Главная страница
Навигация по странице:

  • Классическое естествознание и его методология

  • Кохановский ВП Основы философии науки. Учебное пособие для аспирантов ростовнадону феникс 2004 оглавление от


    Скачать 3.38 Mb.
    НазваниеУчебное пособие для аспирантов ростовнадону феникс 2004 оглавление от
    АнкорКохановский ВП Основы философии науки.doc
    Дата13.02.2017
    Размер3.38 Mb.
    Формат файлаdoc
    Имя файлаКохановский ВП Основы философии науки.doc
    ТипУчебное пособие
    #2665
    страница10 из 46
    1   ...   6   7   8   9   10   11   12   13   ...   46
    §5. Наука в собственном смысле: главные этапы становления

    В соответствии с принятой нами концепцией генезиса науки и периодизации ее истории (гл. П, §1) рассмотрим основные осо­бенности главных этапов становления науки в собственном смысле. Последняя исторически первоначально возникла в форме экс­периментально-математического естествознания. Социально-гу­манитарные науки — в силу определенных причин — возникли и формировались несколько позднее (о них речь будет идти в гл. VIII).

    Здесь, однако, заметим следующее. Выбор естествознания (и прежде всего физики) для анализа основных этапов становления науки в собственном смысле обусловлен следующим обстоятель­ством. «В методологических исследованиях строение развитых наук принимается за своего рода эталон, с позиций которого рас­сматриваются все другие системы теоретического знания».

    И это вовсе не натурализм или физикализм. Дело в том, что развитое явление (предмет) более полно, глубоко и рельефнее «предъявляет» исследователю свои характеристики, чем явление (предмет) неразвитый, незрелый. «Анатомия человека — ключ к анатомии обезьяны», — говорил Маркс.

    История и современное состояние науки показали, что — опять-таки в силу конкретных причин — именно в естествознании об­щие контуры науки как таковой (науки в собственном смысле), ее структура, динамика и т. п. просматриваются наиболее четко, зри­мо и выпукло. Но это никоим образом не означает ни игнорирова­ния или недооценки социально-гуманитарных наук в анализе «на­уки вообще», ни абсолютизации их специфики.

    Классическое естествознание и его методология

    Хронологически этот период, а значит, становление естество­знания как определенной системы знания, начинается примерно в XVI—XVII вв. и завершается на рубеже XIX—XX вв. В свою очередь данный период можно разделить на два этапа: этап меха­нистического естествознания (до 30-х гг. XIX в.) и этап зарожде­ния и формирования эволюционных идей (до конца XIX — начала XX в.).

    I. Этап механистического естествознания. Начало этого этапа совпадает со временем перехода от феодализма к капитализму в Западной Европе. Начавшееся бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) потребовало решения целого ряда технических задач. А это в свою очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую значимость приобрела механика — в силу необходимости решения названных задач.

    Активное деятельностное отношение к миру требовало позна­ния его существенных связей причин и закономерностей, а зна­чит, резкого усиления внимания к проблемам самого познания и его форм, методов, возможностей, механизмов и т. п. Одной из ключевых проблем стала проблема метода. Укрепляется идея о возможности изменения, переделывания природы, на основе по­знания ее закономерностей, все более осознается практическая цен­ность научного знания («знание — сила»). Механистическое есте­ствознание начинает развиваться ускоренными темпами.

    В свою очередь этап механистического естествознания можно условно подразделить на две ступени — доньютоновскую и нью­тоновскую, — связанные соответственно с двумя глобальными на­учными революциями, происходившими в XVI—XVII вв. и со­здавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

    Доньютоновская ступень — и соответственно первая научная революция происходила в период Возрождения, и ее содержание определило гелиоцентрическое учениея. Коперника (1473—1543). Это был конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов, — это и было первой научной революцией, подрывав­шей также и религиозную картину мира. Кроме того, он высказал мысль о движении как естественном свойстве материальных объек­тов, подчиняющихся определенным законам, и указал на ограни­ченность чувственного познания («Солнце ходит вокруг Земли»). Но Коперник был убежден в конечности мироздания: Вселенная где-то заканчивается твердой сферой, на которой закреплены не­подвижные звезды. Нелепость такого взгляда показал датский астроном Тихо Браге, а особенно Д. Бруно. Он отрицал наличие центра Вселенной, отстаивал тезис о ее бесконечности и о бесчис­ленном количестве миров, подобных Солнечной системе.

    Вторую глобальную научную революцию XVII в. чаще всего связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленьютоновскую сту­пень развития механистического естествознания. В учении Г. Га­лилея (1564—1642) уже были заложены достаточно прочные основы нового механистического естествознания. В центре его на­учных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели боль­шое значение для становления механики как науки.

    Исходным пунктом познания, по Галилею, является чувствен­ный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным и реальным или мыслен­ным экспериментированием, опирающимся на строгое количе­ственно-математическое описание. Критикуя непосредственный опыт, Галилей первым показал, что опытные данные в своей первозданности вовсе не являются исходным элементом познания, что они всегда нуждаются в определенных теоретических предпо­сылках. Иначе говоря, опыт не может не предваряться определен­ными теоретическими допущениями, не может не быть «теорети­чески нагруженным».

    Вот почему Галилей, в отличие от «чистого эмпиризма» Ф. Бэ­кона (при всем сходстве их взглядов), был убежден, что «фактуальные данные» никогда не могут быть даны в их «девственной первозданности». Они всегда так или иначе «пропускаются» через определенное теоретическое «видение» реальности, в свете кото­рого они (факты) получают соответствующую интерпретацию. Та­ким образом, опыт — это очищенный в мысленных допущениях и идеализациях опыт, а не просто (и не только) простое описание фактов.

    Галилей выделял два основных метода экспериментального исследования природы:

    1. Аналитический («метод резолюций») — прогнозирование чув­ственного опыта с использованием средств математики, абст­ракций и идеализации. С помощью этих средств выделяются элементы реальности (явления, которые «трудно себе пред­ставить»), недоступные непосредственному восприятию (на­пример, мгновенная скорость). Иначе говоря, вычленяются предельные феномены познания, логически возможные, но не представимые в реальной действительности.

    2. Синтетически-дедуктивный («метод композиций») — на базе количественных соотношений вырабатываются некоторые те­оретические схемы, которые применяются при интерпретации явлений, их объяснении.

    Достоверное знание в итоге реализуется в объясняющей тео­ретической схеме как единство синтетического и аналитического, чувственного и рационального. Следовательно, отличительное свойство метода Галилея — построение научной эмпирии, кото­рая резко отлична от обыденного опыта.

    Оценивая методологические идеи Галилея, В. Гейзенберг от­мечал, что «Галилей отвернулся от традиционной, опиравшейся на Аристотеля науки своего времени и подхватил философские идеи Платона... Новый метод стремился не к описанию непосред­ственно наблюдаемых фактов, а скорее, к проектированию экспе­риментов, к искусственному созданию феноменов, при обычных условиях не наблюдаемых, и к их расчету на базе математической теории». Гейзенберг выделяет две характерные черты нового ме­тода Галилея: а) стремление ставить каждый раз новые точные эксперименты, создающие идеализированные феномены; б) со­поставление последних с математическими структурами, прини­маемыми в качестве законов природы.

    Способ мышления Галилея исходил из того, что одни чув­ства без помощи разума не способны дать нам истинного понима­ния природы, для достижения которого нужно чувство, сопро­вождаемое рассуждением. Имея в виду прежде всего галилеев-ский принцип инерции, А. Эйнштейн и Л. Инфельд писали: «От­крытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в исто­рии человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, т. е. они иногда ведут по ложному следу».

    Иоган Кеплер (1571—1630) установил три закона движения j планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточ­нил расстояние между Землей и Солнцем и др. Но Кеплер не объяснил причины движения планет, ибо динамика — учение о силах и их взаимодействии — была создана позже Ньютоном. Вторая научная революция завершилась творчеством Ньютона (1643—1727), научное наследие которого чрезвычайно глубоко и разнообразно, уже хотя бы потому, что, как сказал он сам, «я стоял на плечах гигантов». Главный труд Ньютона — «Математи­ческие начала натуральной философии» (1687) — это, по выраже­нию Дж. Бернала, «библия новой науки», «источник дальнейшего расширения изложенных в ней методов». В этой и других своих работах Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирно­го тяготения, теоретически обосновал законы Кеплера (создав тем самым небесную механику), и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли, Луны и планет, морские приливы и др.).

    Кроме того, Ньютон — независимо от Лейбница — создал диф­ференциальное и интегральное исчисление как адекватный язык математического описания физической реальности. Он был авто­ром многих новых физических представлений — о сочетании кор­пускулярных и волновых представлений о природе света, об иерар.хически атомизированной структуре материи, о механической при­чинности и др. Построенный Ньютоном фундамент, по свидетель­ству Эйнштейна, оказался исключительно плодотворным и до кон­ца XIX в. считался незыблемым.

    Научный метод Ньютона имел целью четкое противопостав­ление достоверного естественнонаучного знания вымыслам и умо­зрительным схемам натурфилософии. Знаменитое его высказы­вание «гипотез не измышляю» было лозунгом этого противопос­тавления.

    Содержание научного метода Ньютона (метода принципов) сводится к следующим основным «ходам мыслей»:

    1. провести опыты, наблюдения, эксперименты;

    2. посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно на­ блюдаемыми;

    3. понять управляющие этими процессами фундаментальные за­кономерности, принципы, основные понятия;

    4. осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

    5. построить целостную теоретическую систему путем дедуктив­ного развертывания фундаментальных принципов, т. е. «прий­ти к законам, имеющим неограниченную силу во всем космо­се» (В. Гейзенберг);

    6) «использовать силы природы и подчинить их нашим целям в

    технике» (В.Гейзенберг).

    С помощью этого метода были сделаны многае важные от­крытия в науках. На основе метода Ньютона в рассматриваемый период был разработан и использовался огромный «арсенал» са­мых различных методов. Это прежде всего наблюдение, экспери­мент, индукция, дедукция, анализ, синтез, математические ме­тоды, идеализация и др. Все чаще говорили о необходимости со­четания различных методов.

    Сам Ньютон с помощью своего метода решил три кардиналь­ные задачи. Во-первых, четко отделил науку от умозрительной натурфилософии и дал критику последней. («Физика, берегись метафизики!») Под натурфилософией Ньютон понимал «точную науку о природе», теоретико-математическое учение о ней. Во-вторых, разработал классическую механику как целостную систе­му знаний о механическом движении тел. Его механика стала классическим образцом научной теории дедуктивного типа и эта­лоном научной теории вообще, сохранив свое значение до настоя­щего времени. В-третьих, Ньютон завершил построение новой ре­волюционной для того времени картины природы, сформулиро­вав основные идеи, понятия, принципы, составившие механичес­кую картину мира. При этом он считал, что «было бы желательно вывести из начал механики и остальные явления природы».

    Основное содержание механической картины мира, создан­ной Ньютоном, сводится к следующим моментам.

    1. Весь мир, вся Вселенная (от атомов до человека), понимался как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и вре­мени, взаимосвязанных силами тяготения, мгновенно пере­дающимися от тела к телу через пустоту (ньютоновский прин­цип дальнодействия).

    2. Согласно этому принципу любые события жестко предопре­делены законами классической механики, так что если бы су­ществовал, по выражению Лапласа, «всеобъемлющий ум», то он мог бы их однозначно предсказывать и предвычислять.

    3. В механической картине мира последний был представлен со­стоящим из вещества, где элементарным объектом выступал атом, а все тела — как построенные из абсолютно твердых, однородных, неизменных и неделимых корпускул — атомов. Главными понятиями при описании механических процессов были понятия «тело» и «корпускула».

    1. Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени как арены для движу­щихся тел, свойства которых неизменны и независимы от са­мих тел, составляла основу механической картины мира.

    2. Природа понималась как простая машина, части которой под­чинялись жесткой детерминации, которая была характерной особенностью этой картины.

    3. Важная особенность функционирования механической карти­ны мира в качестве фундаментальной исследовательской про­граммы — синтез естественнонаучного знания на основе ре­дукции (сведения) разного рода процессов и явлений к меха­ническим.

    Несмотря на ограниченность уровнем естествознания XVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологи­ческих и религиозных схоластических толкований. Она ориенти­ровала на понимание природы из нее самой, на познание есте­ственных причин и законов природных явлений.

    Материалистическая направленность механической картины Ньютона не избавила ее от определенных недостатков и ограниченностей. Механистичность, метафизичность мышления Нью­тона проявляется, в частности, в его утверждении о том, что ма­терия — инертная субстанция, обреченная на извечное повторе­ние хода вещей, из нее исключена эволюция; вещи неподвижны, лишены развития и взаимосвязи; время — чистая длительность, а пространство — пустое «вместилище» вещества, существующее независимо от материи, времени и в отрыве от них. Ощущая не­достаточность своей картины мира, Ньютон вынужден был апел­лировать к идеям творения, отдавать дань религиозно-идеалисти­ческим представлениям.

    Несмотря на свою ограниченность, механическая картина мира оказала мощное влияние на развитие всех других наук на долгое время. Экспансия механической картины мира на новые области исследования осуществлялась в первую очередь в самой физике, но потом — в других областях знаний. Освоение новых областей потребовало развития математического формализма ньютоновской теории и углубленной разработки ее концептуального аппарата.

    Развитие многих областей научного познания в этот период определялось непосредственным воздействием на них идей меха­нической картины мира. Так, в эпоху господства алхимии Р. Бойль выдвинул программу, которая переносила в химию принципы и образцы объяснения, сформулированные в механике. Бойль пред­лагал объяснить все химические явления исходя из представле­ний о движении «малых частиц материи» (корпускул).

    Механическая картина мира оказывала сильное влияние и на развитие биологии. Так, Ламарк, пытаясь найти естественные при­чины развития организмов, опирался на вариант механической картины мира, включавший идею «невесомых». Он полагал, что именно последние являются источником органических движений и изменения в живых существах. Развитие жизни, по его мне­нию, выступает как «нарастающее движение флюидов», которое и было причиной усложнения организмов и их изменения. До­вольно сильным влияние механической картины мира было и на знание о человеке и обществе (см. об этом гл. VIII).

    Однако по мере экспансии механической картины мира на но­вые предметные области наука все чаще сталкивалась с необходи­мостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые все труднее было согласовывать с принципами механической кар­тины мира. Она теряла свой универсальный характер, расщепля­ясь на ряд частнонаучных картин, начался процесс расшатывания механической картины мира. В середине XIX в. она окончательно утратила статус общенаучной.

    Говоря о механической картине мира, необходимо отличать это понятие от понятия «механицизм». Если первое понятие обо­значает концептуальный образ природы, созданный естествозна­нием определенного периода, то второе — методологическую ус­тановку. А именно — односторонний методологический подход, основанный на абсолютизации и универсализации данной карти­ны, признании законов механики как единственных законов ми­роздания, а механической формы движения материи — как един­ственно возможной.

    Успехи механической теории в объяснении явлений приро­ды, а также их большое значение для развития практики — для техники, для конструирования машин, для строительства, море­плавания, военного дела и т. п. и привели к абсолютизации меха­нической картины мира, которая стала рассматриваться в каче­стве универсальной.

    Таким образом, естествознание рассматриваемого этапа было механистическим, поскольку ко всем процессам природы прила­гался исключительно масштаб механики. Стремление расчленить природу на отдельные «участки» и подвергать их анализу каждый по отдельности постепенно превращалось в привычку представ­лять природу состоящей из неизменных вещей, лишенных разви­тия и взаимной связи. Так сложился метафизический способ мыш­ления, одним из выражений которого и был механицизм как свое­образная методологическая доктрина.

    Механицизм есть крайняя форма редукционизма. Редукцио­низм (лат. reductio — отодвигание назад, возвращение к прежне­му состоянию) — методологический принцип, согласно которому высшие формы могут быть полностью объяснены на основе зако­номерностей, свойственных низшим формам, т. е. сведены к по­следним (например, биологические явления — с помощью физи­ческих и динамических законов).

    Само по себе сведение сложного к более простому в ряде слу­чаев оказывается плодотворным — например, применение мето­дов физики и химии в биологии. Однако абсолютизация принци­па редукции, игнорирование специфики уровней (т. е. того ново­го, что вносит переход на более высокий уровень организации) неизбежно ведут к заблуждениям в познании.

    Таким образом, небывалые успехи механики породили пред­ставление о принципиальной сводимости всех процессов в мире к механическим. «Поэтому в XIX в. механика прямо отождествля­лась с точным естествознанием. Ее задачи и сфера ее применяе­мости казались безграничными. Еще Больцман утверждал, что мы можем понять физический процесс лишь в том случае, если объясним его механически.

    Первую брешь в мире подобных представлений пробила мак-свелловская теория электромагнитных явлений, дававшая мате­матическое описание процессов, не сводя их к механике».
    1   ...   6   7   8   9   10   11   12   13   ...   46


    написать администратору сайта