.

    При выполнении некоторых инвестиционных расчетов используется техника оценки бессрочного аннуитета. Аннуитет называется бессрочным, если денежные поступления продолжаются достаточно длительное время (в западной практике к бессрочным относятся аннуитеты, рассчитанные на 50 и более лет).

    В этом случае прямая задача смысла не имеет. Что касается обратной задачи, то ее решение может быть получено на основе формулы

    PVA = A*[1/i-1/(i*(1+i)n)]

    при n стремящейся к бесконечности.

    PVA = A/i

    Приведенная формула используется для оценки целесообразности приобретения бессрочного аннуитета. В этом случае известен размер годовых поступлений; в качестве коэффициента дисконтирования iобычно принимается гарантированная процентная ставка (например процент, предлагаемый государственным банком).
    Амортизация кредитов

    Многие займы, такие как кредиты на покупку дома и покупку машины, выплачиваются равномерными периодическими платежами. Каждый из них состоит из двух частей: процентов на остаток долга и части его основной суммы. После каждой выплаты оставшаяся сумма долга уменьшается на уже выплаченную величину. Следовательно, в следующих платежах та часть, которая содержит в себе начисленные проценты, меньше, чем проценты за предыдущий период, а часть, приходящаяся на выплату основной суммы займа, больше, чем в предыдущем периоде.

    Допустим, вы берете кредит в 100000 долл. на покупку дома под 9% годовых на условиях выплаты всей суммы с процентами тремя ежегодными платежами. Сначала мы рассчитываем годовой платеж, для чего находим A, PVAкоторого составляет 100000 долл. при условии уплаты 9% годовых на протяжении трех лет:

    PVA = A*[1/i-1/(i*(1+i)n)].

    A = PVA/[1/i-1/(i*(1+i)n)].

    A = 100000/[1/0.09-1/(0.09*(1+0.09)3)].

    Таким образом, годовой платеж составляет 39505,48 долл. Далее необходимо определить, какую часть от 39505,48 долл. в первый год составят проценты и сколько придется на долю основного платежа? Поскольку процентная ставка равна 9% годовых, часть, приходящаяся на проценты в первый год, должна быть 0,09 х 100000, или 9000 долл. Остаток от 39504,48 долл., или 30505,48 долл. — сумма платежа от основной суммы в 100000 долл. Таким образом, после первого платежа остаток долга по займу составляет 100000 долл. - 30505,48 долл., или 69 494,52 долл. Процесс постепенной регулярной выплаты займа на протяжении всего его периода называется амортизацией займа.

    Далее рассчитаем платежи во второй год. Процентные платежи во второй год составят 0.09 х 69 494,52 долл., или 6254,51 долл. Остаток от 39504,48 долл. после расчета процентов составит 33250,97 долл. — это выплата основной суммы. Остаток после второй выплаты, следовательно, равен 69494,52 долл. - 33250,97 долл., или 36243,54 долл.

    Третий и последний платеж покрывает как проценты, так и основную сумму 36243,54 долл. (т.е. 1,09 х 36243,55 долл. = 39504,47 долл.). Рассмотренный график погашения трехгодичного займа представлен в таблице.

    Год

    Начальный долг

    Общий платеж

    Выплаченные проценты

    Выплаченная основная сумма

    Остаток долга

    1

    100000

    39505

    9000

    30505

    69495

    2

    69495

    39505

    6255

    33251

    36244

    3

    36244

    39505

    3262

    36244

    0

    Итого

    0

    118515

    18515

    100000





    Анализ представленных данных показывает, что с каждой последующей выплатой 39504,48 долл. часть, приходящаяся на проценты, уменьшается, а часть основной суммы, предназначенной для выплаты основной суммы займа, увеличивается.
    Влияние инфляции

    Инфляция оказывает существенной влияние на принятие финансовых решений. Рассмотрим в качестве примера сбережения на старость. В возрасте 20 лет вы отложили 100 долл. и инвестировали их из расчета 8% годовых. Расчеты показывают, что ваши вложенные 100 долл. к тому времени, когда вам исполнится 65 лет, вырастут до 3192 долл. При этом необходимо учитывать, что реальная покупательская способность денег за 45 лет существенно снизится. Вещи, которые вы покупаете сегодня, к тому времени будут стоить гораздо больше. Например, если цены на все товары и услуги, которые вы хотите купить, будут подниматься на 8% в год на протяжении последующих 45 лет, на ваши 3192 долл. вы сможете купить не больше, чем на 100 долл. сегодня.

    Таким образом, для того, чтобы принимать действительно разумные решения о долгосрочных инвестициях, необходимо учитывать как процентную ставку, так и уровень инфляции. Для этого необходимо различать номинальную и реальную процентную ставку. Номинальная процентная ставка – это ставка, выраженная в той или иной валюте без поправок на инфляцию, а реальная процентная ставка корректирует номинальную на уровень инфляции.

    Общая формула, связывающая реальную процентную ставку с номинальной процентной ставкой и уровнем инфляции, выглядит следующим образом:

    1 + Номинальная процентная ставка = (1 + Реальная процентная ставка )*(

    1 + Уровень инфляции)

    или, соответственно

    Реальная процентная ставка = (Номинальная процентная ставка -Уровень инфляции)/(1 + Уровень инфляции).

    Пример. Номинальная процентная ставка по кредитам в 2005 году составляла 19%, а уровень инфляции – 11%. Найти реальную стоимость кредитных ресурсов, т.е. реальную процентную ставку.

    ir = (in - π)/(1+π) = (0,19 - 0,11)/(1+0,11) = 0,08/1,11 = 0,072 = 7,2%.

    При низких уровнях инфляции используют упрощенную формулу

    Реальная процентная ставка = Номинальная процентная ставка -Уровень инфляции.

    При использовании данной упрощенной формулы в предыдущей задаче стоимость заемных ресурсов составит 8%, что дает ошибку порядка 11%. Упрощенную формулу рекомендуется использовать при низких уровнях инфляции – порядка нескольких процентов.

    Пример. Номинальная процентная ставка по кредитам составляет 8%, а уровень инфляции – 3%. Найти реальную стоимость кредитных ресурсов, т.е. реальную процентную ставку. При использовании точной и упрощенной формулы получаем:

    ir = (in - π)/(1+π) = (0,08 - 0,03)/(1+0,03) = 0,05/1,03 = 0,0485 = 4,85%.

    ir = (in - π) = 0,05 = 5,0%

    Ошибка в данном случае составляет примерно 1%, что является приемлемым в задачах такого типа.

    С точки зрения финансового планирования знание реальной процентной ставки дает большое преимущество, так как она отражает реальную стоимость кредитов или реальную покупательную способность сбережений. Вернемся к рассмотренному выше примеру, в котором вы в возрасте 20 лет положили на счет 100 долл. с тем, чтобы снять их со счета не раньше, чем вам исполнится 65 лет. Необходимо рассчитать реальную покупательную способность ваших сбережений.

    Существует два подхода к решению этой задачи. Первый заключается в расчете будущей стоимости 100 долл. с использованием реальной процентной ставки, которая в данном примере составляет в размере (8%-5%)/1.05 = 2,857% годовых на протяжении 45 лет.

    Реальная будущая стоимость = 100 долл. х 1,0285745 = 355 долл.

    Второй подход предполагает следующую последовательность действий. На первом этапе мы рассчитываем номинальную будущую стоимость, используя номинальную процентную ставку 8% годовых:

    Номинальная FVчерез 45 лет = 100 долл. x 0845 = 3192 долл.

    На втором этапе рассчитывается индекс роста цен за 45 лет, при уровне инфляции равным 5% в год:

    Индекс роста цен за 45 лет = 1,0545 = 8,985

    На третьем этапе мы делим номинальную будущую стоимость денег на индекс роста цен и тем самым находим реальную стоимость сбережений: 3192/8.985 = $355.
    1   2   3   4   5   6   7   8   9   ...   17


    написать администратору сайта