Главная страница
Навигация по странице:

  • СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  • Перевод математических текстов, знаков, символов, сокращений на английском языке - Аристова В.М.. Перевод математических текстов, знаков, символов, сокращений на. Учебнопрактическое пособие по чтению и переводу математических текстов, знаков, символов, сокращений на английском языке Калининград 1999


    Скачать 1.02 Mb.
    НазваниеУчебнопрактическое пособие по чтению и переводу математических текстов, знаков, символов, сокращений на английском языке Калининград 1999
    АнкорПеревод математических текстов, знаков, символов, сокращений на английском языке - Аристова В.М..doc
    Дата11.01.2018
    Размер1.02 Mb.
    Формат файлаdoc
    Имя файлаПеревод математических текстов, знаков, символов, сокращений на .doc
    ТипУчебно-практическое пособие
    #13853
    КатегорияЯзыки. Языкознание
    страница6 из 6
    1   2   3   4   5   6

    ÷5=7 is read: thirty five divided by five is 7; five into thirty five goes seven times; 35 divided by 5 equals 7.

    35 is “a dividend” (делимое); 5 is “a divisor” (делитель); 7 is “a quotient” (частное).
    Involution or Raise to power. Возведение в степень.

    32, 53 are read: three to the second power or 3 squared; five cubed or 5 to the third power (to power three).

    x2 – x is called the “base of the power”; 2 is called “an exponent or index of the power”.
    Evolution. Извлечение из корня.

    9 =3 is read: the square root of nine is three.

    327 = 3 is read: the cube root of twenty seven is three.

     is called “the radical sign” or “the sign of the root”.

    to extract the root of … – извлекать корень из…
    Fractions. Дроби.

    Common fractions. Простые дроби.

    Common (simple, vulgar) fractions nowadays more often than not are written on one line: 1/2, 5 3/5, 4/7, 1/3 in printing. But there are printed works where traditional writing is used: , , 3 etc.

    Common fractions are read in the same way as we, Russians do, i. e.: the numerator is read as a cardinal number and the denominator as an ordinal number. If the numerator is greater than one the nominator takes the plural ending -s: 3/7 – three sevenths, 5/8 – five eighths etc.

    In mixed numbers the integer is read as a cardinal number and fraction must be added with “and”. E. g.: 3 2/5: three and two fifths; 10 2/7: ten and two sevenths.

    The reading of small fractions is often simplified: 1/2 is read a half, one half, 1/3 – a third, 1/4 – a quarter; instead of: one the second, one the third, one the fourth.

    Decimal fractions. Десятичные дроби.

    In decimal fractions the point (.) is used after the whole number in distinction from Russian, where comma (,) is used and where this sign is not read. But in Russian we must always say – десятых, сотых, тысячных и т. д., in English it is suffice to write (.) and to say “point”: 0.5 – nought [n]:t] or O [ou] point five or.5 – point five; 1.3 – one point three; 10.35 – ten point three five; 5.253 – five point two five three; 0.001 – point OO one, or point nought nought one; point two noughts one; point two Oes one.

    After the point (.) all numbers are read separately.

    Nought, O may often be omitted but the point (.) is never omitted because it shows that the number is a decimal fraction. In the USA “O” is preffered to be read as “zero”.

    The point (.) may be written in the upper, middle or down part of the decimal fraction: 2.5; 2·5; 2˙5.

    Ratio. Отношение.

    a: b is read: the ratio of a to b; 10: 5 is read: the ratio of ten to five;

    4: 2 = 2: the ratio of four to two is two.

    =: the ratio of twenty to five equals the ratio of sixteen to four; twenty is to five as sixteen is to four.

    Proportion. Пропорция.

    In proportion we have two equal ratios. The equality is expressed by the sign:: which may be substituted by the international sign of equality =.

    a: b:: c: d or a: b = c: d – is read: a is to b as c is to d;

    2: 3:: 4: 6 or 2: 3 = 4: 6 – is read: two is to three as four is to six.

    The extreme terms of proportion are called “extremes”, the mean terms are called “means”. The proportion can vary directly (изменяться прямо пропорционально) and it can vary inversely (изменяться обратно пропорционально):

    x (y: x varies directly as y; x is directly proportional to y;

    x = k/y: x varies inversely as y; x is inversely proportional to y.
    Equations and Identities. Уравненияитождества.

    There are different kinds of equations. In general the equation is an equality with one or several unknown variable(s). The reading of equations is the same as in Russian:

    30 + 15 + x2 + x3 = 90 – is read: thirty plus fifteen plus x squared plus x cubed is equal to ninety.

    2 + b + 6 + b4 = 160 – is read: two plus b plus the sqare root of six plus b to the fourth power is equal one hundred and sixty.

    The identity is an equality, valid at all admissable values of its variables.

    The identities are read:

    a + b = b + a – a plus b equals b plus a;

    sin2x + cos2x = 1 – sine squared x plus cosine squared x is equal to one.
    Arithmetical and Geometrical Progressions.

    Арифметическая и геометрическая прогрессии.

    An arithmetical progression is a sequence such as 3, 5, 7, 9 …, in which each member differs from the one in front of it by the same amount.

    A geometrical progression is a sequence such as 3, 6, 12, 24 …, in which each member differs from the one in the same ratio. “The number of families holidaying abroad grew now in geometrical progression”.

    Mathematicians more often use now the expressions arithmetic sequence and geometric sequence.
    Reading formulae. Чтение формул.

    a (b = c

    a divided by b is equal to c

    2 (2 = 4

    twice two is four

    c (d = b

    c multiplied by d equals b

    dx

    differential of x

    =

    a plus b over a minus b is equal to c plus d over c minus d

    ya-b · xb-c = 0

    y sub a minus b multiplied by x sub b minus c is equal to zero

    +[1 + b(s)]y = 0

    the second derivative of y with respect to s plus y times open bracket one plus b of s in parentheses, close bracket is equal to zero

     (x) dx

    the integral of (x) with respect to x

    b

     (x) dx

    a

    the definite integral of (x)with respect to x from a to b (between limits a and b)

    c(s)= Kab

    c of s is equal to K sub ab

    xa-b = c

    x sub a minus b is equal to c

    a (b

    a varies directly as b

    a: b:: c: d;

    a: b = c: d

    a is to b as (equals) c is to d

    x (6 = 42

    x times six is forty two; x multiplied by six is forty two

    10 (2 = 5

    ten divided by two is equal to five; ten over two is five

    = b

    a squared over c equals b

    a5 = c

    a raised to the fifth power is c; a to the fifth degree is equal to c

    = c

    a plus b over a minus b is equal to c

    a3 = logcb

    a cubed is equal to the logarithm of b to the base c

    logab = c

    the logarithm of b to the base a is equal to c

    xa-b = c

    x sub a minus b is equal to c

    = 0

    the second partial derivative of u with respect to t equals zero

    c: d = e: l

    c is to d as e is to l

    15: 3 = 45: 9

    fifteen is to three as forty five is to nine; the ratio of fifteen to three is equal to the ratio of forty five to nine

    p Т

    p is approximately equal to the sum of x sub i delta x sub i and it changes from zero to n minus one

    a2+b2 - a2+b12 #b - b1

    the square root of a squared plus b squared minus the square root of a squared plus b sub one squared by absolute value is less or equal to b minus b sub one by absolute value (by modulus)

    lim azn

    azn #

    n

    a to the power z sub n is less or equal to the limit a to the power z sub n where n tends (approaches) the infinity

    aj; j = 1,2 … n


    The sum of n terms a sub j, where j runs from 1 to n

    481 = 3

    The fourth root of 81 is equal to three

    c (d

    c varies directly as d

    sin (= a

    Sine angle (is equal to a



    Integral of dx divided by (over) the square root out of a square minus x square



    d over dx of the integral from x sub 0 to x of capital xdx

    Addenda. Приложение.

    Latin / Greek singular and plural forms of some mathematical terms.

    Латинские / греческие формы единственного и множественного числа

    некоторых математических терминов.

    ед. ч.

    sing.

    мн. ч.

    plur.







    - is

    [ws]

    - es

    [w:z]

    axis - axes

    analysis - analyses

    hypothesis - hypotheses

    parenthesis - parentheses

    thesis - theses

    basis - bases

    ось - оси

    анализ - анализы

    гипотеза - гипотезы

    скобка-скобки

    тезис, диссертация - тезисы, диссертации

    база, основание - базы, основания,

    - a

    [c]

    - ae

    [aw]

    formula - formulae

    lamina - laminae

    формула - формулы

    тонкая пластинка - тонкие пластинки

    - us

    [cs]

    - i

    [aw]

    syllabus - syllabi

    locus - loci [lousaw]

    nucleus - nuclei

    radius - radii

    focus - foci

    modulus - moduli

    genius - genii; geniuses

    stimulus - stimuli

    программа - программы

    геом.: место точек, траектория - траектории

    ядро - ядра

    радиус - радиусы

    фокус - фокусы

    модуль - модули

    гений - гении; демон - демоны

    стимул - стимулы

    - on

    [n]

    - a

    [c]

    criterion - criteria

    phenomenon - phenomena

    polyhedron - polyhedra

    критерий - критерии

    явление - явления

    многогранник - многогранники

    -um

    [m]

    - a

    [c]

    datum - data

    momentum - momenta

    quantum - quanta

    maximum - maxima

    minimum - minima

    erratum - errata

    symposium - symposia

    spectrum - spectra

    medium - media

    corrigendum - corrigenda

    данное - данные

    момент - моменты

    квант - кванты

    максимум - максимумы

    минимум - минимумы

    ошибка - ошибки

    симпозиум - симпозиумы

    спектр - спектры

    середина - середины

    опечатка, поправка - опечатки, поправки

    - х

    [ks]

    - ces

    [sw:z]

    matrix - matrices

    radix - radices

    vertex - vertices

    index - indeces

    appendix - appendices

    helix - helices

    матрица - матрицы

    основание, корень - корни

    вершина - вершины

    показатель - показатели

    приложение - приложения

    спираль - спирали

    Reading Proper Names. Чтение собственных имен.

    Alexander J. W.

    [Flwg ‘zandc]

    Александер, Джеймс

    1888-1971

    Ampere A. M.

    [ ‘ Fmpec]

    Ампер А.М.

    1775-1836

    Abel N.

    [ewbl], [:bcl]

    Абель Н.

    1802-1829

    Archimedes

    [:kw ‘mwdwz]

    Архимед

    287-212 BC

    Avogadro A.

    [Fvc ‘ga:drou]

    Авогадро А.

    1776-1856

    Aristotle

    [ ‘Frwst]tl]

    Аристотель

    384-322 BC

    Bardeen J.

    [b: ‘dw:n]

    Бардин, Джон

    1908-

    Bessel F.T.

    [‘ bescl]

    Бессель, Фридрих

    1784-1846

    Bolyai J.

    [b]lew]

    Бойаи (Больяй) Янош

    1802-1860

    Berkley J.

    [b:klw]

    Беркли Дж.

    1685-1753

    Bernoulli J.

    [bc:nu:lw]

    Бернулли Я.

    1654-1705

    Brewster, Sir David

    [bru:stc]

    Брустер, сэр Дэвид

    1781-1868

    Cauchy A.L.

    [k]:•w]

    Коши, Огюстен

    1789-1857

    Clifford W.S.

    [‘klwfcd]

    Клиффорд, Уильям

    1845-1879

    Copernicus N.

    [kou ‘pc:nwkcs]

    Коперник Н.

    1473-1543

    Coulomb Ch.

    [‘ku:l]:m]

    Кулон, Шарль

    1736-1806

    Crelle A.L.

    [‘krelc]

    Крелль Август

    1780-1855

    Curie M.

    [kju: ‘rw:]

    Кюри, Мария

    1867-1934

    Davy H.

    [dewvw]

    Деви Х.

    1778-1829

    De Broglie L.

    [dc ‘br]wlw]

    Бройль (де Бройль) Л.

    1892-1958

    Dedekind Y.W.

    [‘dedckwnd]

    Дедекинд Юлиус

    1831-1916

    Demokritus

    [dw ‘m]krctcs]

    Демокрит

    .470 BC

    Descartes R.

    [dew ‘k:t]

    Декарт Р.

    1596-1650

    Diophantes

    [daw] ‘fentcs]

    Диофант

    III в.

    Dirac P.

    [dw ‘rFk]

    Дирак П.

    1902

    Dirichlet P.G.

    [dwrwk ‘le]

    Дирихле Петер

    1805-1859

    Einstein A.

    [‘awnstawn]

    Эйнштейн А.

    1879-1955

    Eisenstein F.M.

    [,awzcn ‘stawn]

    Эйзенштейн Ф.

    1823-1852

    Empedocles

    [em ‘pedcklw:z]

    Эмпедокл

    490-430 BC

    Epicurus

    [epw ‘kjucrcs]

    Эпикур

    341-270 BC

    Eudoxus

    [ju: ‘d]kscs]

    Евдокс

    408-355 BC

    Euclid

    [ju:klwd]

    Эвклид, Евклид

    III в. BC

    Euler L.

    [ ‘]wlcr, ]wlc]

    Эйлер Л.

    1707-1783

    Fahrenheit G.

    [‘ fFrcnhawt]

    Фаренгейт М.

    1686-1736

    Faraday M.

    [‘ fFrcdw]

    Фарадей М.

    1791-1867

    Fermat P.

    [,fc ‘m:, ferm:]

    Фермб, Пьер

    1601-1665

    Fermi E.

    [,fc ‘mw:, fermw:]

    Ферми Э.

    1901-1954

    Foucault

    [fu:kou]

    Фуко

    1819-1868

    Fourier J.B.

    [fu ‘rwc:]

    Фурье Ж.Б.

    1768-1830

    Galilei G.

    [‘ gFlwlw]

    Галилей Г.

    1564-1642

    Gauss C.

    [g:us; gFus]

    Гаусс К.

    1777-1855

    Galois E.

    [gclu ‘:]

    Галуа, Эварист

    1811-1832

    Geiger H.

    [gwgc]

    Гейгер Х.

    1882-1945

    Germain

    [Ґer ‘mc:n]

    Жермен Софи

    1776-1831

    Gielbert W.

    [‘ gwlbct]

    Гильберт У.

    1544-1603

    Gцdel K.

    [gc:dcl]

    Гёдель К.

    1906-1978

    Gregory J.

    [‘ gregcrw]

    Грегори Дж.

    1638-1678

    Hamilton W.R.

    [‘ hFmwltcn]

    Гамильтон, Уильям

    1805-1865

    Hilbert D.

    [‘hwlbct]

    Гильберт Д.

    1862-1943

    Heisenberg V.

    [‘hwznbc:g]

    Гейзенберг В.

    1901-1976

    Hippocrates

    [hw ‘p]krctw:z]

    Гиппократ

    V в. BC

    Huygens E.

    [‘ hwgenz]

    Гюйгенс Э.

    1629-1695

    Joule J.

    [®u:l]

    Джоуль Дж.

    1818-1889

    Kelvin W.

    [‘ kelvcn]

    Кельвин, Томсон У.

    1824-1907

    Khayyam Omar

    [kw ‘jam ‘oum:]

    Хайям Омар

    1048-1123

    Lagrange J.L.

    [lc ‘gr:nҐ]

    Лагранж Жозеф

    1736-1813

    Laplace P.S.

    [lc ‘pl:s]

    Лаплас Пьер

    1749-1827

    Legendre A.M.

    [lc ‘Ґ:nr]

    Лежандр Адриен

    1752-1833

    Leibniz G.W.

    [lwbnwz]

    Лейбниц Готфрид

    1646-1716

    Lucretius

    [lu: ‘krw:•cs]

    Лукреций

    I B.C.

    Maclaurin

    [mck ‘l]:rwn]

    Маклорен К.

    1698-1748

    Maxwell J.C.

    [mFkswcl]

    Максвелл Дж.

    1831-1879

    Mercater G.

    [mc ‘kewtc]

    Меркатор Герард

    1512-1594

    Monge G.

    [m]:nҐ]

    Монж Гаспар

    1746-1818

    Napier J.

    [‘ newpwc, nc ‘pwc]

    Непер Дж.

    1550-1617

    Piazzi G.

    [pw ‘:scw]

    Пиацци Джузеппе

    1746-1826

    Picard E.

    [pw ‘k:]

    Пикард Эмиль

    1856-1941

    Plato

    [ ‘plewtou]

    Платон

    428-348 BC

    Poincare J.H.

    [‘ pw:nkare]

    Пуанкаре Ж.А.

    1854-1912

    Ptolemy Claudius

    [‘t]lwmw kl]:djcs]

    Птолемей Клавдий

    -9-160 AD

    Pythagoras

    [paw ‘›Fgcrcs]

    Пифагор

    570-500 AD

    Pythogorean

    [paw,›Fgc ‘rw:cn]

    пифагорийский




    Ramanujan S.

    [rc,mcnc ‘®en]

    Рамганужан Ш.

    1887-1920

    Riemann B.

    [‘ rw:mcn]

    Риман Б.

    1826-1866

    Saccheri Girolamo

    [sc ‘±erw ®wrc ‘lewmou]

    Саккери Джароламо

    1667-1733

    Simpson T.

    [swmpsn]

    Симпсон Т.

    1710-1761

    Socrates

    [s]krctw:z, souk…]

    Сократ

    470-399 BC

    Syracuse

    [‘ sawcrckju:z]

    Сиракузы




    Taylor B.

    [tewlc]

    Тейлор Б.

    1685-1731

    Torricelli

    [t]rw ‘±elw]

    Торричелли

    1608-1647

    Thales

    [›ewlw:z]

    Фалес Милетский

    624-548 BC

    Wiener N.

    [ww:nc]

    Винер Норберт

    1894-1964

    Weierstrass K.

    [‘ wawcstrcs]

    Вейерштрасс Карл

    1815-1897

    It is interesting to know
    1. Pythagoras of Samoss (570-500 BC) opened a philosophy school where a number was considered as being the «essence» of all things and the Universe – as harmonic system of numbers and their relations with each other.

    Pythagoreans distributed all numbers into classes: even and odd, prime and compound, perfect, friendly, harmonic, triangle, guadratic and pentagonal etc. Figure «one» was assumed to be deity, reason, good, harmony, luck. Figures “1”,”2”,”3”,”4” were taken as fundamental, “5” was the symbol of a happy unit (marriage) because it was the sum of the first even and odd numbers (excluding 1 as the basis of all numbers). “6” was the symbol of soul, as it was the first perfect number and its divisors’ sum (1+2+3) was equal to the number itself. Figure “7” sumbolyzed health and “8” was the symbol of love and friendship.

    Number “36” embodies the whole world that surrounded us, because 36 presented the sum of the first even (2+4+6+8) and the first odd (1+3+5+7) numbers and that these figures constituted the Universe.

    2. Geometry emerged in Egypt where the peasants had to measure land plots, whose borders were washed away by the Nile’s over-flows.

    3. Geometry as a science appeared in Greece after the Egyptian practical notions in geometry had penetrated there. Greek scientists and philosophers such as Thales, Democritus, Pythagoras, Euclid developed geometry into a strict harmonious mathematical theory.

    4. Every proved theorem in geometry serves as an axiom in subsequent proofs.

    5. The word “algebra” originated in Arabian language (aljebr) and it meant – “reunion of broken parts” – воссоздание, воссоединение разрозненных частей.

    6. Omar Khayym, the famous Eastern poet, philosopher, astronomer and mathematician considered algebra to be “the scientific art”.

    Omar Khayym’s mathematical calculations in composing Calendar were taken into account by the French to compile the revolutionary calendar in the late XVIII century.

    7. It was Democritus who was the first to compute infinitesimal quantities.

    8. One metre was chosen as an International standard in measuring linear segment units as a measure almost equal to 1/40,000,000 th part of the terrestrial meridian.

    9. P.Fermat (1601-1665) was a lawer, mathematics being his hobby. But he became famous due to mathematics. He is considered to be the founder of Analitical geometry and Theory of Numbers.

    10. Fermat’s theorem (or Great Theorem), which postulates: “there do not exist three whole numbers x, y, z where the equality xn+yn=zn would be implemented if n  2” has not been proved in its general form up till now.

    11. The formula to define the Sunday when the Ortodox Easter comes according to the Gregorian Calendar was introduced by an outstanding German mathematician Gauss K.F. (1777-1855). His formula works and is valid for the past, present and future.

    12. The greater early painters Raphael, Michelangelo, Leonardo da Vinci based their works on geometric principles.

    13. Sculpture, architecture, painting are all based on using geometric forms and proportions and even in ancient times they were taken into account in determing the proportions of famous buildings: the Parthenon, the Acropolis in Athens, triumphal arches and Gothic cathedrals.

    14. Euclid’s “Elements”, wriiten more than 2000 years ago is still used in Great Britain as a textbook on geometry.

    15. Gödel K. – an Austrian-born (1906-1978) famous USA logician and mathematician presented a page of symbols that purports to be a rigorous proof for the existence of God. This latter is a recasting of the notorious “Ontological Argument” for God’s existence into the language of mathematical logic. He established first the “theorem” – M(x) G(x) (N (y) G (y) – which says that, if God’s existence is possible, then it is necessary, and then argues that God’s existence is indeed possible. Therefore, necessarily, God exists.

    16. Rene Decartes, the famous mathematician (1596-1650) did not accept imaginary numbers and it was not surprising that he flatly rejected them in his mathematical investigations.

    17. Galileo once remarked, that the great book of nature is written in the language of mathematics.

    18. The first Russian woman-mathematician S.Kovalevskaya became famous not in Russia but in Göttingen University where she had supported for her Doctoral thesis.

    19. The word “cybernetics” appeared in American English in 1946. This word was coined by the founder of cybernetics Norbert Wiener (1894-1964) from two Greek blends and it meant «наука управления». This word had existed in Plato’s work – Dialogues, but its meaning had been “the art of navigation”.

    20. Almost all terms connected with cybernetics and computing technique in Russian are of English origin because cybernetics was not admitted as science in the Soviet Union during many years and when at last it was recognized all the terms were taken-ready by the Russian language of this branch of science.

    21. The first woman president of the American Economic Association is now in office (1996). Joan Robinson of Cambridge University was acknowledged as one the great 20-th century economists even by her (male) enemies. Brady and Schwartz can be counted as founders of quantitative economic history. But in general famous women in mathematics and economy are rare and it is explained by the fact (in the previous ages and later up till 1960) of the then existing misogyny [maw ‘s]®wnw] in sciences. This trend got the title “Great American Gender Reaction” in the USA.

    22. Professor Garrow (London) said that the modern ideal woman favoured by clothes designers and fashion editors was physiologically underweight.”Models with a BMI of less than 18 are thinner than it is healthy to be”. BMI (Body-Mass-Index) is calculated by measuring weight against height: kilograms divided by metres squared – kg/m2. A woman 5 ft 8 in. tall weighing 11 stone has a BMI of 23.3. Every woman of that height with a weight from just under 9 stone to just over 12 stone would fall within the normal BMI range of 20 to 25. Professor Garrow said: “If your BMI is between 20 and 25 for God’s sake worry about something else, not your weight”.

    23. Hilbert David, a great German mathematician was born in Königsberg in 1862. He was the first to reduce geometry to a series of axioms and to contribute substantially to the establishment of the formalistic foundations of mathematics. Due to these foundations the development of mathematics and logic after Hilbert was different from the previous one. The city of Königsberg in 1930 made Hilbert an honorary citizen. Hilbert is known to be one of the greatest and most versatile mathematicians of his time.

    24. Jules Henri Poincare the prominent French mathematician, astronomer and philosopher of science emphasized the subconscious, while probing the psychology of mathematical discovery and invention. He was a forerunner of the modern intuitionist school and he believed, that sudden illumination, following long subconscious work, was a prelude to mathematical creation.

    25. Norbert Wiener, the founder of cybernetics, wrote that Cholmogorov’s thoughts were the same as his ideas and he knew that Cholmogorov had independently analysed some principal questions in mathematics connected with cybernetics and had been the first to publish the results. Weiner also mentioned many Russian mathematicians in his books with the only aim – to attract attention to his new ideas. But he could not imagine the impression and exitation his ideas had made upon the scientists all over the world!

    26. John Leslie, a professor of philosophy tried to estimate the probabilities of the end of the world, the Apocalypse. His list is rather sobering: Risks already well recognized: 1. Nuclear war. 2. Biological warfare. 3. Chemical warfare. 4. Destruction of the ozone layer. 5. Greenhouse effect. 6. Poisoning by pollution. 7. Disease. Risks often unrecognized – Group First: Natural disasters – 1. Volcanic eruptions. 2. Hits by asteroids and comets. 3. Extreme ice age due to passage through an interstellar cloud. 4.Nearby supernova. 5. Other massive astronomical explosions. 6. Essentially unpredictable breakdown of a complex system. 7. Something-we-know-not-what. Group Two: Manmade disasters: 1. Unwillingness to rear children. 2. Disaster from genetic engineering. 3. Disaster from nanotechnology. 4. Disasters connected with computers. 5. Disaster from some other branch of technology, perhaps just agricultural which had become crucial to human survival. 6. Production of a new big bang in the laboratory. 7. Possible production of an alldestroying phase transition. 8. Annihilation by extraterrestrials. 9. Something-we-know-not-what. Risks from philosophy. These include: threats associated with religions; Schopenhauerian pessimism; negative utilitarianism; and the prisoner’s dilema (The Times Higher, 13.09.1996.).

    27. Benjamin Franklin (1706-1790) an outstanding American politician and scientist was the first to introduce the terms “plus”, “minus”, “positive”, “negative” electricity. He invented devices known as “battery” and “lightening-rod”.

    List of terms and expressions.

    The list given below consists of words and expressions difficult for translating from English into Russian and vice versa.

    Sometimes they are words familiar with commonly used ones (leg – нога; belief – вера; biased – предубежденный; both – оба, etc.) or words with terminological meanings (artificial numbers – логарифмы) or prepositions, adverbs or phraseological units where the students and post-graduates make bad mistakes.


    A one, A1

    первоклассный

    according to

    в соответствии

    adjoining leg

    прилежащий катет

    all the more

    тем более

    all the same

    все равно

    all one

    все равно

    angular minute

    угловая минута

    alternate angles

    накрест лежащие углы

    artificial numbers

    логарифмы

    as if, as though

    как будто, как если бы

    as it were

    как бы; так сказать

    as of (1945)

    по данным на 1945 г.

    as often as not

    нередко

    (in) as much as

    поскольку, ввиду того, что

    as per

    согласно

    as-proved

    в том виде как доказано

    at any rate

    по крайней мере

    at randon

    наугад

    backward difference

    разность назад

    bank of a cut

    граница разрeза

    be of value (importance)

    иметь значение

    bear in mind

    хранить в уме, помнить

    because of

    из-за, вследствие, поскольку

    belief line

    доверительная вероятностть

    be soluble

    являться, быть разрешимой

    beyond

    he is beyond me

    at the far of beyond

    вне, за

    он знает больше меня

    у черта на куличках

    biased estimate

    оценка смещения

    both … and

    как … так и

    break point

    точка излома

    broken brackets

    угловые скобки

    by means of

    посредством, при помощи

    by no means

    никоим образом

    case in hand

    рассматриваемый случай

    in case

    если

    in the case of

    в случае

    in any case

    во всяком случае

    the case is

    дело в том, что

    in no case

    ни в коем случае

    cardinal (number), power

    кардинальное число; мощность множества

    centesimal minute

    минута метрическая (угла)

    close second

    почти первый (в чем-либо)

    computer oriented

    связанный с компьютером

    continuous mapping

    непрерывный оператор

    contracting mapping theorem

    принцип сжимающих отображений

    convert into

    превращать в …

    convex programming

    выпуклое программирование

    coprime numbers

    взаимно, попарно простые числа

    crash problem

    срочная программа

    cusp, caspidal point

    точка возврата

    dashed, dotted line

    пунктирная линия -----,.....

    debug the system

    убрать ошибки из системы (комп.)

    decimal

    a repeating d.

    десятичная дробь

    периодическая дробь

    depend on, upon

    зависеть от

    due

    во-время, должный

    due to

    благодаря (чему-то, кому-то), вследствие

    dwell upon, on

    остановиться (на чем-то), рассказать

    essence

    The very essence

    суть, истина

    истинная суть

    even number

    четное число

    even money

    круглая сумма

    evenly even

    unevenly even

    кратный четырем

    кратный двум, но не кратный четырем

    even so

    даже, если это так

    even though

    даже, если

    ever increasing

    if ever

    hardly ever

    все возрастающий

    если это может быть вообще

    редко, почти никогда, едва ли

    fly off at a tangent

    отойти от главного, от темы

    far cry

    большое расстояние, большая разница

    far from

    далеко не …

    few and far

    мало и редко

    first things first

    сначала главное

    for

    так как

    for all that

    несмотря на это

    for granted

    без доказательства

    for one

    например

    for once

    на этот раз, однажды

    for the sake

    ради (чего-либо)

    gem of arithmetic

    жемчужина математики, «золотая теорема»

    generalities

    общие замечания

    generally recognized

    общепризнанный

    get rid of

    избежать (чего-то), отделаться

    granting, granted

    допустим, что …

    half as high

    в два раза ниже

    half as large / much

    в два раза меньше

    hard

    много, усиленно (что-то делать); трудный, тяжелый

    hardly

    едва; еле-еле; вряд ли

    to have nothing to do

    не иметь ничего общего

    highlight

    основной факт, момент

    if and only if

    тогда и только тогда

    if any, if at all, if ever,

    if so

    если вообще (имеет место)

    если да; если так

    in any case

    во всяком случае

    inasmuch

    поскольку; ввиду того, что

    in order to / for

    для того, чтобы

    in question

    рассматриваемый, исследуемый

    in terms of

    в смысле, при условии, за счет, в каких-то единицах; в понятиях; в плане; в виде; на основе

    know-how

    справочник, опыт, инструкция

    last but one

    предпоследний

    let alone

    не говоря уже о …

    (as) little as

    только, до (перед цифрами)

    likelihood function

    функция (правдоподобная, правдоподобия)

    Möbius band, strip

    лист Мёбиуса

    make sense

    иметь смысл

    make a report

    сделать доклад

    malfunction

    искажать; неисправность

    marginal concept

    решающая концепция

    more often than not

    нередко

    (the) more so

    тем более, что

    moreover

    кроме того, более того

    most directly

    сразу

    most probably

    вероятнее всего

    neither... nor

    ни … ни

    no longer

    больше не …

    nodal singularity, knot

    узел

    not at all

    нисколько, вовсе нет

    non-intersecting sets

    непересекающиеся множества

    n-taple root

    n-кратный корень

    null and void

    недействительный, аннулированный

    a number of

    немного, несколько, некоторые

    the numbers of

    масса, много

    in numbers

    в большом количестве

    “Number “3”, “8”, “13””

    (жарг.) названия наркотиков

    (Smb’s) number is up

    чья-то песенка спета, ему крышка

    Number of the beast

    (библ.) 666 - число зверя

    odd

    нечетный, лишний, добавочный, случайный

    odds

    неравенство, излишки

    on account of

    вследствие, из-за

    on no account

    ни в коем случае

    only

    только

    the only

    единственный

    on the one / other hand

    с одной / другой стороны

    opinions differ

    мнения расходятся; о вкусах не спорят

    other than

    кроме

    owing to

    из-за, в связи с, благодаря

    over the range

    в диапазоне, в пределах

    out of order

    в беспорядке

    pagoda

    запись

    par excellence

    преимущественно

    partial equation

    уравнение в частных производных

    pay attention to

    обратить внимание на …

    place the limit

    установить предел

    place over

    помещать над … (чертой, буквой)

    put forward

    выдвинуть (теорию)

    proceed from

    исходить из

    to

    приступать к

    proceedings

    труды (ученого общества), протоколы,

    записки

    put into practice

    вводить в практику

    question

    to beg the question

    in question

    out of the question

    вопрос

    считать вопрос решенным

    искомый, рассматриваемый

    не может быть и речи

    raise to the power

    возводить в степень

    ranging from... to

    в пределах от … до

    reasoning from this

    исходя из этого, рассуждая по поводу

    regarding / regardless

    относительно / независимо от

    result

    происходить в результате

    result in

    иметь в результате

    result from

    быть следствием от

    Roentgen rays [‘ r]ntjcn]

    Х-лучи, рентгеновские лучи

    root mean square

    среднеквадратичное значение

    running

    подряд

    sampled

    дискретный

    save and except; save for

    за исключением, не считая

    scale down

    сводить к одному / определенному масштабу

    score(s)

    счет; множество; два десятка

    seeing

    поскольку

    set up

    учредить

    aside

    отложить, не учитывать

    forth

    выдвигать, излагать

    to

    приступать

    singlevalued

    однозначный

    short cuts

    правила делимости

    so much as

    столько, как; даже

    so much so

    до такой степени; так, что

    solid line

    сплошная линия

    solid angle

    телесный угол

    subject matter

    основная тема, предмет обсуждения

    subject to

    в соответствии; допуская, если

    tаkе for granted

    считать доказанным, принимать без доказательства

    take into account

    принимать в расчет

    take place

    иметь место, происходить

    take the floor

    взять слово, иметь слово

    thanks to

    вследствие

    that is why

    вот почему

    theorema aureum (лат.)

    «золотая теорема»

    the... the

    чем …, тем

    thereby

    тем самым

    therein

    в нем, в ней, там

    thus far

    до сих пор, пока

    three times

    умноженный на 3, в три раза больше, трижды

    thrice

    трижды

    to a lesser extent

    в меньшей степени

    twice as good

    вдвое лучше

    twice as little

    вдвое меньше

    twice as much / large

    вдвое больше

    two by four

    2×4; мелкий, незначительный

    in two twos

    в два счета, немедленно

    two upon ten

    смотри в оба, чтобы (10 пальцев) не взяли (украли)

    to be explicit

    чтобы было яснее, понятнее

    under way

    в работе; осуществляемый сейчас

    unequivocal

    определенный

    unlikely

    маловероятно

    unlooped

    несамопересекающаяся (прямая)

    untenable

    несостоятельный

    vain; in vain

    напрасный, напрасно, тщетно

    valid

    действительный, правильный

    value

    значение; величина

    vanish

    стремиться к нулю

    variety of

    целый ряд, множество (чего-то)

    virtue

    by (in) virtue of

    свойство

    посредством, в силу чего-то

    wake

    in the wake of

    след, кильватер

    вслед за (кем то)

    want

    недостаток, отсутствие, необходимость

    for want of

    из-за отсутствия

    way

    by way of

    either way round

    in a way

    in a rough way

    in no way

    the other way (round)

    путь, способ; образ действия

    с целью, через, посредством

    любым путем

    до некоторой степени

    приблизительно, при грубом подсчете

    никоим образом

    иначе (наоборот)

    well

    well above / over

    as well (as)

    вполне, значительно, как раз

    значительно выше, больше

    также и; также как и

    whatsoever

    вообще, совсем

    whence

    откуда

    whereby

    тем самым, посредством чего

    whether... or

    или … или; независимо от

    whether it be

    будь то

    yet

    as yet

    not yet

    еще, все еще; тем не менее, однако

    все еще, пока

    еще не


    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
    1. Англо-русский политехнический словарь / Под ред. А.Е.Чернухина. М., 1971.

    2. Малаховский В.С. Введение в математику. Калининград: Янтарный сказ, 1998.

    3. Никифоровский В.А. В мире уравнений. М.: Наука, 1969.

    4. Орлов В.Б., Скороход Н.С., Сосинский А.Б. Русско-англо-немецко-фран­цузский математический словарь. М., 1987.

    5. Пекелис В. Кибернетическая смесь. М.: Знание, 1982.

    6. Словарь-минимум для чтения научной литературы на английском языке. М.: Наука, 1969.

    7. Collins Double Book. Dictionary and Encyclopedia. - London & Glasgow, Collins, 1974.

    8. Concise Oxford Dictionary of Current English. IV ed., Oxford Univ. Press, 1956.

    9. Daintith J et al. The Oxford Minidictionary of Abbreviations. - Oxford Univ. Press - New York, 1993.

    10. Hornby A.S. et al. - Oxford Advanced Learner’s Dictionary of Current English. - Vol. I,II. - Oxford Univ. Press - Oxford, 1982.

    11. Greenbaum S., Whitcut J. - Guide to English Usage. - Longman Group UK Limited, 1988.

    12. English newspapers: The Times; The Times. Higher Education; The Financial Times, 1996-1998.


    1 The data are taken from English-Russian Polytechnical Dictionary. - M., 1971; Orlov V.B. at al. Russian -English - German - French Mathematical Dictionary. - M., 1987.

    2 'quid' is a slang word for "pound of sterling". It is used only in a singular form: He earns fifty quid a week = Ј 50 в неделю.

    3 This slang word is supposed to have come into American English from the Nothern American-Indian language where it meant buckskin — оленья шкура, кожа; which had been used as a unit of barter at that time.

     Here the most widely used measures are included.



    1   2   3   4   5   6



    написать администратору сайта