Главная страница

ЕН.Р.1 Фин вычисления. Учебнометодический комплекс дисциплины Финансовые вычисления 080109. 65 Бухгалтерский учет, анализ и аудит Форма подготовки (заочная)


Скачать 1.86 Mb.
НазваниеУчебнометодический комплекс дисциплины Финансовые вычисления 080109. 65 Бухгалтерский учет, анализ и аудит Форма подготовки (заочная)
Дата13.09.2022
Размер1.86 Mb.
Формат файлаdoc
Имя файлаЕН.Р.1 Фин вычисления.doc
ТипУчебно-методический комплекс
#675305
страница9 из 17
1   ...   5   6   7   8   9   10   11   12   ...   17
Оптимизация портфеля, состоящего из двух ценных бумаг

Как было показано ранее доходность и среднеквадратичное отклонение портфеля, состоящего из двух активов определяется следующими соотношениями:

Rp = R1*W1+R2*W2

= ( 2*Wх2 + 2*Wу2 +2*Wх* Wу* * *CRxy)1/2

Рассмотрим задачу определение структуры портфеля, обеспечивающего минимальный уровень риска. Обозначим за W – доля актива Х в портфеле, тогда (1- W) будет доля актива У. С учетом этого выражение для стандартного отклонения портфеля будет иметь вид:

= ( 2* W 2 + 2*(1- W)2 +2* W * (1- W)* * *CRxy)1/2

При заданных значениях и CRxy величина стандартного отклонения портфеля является функцией W. Необходимым условием экстремума функции является равенство нулю ее первой производной. Продифференцируем данную функция по переменной W и приравняем первую производную к нулю:

( 2* 2* W – 2* 2*(1- W) +2* (1-2 W)* * *CRxy)1/2) =0

2*( 2* W 2 + 2*(1- W)2 +2* W * (1- W)* * *CRxy)1/2

Из данного выражения получаем

W = ( 2 - * *CRxy)/( 2+ 2- 2 * *CRxy)

Полученное выражение позволяет определить удельный вес активов в портфеле, обеспечивающий минимальный риск.

Рассмотрим ряд частных случаев.

  1. Между активами имеет место наибольшая отрицательная ковариация, т.е CRxy = -1.

Выражение для удельного веса актива Х в этом случае будет иметь вид

W = ( 2 + * )/( 2+ 2+ 2 * ) = /( + )

1- W = /( + )

Для нахождения среднеквадратичного отклонения портфеля необходимо подставить полученные выражения для удельных весов активов в исходное выражение для

= ( 2*Wх2 + 2*Wу2 +2*Wх* Wу* * *CRxy)1/2

= ( 2*[ /( + )]2 + 2*[ /( + )]2-2*[ /( + )]* [ /( + )]* * )1/2 = 0.

Таким образом, при абсолютной отрицательной ковариации между активами можно определить такие их удельные веса, что риск портфеля будет равен нулю.

2. Рассмотрим далее случай ковариации активов равной нулю, т.е. CRxy = -0. Подставляя в выражение

W = ( 2 - * *CRxy)/( 2+ 2- 2 * *CRxy)

CRxy = -0, Получим

W = ( 2 )/( 2+ 2)

1- W = ( 2 )/( 2+ 2)

Риск портфеля в этом случае будет равен

= */( 2+ 2)1/2

  1. Третий случай будет соответствовать абсолютной положительной ковариации активов Х и У. Подставим в выражение

W = ( 2 - * *CRxy)/( 2+ 2- 2 * *CRxy)

CRxy = 1, Получим

W = /( - )

1- W = - /( - )

Минимальный риск портфеля в этом случае достигается при отрицательном удельном весе одного из активов в портфеле.

Пример. Рассмотрим две ценные бумаги Х и У. Их среднемесячная доходность представлена в таблице.




Доходность

Х

5,5

8,1

6,2

3,4

8,5

6,0

7,0

5,0

8,0

9,0

9,5

7,5

У

10

30

20

40

25

10

5

30

10

15

50

20


Средняя доходность активов Х и У будет равна:

Rcx = (5,5+8,1+6,2+3,4+8,5+6,0+7,0+5,0+8,0+9,0+9,5+7,5)/12 = 7,0

Rcу = (10+30+20+40+25+10+5+30+10+15+50+20)/12 = 22,1

Среднеквадратичное отклонение доходности ценных бумаг и коэффициент корреляции равны:

= 1,8, = 13,6, CRxy = 0,026.

Доходность и риск портфеля в зависимости от вариантов его формирования представлены в таблице:

Варианты портфелей ценных бумаг Х и У

Параметры

Варианты формирования портфеля

1

2

3

4

5

6

7

Х

У

Rp



0

100

22,1

13,6

10

90

20,6

12,2

30

70

17,6

9,5

50

50

14,6

6,9

70

30

11,5

4,3

90

10

8,5

2,1

100

0

7,0

1,8
1   ...   5   6   7   8   9   10   11   12   ...   17


написать администратору сайта