Бродский А.К. Краткий курс общей экологии. Учебное пособие. Спб. Деан. 2000. 224 с
Скачать 2.74 Mb.
|
Часть природы, окружающая организмы и оказывающая на них прямое или косвенное воздействие, часто обозначают как «среда». Из среды особи получают все необходимое для жизни и в нее же выделяют продукты своего метаболизма. По определению Н. П. Наумова (1963), средой называют «все, что окружает организмы, прямо и косвенно влияет на их состояние, развитие, выживание и размножение». В литературе наряду с термином «среда» часто используются его синонимы: «сре- 52 да обитания», «жизненная среда», «внешняя среда». В последнее время большое распространение получил термин «окружающая среда». Среда, обеспечивающая возможность жизни организмов на Земле, разнообразна. По качественно отличным комплексам условий, обеспечивающим возможность для жизни, различают «среды жизни». На нашей планете имеется четыре качественно отличные среды жизни. Ими являются: вода как среда жизни, суша (т. е. наземно-воздушная среда жизни), почва и организм (для паразитов и симбионтов). Организмы существуют в одной или нескольких средах жизни. Например, человек, большинство видов птиц, млекопитающих, голосеменных и покрытосеменных растений и т. д. являются обитателями только наземно-воздушной среды жизни. Тогда как ряд насекомых (комары, стрекозы, поденки), земноводные и т. д. проходят одну фазу своего развития в водной, другую — в наземно-воздушной среде, такие представители насекомых, как майский жук, бронзовка, щелкун и др., нуждаются для своей жизни в наземно-воздушной и почвенной средах. Все среды жизни очень разнообразны. Например, вода как среда жизни может характеризоваться морской или речной, текучей или стоячей водой. В зависимости от климатических зон различают разные наземно-воздушные среды обитания. Среды жизни обычно подразделяются на конкретные среды обитания. Например: озеро (или река) — это среда обитания в водной среде жизни. В свою очередь, в «средах обитания» различают «местообитания». Это более «узкие» комплексы условий, качественно различающиеся между собой в среде обитания. Так, в водной среде имеются местообитания: в толще воды, на дне, у поверхностной пленки, среди водорослей и трав и пр. Первой средой жизни на Земле стала вода. Здесь впервые возникла жизнь. Постепенно в процессе исторического развития многие организмы начали заселять наземно-воздушную среду. Появившиеся наземные организмы (растения, животные, грибы и др.) в процессе 53 своей жизнедеятельности создавали почву. Ее, так же как и наземно-воздушную среду жизни, активно заселяли живые организмы. Параллельно с формированием разнообразия организмов в водной, наземно-воздушной и почвенной средах формировались паразиты, средой жизни которым служили другие организмы — «хозяева». Своеобразие условий каждой среды жизни обусловило своеобразие живых организмов, свойственное средам. У всех организмов в процессе эволюции выработались специфические поведенческие и другие приспособления к обитанию в своей среде жизни и к разнообразным их частным условиям. 54 Т е м а 3 КЛАССИФИКАЦИЯ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ Любой организм в природной среде подвергается воздействию огромного числа факторов. Эколог не должен удовлетворяться составлением их перечня. Он должен, насколько это возможно, следовать афоризму Гете, вложенному им в уста Мефистофеля: «Чтобы разобраться в бесконечном, надо сперва различать, а затем связывать». Систематизация экологических факторов поможет выбрать важнейшие и оценить характер их влияния на изучаемые виды. 3.1. ТРАДИЦИОННЫЕ КЛАССИФИКАЦИИ Классическим и наиболее традиционным делением экологических факторов считается их подразделение на две основные группы: абиотические и биотические. Первая включает факторы климатические (температура, свет, влажность, давление и др.), физические свойства почвы и воды. Ко второй относятся факторы питания и различные формы взаимодействия особей и видов между собой (хищничество, конкуренция, паразитизм и др.). Однако подобное подразделение не представляется исчерпывающим. Действительно, иногда бывает трудно отнести данный фактор к той или иной группе. Так, температура, если ее рассматривать как абиотический фактор, часто изменяется благодаря присутствию живых организмов. Например, в лабораторных условиях личинки мучного хрущака (Tenebriomolitor) склонны образовывать скопления, в которых при слишком холодной окружающей среде температура повышается и ее величина становится ближе к значению, наиболее благоприятному для развития организмов. При температуре воздуха +17 °С температура в скоплениях личинок иногда достигает +27 °С. Наиболее детальные исследования изменений микроклимата, вызываемых популяциями малого мучного хру- 55 щака (TriboliumcastaneumиТ. confusum), провел Пименталь (1958). Насекомых выращивали в муке, насыпанной в чашки Петри, которые помещали в термостат. Температура воздуха в термостате 29+0,5 °С, относительная влажность — 70±5%. Каждая чашка содержала 8 г муки и до 300 насекомых. Было установлено, что при этих условиях температура в чашках повышалась на 0,4 °С через 24 ч, а затем она начинала медленно падать, а относительная влажность увеличивалась на 11% за две недели. Таким образом, рост температуры и относительной влажности зависит от скопления насекомых, и это говорит о том, что микроклимат обусловливается одновременно абиотическими факторами среды и биотическими факторами, в данном случае присутствием популяции насекомых. На элеваторах с большим количеством зерна наличие зерноядных насекомых иногда вызывает повышение температуры на 25 °С по сравнению с температурой окружающей среды. Наиболее ярким примером влияния, которое организмы могут оказывать на микроклимат, служит регуляция температуры в ледяной берлоге белого медведя. Когда там появляется медвежонок, температура воздуха в ней на 40 0С выше, чем снаружи. В связи с нечеткостью первой классификации была разработана другая, в соответствии с которой все экологические факторы подразделяются на две категории: не зависящие от плотности популяции и зависящие от плотности популяции факторы. В результате действия на популяции факторов первой категории процент гибнущих особей не зависит от их общей численности или плотности; при действии факторов второй категории он растет пропорционально увеличению их плотности. К факторам первой категории относятся главным образом климатические. Так, под действием волны холода может погибнуть определенная часть особей популяции, причем независимо от ее плотности. К факторам, зависящим от плотности популяции, относятся преимущественно биотические. 56 Дальнейшее совершенствование этой классификации связано с подразделением категории факторов, зависящих от плотности, на факторы прямой зависимости, которые приводят к повышению смертности в популяции при росте ее плотности, и факторы обратной зависимости, которые снижают смертность, когда плотность популяции возрастает. Конкуренция, хищничество, паразитизм — важнейшие факторы прямой зависимости. Действие факторов обратной зависимости можно проиллюстрировать на примере скоплений клопов, инъецирующих слюну в пищевой субстрат. Чем больше клопов в скоплении, тем успешнее они растворяют пищевой материал и тем меньше число погибших особей. Северные олени сообща извлекают ягель из-под корки снега. Недоступность пищи может вызвать гибель определенной части особей, но их будет меньше, если животные действуют сообща. Однако разграничение факторов на зависящие или не зависящие от плотности популяции оказалось еще менее удовлетворительным, чем их деление на биотические и абиотические, поскольку в данном случае экологические факторы выступают не сами по себе, а в тесной связи с плотностью популяции. Действие же экологических факторов не ограничивается лишь изменением количественных характеристик популяций. Безусловно, экологические факторы оказывают чрезвычайно большое влияние на численность и концентрацию особей в популяциях, однако это не единственная форма их воздействия. Экологические факторы могут также вызывать изменение географического распространения, как отдельных популяций, так и видов в целом, появление различных адаптивных модификаций, количественные изменения обмена веществ, диапаузу, определенные ФПР и т. п. 3.2. ВИТАЛЬНОЕ И СИГНАЛЬНОЕ ДЕЙСТВИЕ ФАКТОРОВ Если положить в основу классификации экологических факторов эффект, который вызван их воздействием, а именно этот принцип был использован в преды- 57 дущей классификации, то более рациональным выглядит другое их разграничение, учитывающее не только изменение плотности популяции, но иные формы влияния на живые организмы. При этом все экологические факторы делятся на две основные группы: витальные (энергетические) и сигнальные. Первые оказывают непосредственное воздействие на жизнедеятельность организмов, меняют их энергетическое состояние. К таким факторам можно отнести температуру, пищу, конкуренцию, хищничество, паразитизм и др. Факторы второй группы, выполняющие сигнальную роль, несут информацию об изменении энергетических характеристик: продолжительность светового дня, феромоны и др. Некоторые факторы, рассматриваемые "в качестве абиотических, могут обладать как энергетическим, так и сигнальным действием. Примером может служить свет, который считается одним из основных экологических факторов. Свет служит главным источником энергии для фотосинтеза растений и играет важнейшую роль в продуктивности экосистем. В то же время его главная экологическая роль состоит в осуществлении биологических ритмов разной продолжительности. В этом проявляется сигнальное действие света. Подобная «двойственность» света как экологического фактора снижает ценность и этой классификации. Рациональнее выделять витальное и сигнальное действие экологического фактора, что было предложено В. П. Тыщенко (1980). Специфика витального действия различных экологических факторов заключается в том, что одни из них (например, температура) позволяют выделить две неоптимальные (субоптимальная и супероптимальная) и две летальные зоны, расположенные по обе стороны от оптимума, а другие выявляют только одну левую (пища) или одну правую (хищники и паразиты) часть полного графика и соответственно по одной неоптимальной и летальной зоне (рис. 3.1). Для организмов климатические, пищевые и биотические условия являются не только агентами, непосредственно влияющими на выживаемость, но сигналами, ука- 58 Рис. 3.1. Схема, иллюстрирующая витальное действие температуры, пищи, хищников и паразитов (по Тыщенко, 1980). Зоны действия экологических факторов: лет.— летальные, оп.— оптимальные, суб.— субоптимальные, супер.— супероптимальные. зывающими на возможные сдвиги витального действия экологических факторов в неоптимальные и летальные зоны. Например, осеннее укорочение дня воспринимается животными и растениями как сигнал скорого наступления зимнего периода с присущими ему неблагоприятными условиями (низкие температуры, промерзание почвы, недостаток или полное отсутствие пищи). Подобное действие экологических факторов на организмы предлагается называть сигнальным действием. Если свет обладает как энергетическим, так и сигнальным действием, то температура и влажность представляются исключительно энергетическими факторами. Это связано с тем, что у растений и животных, особенно пойкилотермных, повышение температуры тела вызывает ускорение всех физиологических процессов. Поэтому чем выше температура, тем меньше времени не- 59 обходимо для развития отдельных стадий и всего жизненного цикла организма. Для развития гусениц бабочки-капустницы от яйца до куколки при температуре 10 °С требуется 100 сут, а при 26 °С — только 10 сут. Как видно, скорость развития увеличивается в 10 раз. Зависимость скорости развития от температуры выражается S-образной кривой (сигмоидная зависимость). Скорость развития может быть представлена как величина, обратная времени развития, или же как величина, равная среднему проценту особей, развившихся в единицу времени. При уменьшении точности эксперимента можно допустить, что зависимость скорости развития от температуры носит линейный характер (рис. 3.2). При этом прямая Vpaзв = f(t°) пересекает шкалу температур в некоторой точке а, которая называется нулем, или порогом, развития, т. е. это температура, ниже которой развитие не происходит. Параметр у(t° - а), где у—время развития, t° —температура, при которой происходит развитие, есть величина постоянная для каждого вида и называется суммой эффективных температур: y(t° - a) = St°эфф.Кривая, выражающая отношение y = SSt°эфф./(t° - а), представляет собой ветвь равносторонней гиперболы. Рис. 3.2. Зависимость скорости развития кузнечика Austroicetescruciataот температуры (из Бигона, Харпера, Таунсенда, 1989). 60 Найденная зависимость находит практическое использование. Зная, что сумма эффективных температур — величина, постоянная для вида, можно рассчитать порог развития. Допустим, что при температуре 16°С длительность развития составляет 24 дня, при 27 °С — 8 дней, отсюда: 24(16 - а) = 8(27 - а). Решение этого равенства дает возможность определить порог развития в данном конкретном случае. Он составляет 10,5 °С. Определив порог развития, нетрудно найти сумму эффективных температур вида. Однако на практике значение константы, как правило, известно и требуется установить длительность развития при конкретной температуре. Этот параметр лежит в основе любого фенологического прогноза. Для колорадского жука порогом развития является температура 12 °С. При постоянной температуре 25 °С личиночная фаза длится от 14 до 15 дней, а при 30 °С— 5.5 сут. При температуре выше 33 °С развитие останавливается. Сумма эффективных температур составляет 330—335 °С. Этот результат был использован в Восточной Европе для предсказания продолжительности развития колорадского жука и определения числа поколений, появляющихся в течение года. В соответствии с прогнозом выбирали необходимые средства борьбы с этим насекомым, чтобы защитить от него посадки картофеля. Первая обработка, направленная против молодых личинок, проводится, когда сумма эффективных температур достигает 150 °С, вторая — против личинок второго возраста, когда сумма эффективных температур составляет 475 °С. Температура влияет не только на скорость развития, но и на многие другие стороны жизнедеятельности организмов. Так, она сказывается на количестве потребляемой пищи, на плодовитости, уровне половой активности и т. д. Как и температура, влажность отличается многосторонностью воздействия на растения и животных. Прежде всего, этот фактор влияет на скорость развития. Для комнатной мухи показана линейная зависимость между скоростью развития и уровнем влажности: чем выше влажность, тем больше скорость развития и, следовательно, меньше продолжительность жизни. 61 3.3. КЛАССИФИКАЦИЯ А. С. МОНЧАДСКОГО Кроме упомянутых выше существует классификация экологических факторов, основанная на оценке степени адаптивности реакций организмов на воздействие факторов среды. Эта классификация предложена советским ученым А.С. Мончадским. По мнению Мончадского, рациональная классификация экологических факторов должна прежде всего учитывать особенности реакций живых организмов, подвергшихся воздействию этих факторов, в том числе степень совершенства адаптации организмов, которая тем выше, чем древнее данная адаптация. Эта классификация подразделяет все экологические факторы на три группы: первичные периодические, вторичные периодические и непериодические факторы. Рассмотрим их подробнее. Адаптация в первую очередь возникает к тем факторам среды, которым свойственна периодичность — дневная, лунная, сезонная или годовая как прямое следствие вращения земного шара вокруг своей оси и его движения вокруг солнца или смены лунных фаз. Регулярные циклы этих факторов существовали задолго до появления жизни на Земле, и это обстоятельство объясняет, почему адаптации организмов к первичным периодическим факторам столь древние и так прочно укрепились в их наследственной основе. Температура, освещенность, приливы и отливы относятся к первичным периодическим факторам. Согласно Мончадскому, изменения первичных периодических факторов сказываются на регуляции численности особей исключительно через влияние на площадь ареалов видов. В пределах же ареалов их действие, если оно и имеется, не является определяющим. В целом адаптивные реакции организмов на влияние первичных периодических факторов сходны у всех групп животных и не обнаруживают специфики. Так, математические законы, относящиеся к действию температуры на проявления жизнедеятельности, практически одина- 62 ковы у столь отдаленных групп, как насекомые и позвоночные. У птиц и насекомых выявлены одни и те же основные типы ФПР Первичные периодические факторы играют преобладающую роль во многих местообитаниях. Исключение составляют некоторые специфические зоны обитания, такие как абиссаль или подземные участки, где изменения первичных факторов равны нулю или очень незначительны. Первичные периодические факторы всегда следует иметь в виду, особенно при экспериментальных экологических исследованиях. Результаты, полученные в опытах с животными, которые помещены в условия с постоянной температурой или освещенностью, могут значительно отличаться от результатов для животных, находящихся в природе, где произошло изменение этих факторов. Существованием резко выраженной адаптации организмов к первичным периодическим факторам можно объяснить неблагоприятность постоянной температуры. В частности, Шелфорд показал, что для роста и развития сопротивляемости животных совершенно необходимо колебание температуры. Изменения вторичных периодических факторов есть следствие изменений первичных периодических факторов. Чем теснее связь вторичного периодического фактора с первичным, тем с большей регулярностью проявляется периодичность первого. Так, влажность воздуха — это вторичный фактор, который находится в прямой зависимости от температуры. В тропиках или областях с муссонным климатом выпадение осадков подчиняется суточной или сезонной периодичности. Примером вторичного периодического фактора может быть также растительность, служащая пищей, периодичность произрастания которой связана с вегетационным циклом. Сезонные изменения, касающиеся жертв и хозяев, биология или физиология последних являются для хищников и паразитов факторами, к которым они приспосабливаются. Для водной среды содержание кислорода, количество растворенных солей, мутность, наличие горизонтальной и вертикальной циркуляции вод, ко- 63 лебание уровня воды, скорость течения чаще всего являются вторичными периодическими факторами. Однако периодичность этих факторов не строгая ввиду того, что они зависят от первичных периодических факторов довольно слабо. Наконец, биотические внутривидовые влияния также относятся к вторичным периодическим факторам, ибо все взаимодействия между особями осуществляются на фоне годичных циклов. По сравнению с первичными, вторичные периодические факторы не столь древнего происхождения. Организмы приспособились к ним не так давно, и их адаптации не столь четко выражены и одновременно более разнообразны в различных систематических группах. Так, относительная влажность воздуха стала для организмов экологическим фактором, когда они перешли к наземному образу жизни. Поэтому адаптации к изменению относительной влажности развиты у животных менее сильно, чем, например, адаптации к колебанию температуры — первичного периодического фактора; диапазон выносливости к изменению относительной влажности часто не столь широк, как к изменению температуры, в то же время адаптивные реакции к нему разнообразнее. Адаптации к пище также весьма различны. Как правило, вторичные периодические факторы сказываются на численности видов в пределах их ареалов, но мало влияют на протяженность самих ареалов. Непериодические факторы в местообитаниях организма в нормальных условиях не существуют. Они проявляются внезапно, поэтому организмы обычно не успевают к ним приспособиться. В эту группу входят некоторые климатические факторы, например шквальные ветры, грозы, а также пожары. Сюда же следует отнести все формы человеческой деятельности и действия хищных, паразитических и патогенных видов животных, т. е., согласно общепринятой терминологии, биотические факторы, за исключением взаимодействия между особями одного вида. Влияние хозяина на паразита следует отнести к вторичным периодическим факторам, так как среда, обретаемая паразитом в лице хозяина, представ- 64 ляет собой нормальное его местообитание. Зато для хозяина паразит (или патогенный агент) не является необходимостью: это непериодический фактор, который не вызывает, как правило, никакой адаптации, кроме некоторых, сравнительно редких случаев (например, приобретенный иммунитет), когда число паразитов или патогенных организмов велико настолько, что они представляют постоянный элемент данного биоценоза. Отсутствие в большинстве случаев адаптивных реакций на непериодические факторы дает теоретическое обоснование при разработке методов борьбы с вредными животными с помощью химических и биологических средств. Только многократная обработка инсектицидами многих поколений насекомых приводит к возникновению устойчивых рас, поскольку при многолетнем использовании инсектициды приобретают значение вторичного периодического фактора. Около века тому назад швейцарский ученый Мюллер получил за изобретение ДДТ Нобелевскую премию. В то время препарат обладал высокой токсичностью по отношению к вредным насекомым. Однако многократное применение ДДТ привело к появлению устойчивых рас. Положительный эффект ДДТ стал снижаться, а вредное действие, напротив, стало проявляться все заметнее. И сейчас использование ДДТ запрещено законом в большинстве стран. Действие непериодических факторов сказывается преимущественно на численности особей в пределах конкретной территории. Оно не изменяет, как правило, ни протяженности ареалов, ни длительности фаз индивидуального развития. Заключая рассмотрение классификаций, следует обобщить все многообразие действующих в природе экологических факторов в виде «синтетической» системы. Факторы климатические: 1) первичные периодические факторы (свет, температура); 2) вторичные периодические факторы (влажность); 3) непериодические факторы (шквальный ветер, значительная ионизация атмосферы, пожары). 65 Факторы физические неклиматические: 1) факторы водной среды (содержание кислорода, соленость, рН, давление, плотность, течения); 2) эдафические факторы (рН, вода, механический состав, соленость и пр.). Факторы питания: 1) количество пищи; 2) качество пищи. Факторы биотические: 1) внутривидовые взаимодействия; 2) межвидовые взаимодействия. 66 |