Главная страница
Навигация по странице:

  • 13.1. ПРИНЦИПЫ РАЗГРАНИЧЕНИЯ БИОГЕОЦЕНОЗОВ

  • 13.2. ИЕРАРХИЧЕСКИЙ РЯД ЭКОСИСТЕМ

  • 13.3. БИОСФЕРА

  • Чистая первичная продукция больших биомов Земли

  • Рекомендуемая литература

  • Дополнительная

  • Бродский А.К. Краткий курс общей экологии. Учебное пособие. Спб. Деан. 2000. 224 с


    Скачать 2.74 Mb.
    НазваниеУчебное пособие. Спб. Деан. 2000. 224 с
    АнкорБродский А.К. Краткий курс общей экологии.doc
    Дата27.08.2017
    Размер2.74 Mb.
    Формат файлаdoc
    Имя файлаБродский А.К. Краткий курс общей экологии.doc
    ТипУчебное пособие
    #8427
    страница14 из 15
    1   ...   7   8   9   10   11   12   13   14   15

    12.3. ЭВОЛЮЦИЯ ЭКОСИСТЕМЫ

    Вопрос о том, как эволюционируют экосистемы, очень важен, поскольку его решение — ключ к пониманию суще­ствующего разнообразия сообществ живых организмов на нашей планете, смены флор и фаун в ходе ее геологиче­ской истории. В основе эволюции живых организмов ле­жит естественный отбор, действующий на видовом или более низких уровнях. Но естественный отбор играет так­же важную роль и на уровне экосистем. Его можно под­разделить на взаимный отбор зависящих друг от друга автотрофов и гетеротрофов (коэволюция) и групповой отбор, который ведет к сохранению признаков, благопри­ятных для экосистемы в целом, даже если они неблаго­приятны для конкретных носителей этих признаков.

    В самом широком смысле коэволюцияозначает совме­стную эволюцию двух (или более) таксонов, которые объ­единены тесными экологическими связями, но которые

    201

    не обмениваются генами. Естественный отбор, действу­ющий в популяции хищников, будет постоянно увеличи­вать эффективность поиска, ловли и поедания добычи. Но в ответ на это в популяции жертвы совершенствуют­ся приспособления, позволяющие особям избежать по­имки и уничтожения. Следовательно, в процессе эволю­ции взаимоотношений «хищник-жертва» жертва действу­ет так, чтобы освободиться от взаимодействия, а хищник — так, чтобы постоянно его поддерживать.

    Существуют бесчисленные способы, позволяющие жерт­вам противостоять давлению хищников. Их можно свести к следующим категориям: защитное поведение (бегство, зата­ивание, использование убежищ и т. п.), защитная форма и окраска (покровительственная, отпугивающая, предупрежда­ющая, мимикрия), несъедобность или ядовитость (обычно в сочетании с предупреждающей окраской), родительское и социальное поведение (защита потомства, предупреждающие сигналы, совместная защита группы и т. п.). Защитные сред­ства растений включают: жесткие листья, шипы и колючки, ядовитость, репеллентные и ингибирующие питание живот­ных вещества.

    Хищники и другие «эксплуататоры» имеют не менее изощ­ренные способы настигнуть жертву. Вспомним, например, общественное охотничье поведение львов и волков, загнутые ядовитые зубы змей, длинные липкие языки лягушек, жаб и ящериц, а также пауков и их паутину, глубоководную рыбу-удильщика или удавов, которые душат свои жертвы.

    Замечательным примером коэволюции служит связь между муравьями и одним из видов тропических ака­ций. Если искусственным путем удалить муравьев, то насекомые-фитофаги, которых обычно поедают муравьи, объедают все листья акации, после чего она гибнет. Таким образом, акация зависит от насекомых, защища­ющих ее от других насекомых.

    В сопряженную эволюцию может быть вовлечено не одно, а несколько звеньев пищевой цепи. Так, бабочки-монархи способны накапливать в теле высокотоксичные сердечные гликозиды, содержащиеся в растениях с

    202

    млечным соком, которыми питаются их гусеницы. Тем са­мым они обеспечивают себя высокоэффективной защи­ти против насекомоядных птиц. Таким образом, у бабо­чек выработалась способность не только питаться расте­ниями, несъедобными для других насекомых, но и использовать яд растений для собственной защиты от хищников.

    Групповойотборэто естественный отбор в группах организмов, не обязательно связанных тесными взаимо­действиями. Предполагают, что он действует на уровне более высоком, чем видовой, и ведет к повышению устой­чивости экологических систем. Отношение генетиков к групповому отбору противоречиво. Вместе с тем эволю­ция вида имеет тенденцию к сохранению признаков, ко­торые повышают устойчивость экосистем. Внутривидовая и межвидовая конкуренция приводят к эволюции нишевых различий. В свою очередь, существование таких раз­личий гарантирует, что ресурсы данного сообщества, вклю­чая растения и животных, будут использованы более или менее пропорционально их эффективному запасу. Эво­люция жертвы приводит к уменьшению энергии, перено­симой с одного трофического уровня на другой, и повы­шению устойчивости экосистемы, эволюция хищника — к возрастанию эффективности этого переноса и снижению устойчивости. Разнообразие видов жертв, добываемых хищником, а также способность последнего изменять свой рацион в ответ на изменение доступности жертвы, веро­ятно, влияют на устойчивость популяций жертвы, а, сле­довательно, и на устойчивость сообщества.

    В эволюции экосистем происходит не только повы­шение устойчивости биотических сообществ. Подобно тому, как индивидуальное развитие организма (онтоге­нез) представляет собой краткое повторение филоге­неза,5 так и эволюция экосистем повторяется в их сукцессионном развитии. Если мы сравним структуру эко­систем в ранние и поздние геологические эпохи, то

    203

    увидим, что в эволюции экосистем увеличивается их ви­довое разнообразие, замыкаются биогеохимические цик­лы, растет способность видов обеспечивать равномер­ное распределение ресурсов внутри системы и препят­ствовать их выходу из нее. Так же как в эволюции видов общее прогрессивное развитие сопровождается услож­нением отдельных форм, так и в эволюции экосистем возникают такие экосистемы, которые регулируются K-отбором и осуществляют более совершенное перерас­пределение ресурсов.

    Одним из свойств K-отбора является замедление темпов эволюционного преобразования. В насыщенной, хорошо сбалансированной экосистеме эволюция встре­чает множество препятствий: экологические ниши плот­но заполнены, связи между группами сильны. Шансы проникнуть извне в такую систему имеют только более конкурентоспособные виды, число которых весьма огра­ниченно. Следовательно, сбалансированность экосис­темы сильно тормозит эволюцию организмов.

    Наибольшую возможность эволюционировать имеют круп­ные позвоночные животные. Они обычно обитают в несколь­ких экосистемах и оказывают сравнительно малое воздействие на других членов сообщества. Поэтому изменения крупных по­звоночных влияют зачастую только на крупных же позвоноч­ных (в системе хищник-жертва) и мало сказываются на ста­бильности системы. Мелкие животные, напротив, благодаря своей высокой продуктивности играют значительную роль в сообществе и потому в зрелых экосистемах эволюционируют медленно, несмотря на большие потенциальные возможнос­ти: высокую плодовитость, короткие жизненные циклы, час­тую смену поколений.

    Темпы эволюции экосистемы резко меняются при круп­номасштабных стрессах. Любой фактор, способный вы­вести экосистему из стабилизированного состояния, кла­дет начало более быстрым темпам эволюции. В качестве таких факторов могут выступать глобальные изменения климата, геологические процессы, массовая иммиграция при соединении материков и т. д. На фоне разрушенных

    204

    прежних связей происходит лавиноподобное образование новых видов. Образуются новые крупные таксоны, т. е. эво­люция приобретает характер макроэволюции. Естествен­но, этот процесс занимает миллионы лет. Подобные явле­ния, которыми богата история Земли (меловой кризис и т. п.), называются экологическими кризисами. Примером эко­логического кризиса могут служить кардинальные измене­ния в биосфере, произошедшие в середине мелового пе­риода, около 95—105 млн лет назад.

    В отложениях мелового времени в большом количестве появляются остатки цветковых растений. Ботаники считают, что эта группа возникла значительно раньше, но долгое вре­мя не играла существенной роли в биосфере. Отдельные на­ходки пыльцы встречаются в нижнем мелу, там же обнаруже­ны и первые остатки листьев этих растений. К концу нижнего мела таких остатков становится значительно больше. Основ­ной перелом совершился приблизительно в течение 20 млн лет в конце раннего — начале позднего мела. В позднем мелу покрытосеменные обильно представлены уже повсеместно — их экспансия приобретает глобальный характер. Одновременно вымирает большинство ранее многочисленных растений (беннеттитовые, саговники). На тот же период приходится пик вымирания семейств насекомых и обновление их фауны. Эти изменения в мире растений и насекомых не могли не ска­заться и на наземных позвоночных. Известно, что число наи­более изученной группы — динозавров — сильно уменьшилось в середине мела, хотя их полное вымирание произошло по­зднее. Значительные изменения испытали и другие группы рептилий — ящерицы, черепахи, крокодилы; змеи впервые появились в позднем мелу. К концу нижнего мела относятся первые находки плацентарных млекопитающих. Возможно, что в мелу уже были богато представлены птицы.

    Таким образом, экспансия покрытосеменных и вытеснение ими господствовавших ранее продуцентов приводит к почти полной смене фауны. Смена фауны насекомых — следствие изменений в составе растительности: насекомые самым не­посредственным образом связаны с растительностью: опыле­ние, питание, создаваемый растениями микроклимат. Измене­ние состава позвоночных было вызвано преобразованиями не только в мире растений, но и изменением состава насекомых. Более того, обладая иным, чем у доминировавших ранее групп

    205

    растений, метаболизмом, покрытосеменные должны были из­менить химический состав среды своего обитания и сделать ее непригодной для жизни многих организмов, с которыми они прямо не конкурировали. Преобразованиям могла подвергнуть­ся атмосфера, почвы и водоемы. Смена растительности ока­зала воздействие на сток рек, распределение почвенных вод, атмосферную циркуляцию, а через вариации содержания уг­лекислоты в атмосфере — на атмосферный баланс планеты.

    Покрытосеменные обусловили предпосылки для формирова­ния новых сообществ, которые в отличие от старых первона­чально были ненасыщены и потому нестабильны. Обилие неза­полненных ниш и слабая конкуренция вызвали компенсаторные эволюционные преобразования и появление новых групп из уце­левших остатков прежней фауны. Скорость этого процесса, вна­чале небольшая, увеличилась с ускорением вымирания древ­ней фауны, а затем, по мере насыщения экосистем, вновь умень­шилась. Сложившиеся в результате новые стабильные сообщества сохранили свои главные черты до наших дней.

    Сведения о меловом экологическом кризисе дают воз­можность сделать ряд выводов, непосредственно свя­занных с проблемами охраны природы. Эффект, произ­веденный в экосистемах внедрением покрытосеменных растений, был тем самым эффектом, которого стремит­ся избежать человечество. Его размах красноречиво сви­детельствует о размерах экологической опасности. До­статочно сказать, что для выхода экосистем из состояния кризиса потребовалось более 30 млн лет —геологически длительный отрезок времени. Другой вывод касается самого характера кризиса. Во-первых, распад экосистем происходит скачкообразно. Во-вторых, он вызывает ком­пенсаторные эволюционные явления и возникновение новых групп организмов — происходит одновременная эволюция множества растений и животных. Возникает реальная угроза лавинообразного формирования новых видов организмов с непредсказуемыми свойствами! На­сколько радикально новыми могут быть эти свойства, видно хотя бы из того факта, что в ходе мелового кри­зиса появились все общественные насекомые — терми­ты, муравьи, осы и пчелы, тогда как до этого насеко­мых с социальным образом жизни не существовало.

    206

    Т е м а 13

    ХОРОЛОГИЧЕСКИЙ АСПЕКТ ИЗУЧЕНИЯ ЭКОСИСТЕМЫ

    Выделение (разграничение) экосистем в природе час­то оказывается далеко не простой задачей. Прежде все­го, не существует единой точки зрения по поводу мини­мальной размерной единицы экосистемы. Некоторые ис­следователи склонны рассматривать в качестве таковой сравнительно простые, небольшие по размеру сообще­ства: сообщество разлагающегося ствола дерева, насе­ление верхней поверхности листа кувшинки и т. п.

    Действительно, принимая за основу первое из приве­денных в теме 8 определение экосистемы: «...любое не­прерывно меняющееся единство, включающее...», можно считать экосистемой любой биоценоз, отвечающий та­ким требованиям, как наличие трофических уровней, вли­яние на микроклимат и т. д. Но вспомним другую форму­лировку, в ней, в отличие от первой, заключен фактор времени: «...исторически сложившаяся система...». Види­мо, «население» пня или комплекс видов-сапрофагов, живущих в лепешке навоза, правильнее рассматривать лишь как фрагменты экосистемы, существующие непро­должительное время. Их можно назвать микроэкосисте­мами (Р. Дажо дает им название «синузия»). Автоном­ность микроэкосистемы относительна и существенно за­висит от остальных фрагментов экосистемы. Исходя из этих рассуждений, минимальной размерной единицей экосистемы следует считать более крупные, чем микро­экосистемы, единства: луг, лес, поле, озеро и т. д.

    13.1. ПРИНЦИПЫ РАЗГРАНИЧЕНИЯ БИОГЕОЦЕНОЗОВ

    При разграничении экосистем возникает проблема выбора одного из характерных признаков, которые под­разделяют на физиономические, таксономические и эко­логические. На основе физиономических признаков можно выделить площади с растительностью, сходной по обли-

    207

    ку, если здесь сгруппированы в одинаковых пропорциях растения идентичных морфологических типов и одинако­вого сезонного развития. Подобный подход удобен, ког­да имеется один или два доминирующих вида растений, например сосна в сосняке, ель в ельнике или луговое сообщество лисохвоста и герани.

    Таксономические критерии базируются на численно преобладающих одиночных видах или на некоторой со­вокупности видов, которые называются характерными. Однако случаи, когда имеется небольшое число харак­терных видов, довольно редки. Чаще всего приходится иметь дело с целой группой характерных видов. В при­родных условиях в любую экосистему входит известное число элементов, которые могут встречаться и в других экосистемах, но к совместному существованию они ока­зываются способными только в одной конкретной эко­системе. Эта группа видов, или характерный набор, слу­жит лучшим отличительным признаком экосистемы. Если характерный набор видов не проявляется, неизбежно, применение для его выявления статистических методов.

    Наконец, можно осуществить разграничение экосис­тем по экологическим признакам, т. е. по параметрам абиотической среды. Но этот способ очень труден, так как требует огромного количества измерений.

    Другой источник трудностей — определение границ экосистем. В некоторых случаях переход от одной эко­системы к другой бывает резким; таковы границы меж­ду лесом и посевами, между выжженными и неповреж­денными участками леса. Поскольку реально существу­ющей единицей экосистемы является сама экосистема, а не биотическое сообщество, там, где абиотические факторы меняются резко, выделение границ экосисте­мы не представляет особого труда. Об изменении абио­тических факторов удобно судить по видам-индикаторам, которые, будучи стенобионтными, служат критерием рез­кого изменения физической среды.

    Крупные виды являются лучшими индикаторами, чем мел­кие, потому что при том же энергетическом потоке может под-

    208

    дирживаться большая биомасса. Скорость оборота органического вещества у мелких организмов бывает так велика, что сдельный вид, зарегистрированный в момент исследования, может и не быть особенно полезным экологическим индикато­ром.

    В ряде случаев постепенное изменение абиотических Факторов вызывает серьезные трудности в определении границ экосистемы. Подобное явление имеет место, на­пример, на склонах. На пологом склоне градиент абио­тических факторов определяет постепенное изменение сообществ, поэтому некоторые экологи видят в них не соседствующие экосистемы, а некую непрерывность, называемую континуумом. Однако анализ биотических сообществ на территориях, достаточно ограниченных для того, чтобы единообразие сообществ было реальным, показывает относительную прерывистость и позволяет выделить на пологом склоне несколько экосистем. На крутом склоне наблюдается больший разрыв непрерыв­ности, что облегчает определение границ экосистем.

    В случае резких границ между двумя конкурирующи­ми сообществами возникает зона напряжения, или экотон. Иными словами, экотон представляет собой зону перехода между различными сообществами, например между лесом и лугом или в море между участками с мягким и твердым грунтом. Эта пограничная зона может иметь значительную протяженность, но она всегда уже территории, прилегающих к ней экосистем. Обычно в экотонное сообщество входит значительная доля видов из перекрывающихся сообществ, а иногда также виды, характерные только для экотона. Число видов и плот­ность популяций некоторых из них в экотоне часто выше, чем в лежащих по обе стороны от него экосистемах. Тен­денция к увеличению разнообразия и плотности живых организмов на границах сообществ известна под назва­нием краевогоэффекта.

    Одним из обычных и наиболее важных для человека экотонов является опушка леса. Опушку можно определить как пере­ходное сообщество между лесным и травянистым сообщества-

    209

    ми. Где бы ни жил человек, он стремится сохранить поблизос­ти от своего жилища сообщество опушек. Так, если человек селится в лесу, он вырубает его до отдельных небольших учас­тков, перемежающихся слугами. А поселившись на открытом месте, сажает деревья, также создавая мозаичную структуру ландшафта. Некоторые виды, обычные для леса или степи, спо­собны выжить на опушке, созданной человеком. Другие виды, хорошо адаптировавшиеся к жизни на опушках, особенно мно­гие виды сорняков, птиц, насекомых и млекопитающих, пред­ставлены большим числом особей. Известно, что плотность пев­чих птиц выше на территориях усадеб, в окрестностях поселков и других местах, которые состоят из смешанных местообита­ний и, следовательно, характеризуются большей протяженнос­тью границ по сравнению с большими однородными участками леса или полей.

    Таким образом, границы сообщества, находящегося в состоянии равновесия с соседними сообществами, обозначены модификацией некоторых факторов среды, которые играют решающую роль в пределах этих гра­ниц. На площади, занятой таким сообществом, особен­ности местообитания, напротив, претерпевают измене­ния, совместимые с существованием и сохранением со­общества.

    13.2. ИЕРАРХИЧЕСКИЙ РЯД ЭКОСИСТЕМ

    Установив минимальную размерную единицу экосис­темы — биогеоценоз, можно построить иерархический ряд экосистем (рис. 13.1). Применяя термин «биогеоценоз» в этом смысле, мы сохраняем знак равенства между эко­системой и биогеоценозом лишь для самого низкого уровня в иерархии экосистем. Существование каждого из таких уровней определяется действием его специфи­ческого фактора. Масштаб факторов возрастает по мере перехода от низших уровней к высшим:

    Биосфера  космический фактор

    Экосистемы суши и океана  геологический фактор

    Биогеографическая область  фактор эволюции

    210

    Биом  фактор климатического климакса

    (региональный климат) Ландшафт  фактор рельефа

    Биогеоценоз  фактор эдафического климата (мезоклимат).

    Рис. 13.1. Иерархический ряд экосистем.

    Рассмотрим каждый из уровней. Процент площадей, способных поддерживать сообщества в состоянии кли­матического климакса, различен для разных областей. Но поскольку стратегия развития любой экосистемы со­стоит в достижении климатического климакса, то глав­ными наземными экосистемами можно считать биомы. Они легко выделяются, в частности, по климатической климаксной растительности (рис. 13.2). По этому пока­зателю можно выделить тундру, северный хвойный лес (тайгу), лиственный лес умеренной зоны, степь, пусты­ню, тропический дождевой лес и т. д.

    В разных биогеографических областях сообщества сильно различаются по видовому составу. Каждый вид образуется в одном, определенном месте земного шара, а затем расселяется, останавливаясь перед естествен­ными преградами, такими как морские проливы, горные цепи и т. д. Однако всюду, где независимо от географи­ческого положения физическая среда одинакова, разви­ваются сходные экосистемы. Эквивалентные экологичес­кие ниши оказываются занятыми теми биологическими

    211



    Рис. 13.2. Основные биомы европейской части СССР (из Сукачева, 1934, с изменениями).

    Там, где кривая осадков пересекает восходящую линию испаряемости,

    расположена граница между гумидным (слева)

    и аридным (справа) климатом.

    группами, которые имеются в фауне и флоре данной, области. Так, степной биом развивается во всех облас­тях со степным климатом, но виды злаков и травоядных животных могут быть различными. Организмы, занима­ющие одинаковые или сходные экологические ниши в разных географических областях, называются экологи­ческимиэквивалентами.

    Кенгуру в Австралии — экологический эквивалент бизона и вилорогой антилопы в Северной Америке. Виды злаковых трав, которыми питаются травоядные, внешне очень сходны по все­му земному шару, хотя конкретные виды, а также роды и даже семейства могут быть строго приурочены к данному материку или к определенной биогеографической области в его преде­лах.

    Огромные различия в физико-химических свойствах между наземными и водными средами создают в них совершенно разные условия жизни. Своеобразие эко­систем океана в отличие от экосистем суши определя-

    212
    ется в первую очередь абиотическими факторами, а также рядом особенностей общего характера:

    1. море занимает 70% поверхности Земли;

    2. глубина моря огромна и жизнь обнаруживается в пределах всей этой толщи. В океане, по-видимому, не существует абиотических зон, однако воды вблизи ма­териков и островов населены значительно обильнее;

    3. море в отличие от суши и пресных вод непрерыв­но. Все океаны связаны друг с другом. Основными ба­рьерами для свободного передвижения морских живот­ных служат температура, соленость и глубина;

    4. в море происходит постоянная циркуляция воды. Разница в температуре воздуха на полюсах и у экватора порождает сильные ветры, не меняющие своего направ­ления на протяжении всего года (пассаты). В результате совместного действия этих ветров и вращения Земли образуются определенные течения.

    Каждый из иерархических уровней экосистем следует рассматривать не только как систему, объединяющую под­разделения низшего порядка, но и как самостоятельную экосистему, обладающую всеми присущими ей свойства­ми. В зависимости от размера биотопа можно выделить экосистемы различного порядка. Так, биогеоценоз — это экосистема низшего порядка, а биосфера—экосистема высшего, или первого, порядка. Если рассматривать срав­нительно ограниченный биотоп с более или менее одно­образными абиотическими факторами, например луг, лес или участок морского дна, то количество видов позвоноч­ных, входящих в состав биоценоза, определяется неболь­шой величиной —50-200 видов. Для более крупных био­топов, например морей умеренной зоны, количество ви­дов позвоночных животных составляет 1-2, а для теплых морей оно возрастает до 5-8 тыс.

    13.3. БИОСФЕРА

    Понятие биосферы вошло в науку случайно. Более 100 лет назад, в 1875 г., австрийский геолог Эдуард Зюсс, го­воря о различных оболочках земного шара, впервые упот-

    213

    ребил этот термин в последней, наиболее общей главе своей книги о происхождении Альп. Однако это упомина­ние не сыграло сколько-нибудь заметной роли в развитии научной мысли. В 1926 г. были опубликованы две лекции русского минералога В. И. Вернадского, в которых им, спу­стя 50 лет после работ Зюсса, формулировались основ­ные положения концепции биосферы, которую мы прини­маем и сейчас. Под биосферой Вернадский понимал те слои земной коры, которые подвергались в течение всей геологической истории влиянию живых организмов.

    В последние годы многие ученые (Дж. Хатчинсон и др.) су­жают представление о биосфере, рассматривая ее как ту часть поверхности Земли, которая в настоящее время находится под влиянием деятельности организмов. Многие научные термины в разных случаях применяются то в более широком, то в более узком понимании.

    Что же характерно для биосферы — этой особой обо­лочки земного шара? Во-первых, в биосфере весьма значительно количество жидкой воды. Во-вторых, на нее падает мощный поток энергии Солнца. В-третьих, для биосферы характерны поверхности раздела между ве­ществами, находящимися в жидком, твердом и газооб­разном состояниях.

    Поскольку источником энергии на Земле является Сол­нце, то все живые организмы распределены в верхних сло­ях двух земных оболочек: литосферыи гидросферы (рис. 13.3). Чем лучше та или иная земная оболочка про­пускает солнечные лучи, тем на большую глубину она за­селена живыми организмами. Однако биосфера не конча­ется там, куда не доходит свет. Благодаря силе тяжести поток энергии распространяется еще дальше: из осве­щенных слоев в глубину моря непрестанно падают комоч­ки экскрементов, мертвые и живые организмы.

    В литосферу живые организмы проникают на ничтож­ную глубину. Основная их масса сосредоточена в верх­нем слое почвы мощностью в несколько десятков сан­тиметров, и редко кто проникает на несколько метров или десятков метров вглубь (корни растений, дождевые

    214



    Рис. 13.3. Строение биосферы.

    черви). По трещинам земной коры, колодцам, шахтам и буровым скважинам животные и бактерии могут опус­каться на гораздо большую глубину—до 2,5-3 км. Нефть, часто залегающая глубоко от поверхности земли, имеет своеобразную бактериальную флору. Проникновение зе­леных растений в глубь литосферы невозможно из-за отсутствия света. Животные не находят там питания. Механические свойства горных пород, слагающих литос­феру, также препятствуют распространению в них жиз­ни. Наконец, с продвижением в недра Земли темпера­тура возрастает и на глубине 3 км достигает 100 °С. Зна­чит, на глубине более 3 км от земной поверхности живые организмы существовать не могут.

    С поверхности литосферы живые организмы прони­кают в нижние слои атмосферына высоту от несколь­ких сантиметров до нескольких метров. А растения воз­носят свои зеленые кроны иногда на несколько десят­ков метров. На несколько сотен метров в атмосферу проникают насекомые, летучие мыши и птицы. Восходя-

    215

    щие токи воздуха могут поднимать на несколько кило­метров покоящиеся стадии (споры, цисты, семена) жи­вотных и растений. Однако организмы, проводящие всю свою жизнь в воздухе, т. е. связанные с ним как с ос­новной средой обитания, не известцы.

    Гидросфера в отличие от атмосферы и литосферы заполнена жизнью по всей своей толще. Повсюду, куда проникали орудия сбора, исследователи находили жи­вые организмы. Из этого мы можем заключить, что жид­кая вода является более важным лимитирующим факто­ром в расселении организмов, чем свет. Так, самые жар­кие пустыни формально находятся вне биосферы. Однако фактически они могут считаться парабиосферными (око­лобиосферными), так как живые организмы там все же есть. Например, в пустынях Намиб и Калахари под сло­ем сухого песка встречаются насекомые (жуки-чернотел­ки), существующие за счет приносимых ветром сухих пылевидных остатков растений; питаясь ими, насекомые получают метаболическую воду.

    Протяженность биосферы ввысь ограничена в основ­ном недостатком жидкой воды и низким парциальным давлением углекислого газа. В горах хлорофиллсодержащие растения, видимо, не могут жить на высоте более 6200 м (Гималаи). На еще больших высотах встречаются некоторые животные, например пауки. Они питаются ногохвостками, а те, в свою очередь, довольствуются зер­нами пыльцы, заносимыми сюда ветром. Высокогорную область биосферы называют эоловойзоной.

    Если лимитирующими факторами биосферы являются жидкая вода и солнечный свет, то оптимум жизни прихо­дится на поверхность раздела сред. Исследования фото­синтеза показали, что часто наибольший выход органи­ческих веществ дают растения, способные использовать все три фазы: твердую, жидкую и газообразную. Приме­ром может служить тростник обыкновенный, Phragmitescommunis. Всасывание воды для него облегчается постоян­ным давлением жидкости на донные осадки. Необходи­мый для существования углекислый газ тростник получает из газообразной среды, в которой скорость проникнове-

    216

    ния газа через поглощающие поверхности наиболее вы­сока; кислород тоже легче получать из воздуха, чем из воды; наконец, все остальные элементы легче извлекать из раствора в капиллярной воде осадка.

    Предпринимались многочисленные попытки оценить первичную продукцию биосферы. Обширные простран­ства Земли попадают в категорию низкопродуктивных из-за таких лимитирующих факторов, как вода (в пустынях) или питательные вещества (в открытом море). Хотя пло­щадь суши составляет всего около 1/4 общей площади планеты, суша превосходит океаны по своей продуктив­ности, так как большая часть океанских вод в основном «пустынна» (таблица). В Мировом океане значения пер­вичной продукции в разных районах существенно раз­личаются. Наиболее продуктивны коралловые рифы, не уступающие даже тропическим лесам. Продуктивность от­крытых океанических зон ниже продуктивности зон апвеллинга и прибрежных районов и близка к таковой для тундры. Анализ оценок средних величин для больших площадей показывает, что продуктивность колеблется в пределах двух порядков— от 200 до 20 000 ккал на 1 м2 в год, а общая валовая продукция Земли имеет величи­ну порядка 1018 ккал в год.

    Чтобы биосфера продолжала существовать, не должен прекращаться круговорот основных химических элемен­тов. Скорость этих процессов может быть различной. Органическое вещество, которое ведет свое происхож­дение от атмосферного диоксида углерода, завершает цикл формирования за время, исчисляемое десятилети­ями. Круговорот кальция совершается значительно мед­леннее. В форме бикарбоната Са(НС03)2 кальций смы­вается в реки из континентальных пород, осаждаясь за­тем в виде карбоната СаС03 в водах открытого океана главным образом в форме тончайших раковин фораминифер. Дно океана медленно перемещается к поясам го­рообразования на окраинах материков, и кальций воз­вращается на сушу. Круговорот завершается, по-види­мому, за несколько сотен миллионов лет. Фосфор, как мы знаем, по характеру своего круговорота схож с каль-

    217

    цием, а азот имеет больше сходства с углеродом, хотя его содержание в атмосфере гораздо выше.

    В разных участках биосферы развитие жизни лимити­руется разными веществами. Можно сказать, что в пус­тыне жизнь ограничена недостаточным количеством во­дорода и кислорода в форме воды. В открытом океане лимитирующим фактором часто служит железо, обычно присутствующее в форме труднодоступной для организ­мов гидроокиси. В иных средах, например в почвах влаж­ных районов, в озерах, окраинных морях, лимитирующим фактором чаще всего является фосфор.

    Чистая первичная продукция больших биомов Земли

    (по: Рамад, 1981)



    218

    Мы уже говорили, что биосфера — экосистема перво­го порядка, или глобальная. А в экосистеме должны быть сбалансированы все компоненты, от потока энергии, субстрата, атмосферы, вод до биотической совокупности. Последняя является управляющей системой по отноше­нию к абиотической совокупности. В биотической сис­теме управляющей подсистемой служат консументы, так как от них зависит степень использования первичной про­дукции и в конечном итоге стабильность системы в це­лом. По правилу Эшби, управляющая подсистема или управляющая система должна быть организована не ме­нее сложно, чем управляемая; возможно, в этом лежит разгадка тайны, почему на Земле так много животных, особенно насекомых. Поэтому глобальная экологическая пирамида имеет вид волчка (рис. 13.4). Принцип по­строения глобальной экологической пирамиды следую­щий: каждый из основных уровней (продуценты — кон­сументы — редуценты) изображается в форме цилинд­ра, высота которого — биомасса, а диаметр —количество видов.



    Соотношения диаметров острия, маховика и стержня «вол­чка жизни» могут быть в разных экосистемах различными, но что­бы волчок не падал, они не могут быть произвольными.

    Внутри биосферы должны быть территориально сбалансированы экосистемы более низкого поряд­ка. Иными словами, на Земле дол­жно быть необходимое количество тундр, лесов, пустынь и т. д. — как биомов, а внутри биома тундр должна сохраняться оптимальная тундровость, внутри биома хвой­ных лесов — оптимальная лесис­тость и т. д. И так до самых мел­ких биогеоценозов.

    Значительные преобразования внутри биомов и смещение в них



    Рис. 13.4. Глобальная

    экологическая

    пирамида.

    Объяснение в тексте.


    219

    равновесия между экосистемами низшего порядка неми­нуемо вызывают саморегуляцию на высшем уровне. Это отражается на многих природных процессах — от изме­нения глубины залегания грунтовых вод до перераспре­деления воздушных потоков. Аналосичное явление наблю­дается и на уровне очень крупных систем биосферы при изменении соотношения между территориями биомов. В ходе освоения земель, в самом широком понимании этого слова, нарушается и компонентное, и территори­альное равновесие. До определенной степени это допу­стимо и даже необходимо, ибо только в неравновесном состоянии экосистемы способны давать полезную про­дукцию (вспомним формулу чистой продукции сообще­ства). Но, не зная меры, человек стремится получить боль­ше, чем может дать природа, забывая, что запасы имеют фундамент из великого множества элементов, пока не входящих в понятие «ресурсы».

    Современное потребление продукции биосферы до­стигло 7% чистой первичной продукции суши, и это уже привело к нарушению биохимического круговорота в био­сфере, замкнутость которого может поддерживаться биотой только для биологически накапливаемых биогенов. По расчетам В.Г. Горшкова (1986, 1988), такая ситуа­ция будет продолжаться до тех пор, пока потребление первичной продукции не станет превышать 1% (доля по­требления продукции всеми крупными животными). Од­нако для возвращения биосферы в стационарное состо­яние человечеству придется затрачивать энергию и труд, так как необходимо будет взять на себя те функции, ко­торые раньше выполняла биосфера. При этом следует помнить, что КПД природных экосистем низок и не пре­вышает 10%. Отсюда становится понятным, что необхо­димое для возвращения биосферы в устойчивое состоя­ние количество энергии должно быть огромным. Челове­честву пора оценить свои энергетические и прочие возможности для собственного спасения.

    220

    Рекомендуемая литература

    Основная

    Бигон М., Харпер Дж., Таунсенд К. Экология. Особи, попу­ляции и сообщества: В двух томах. М., 1989. Т. 1. 667 с; Т. 2. 477 с.

    Дажо Р. Основы экологии. М., 1975. 415 с.

    Левин А. С. Введение в общую экологию. Таллин, 1996. 178 с.

    Одум Ю. Основы экологии. М., 1975. 740 с.

    Одум Ю. Экология: В двух томах. М., 1986. Т. 1. 328 с; Т. 2. 376 с.

    Пианка Э. Эволюционная экология. М., 1981. 399 с.

    Пономарева И. Н. Общая экология. С.-Петербург, 1996. 215 с.

    Реймерс Н. Ф. Экология. Теории, законы, правила, принци­пы и гипотезы. М., 1994. 367 с.

    Риклефс Р. Основы общей экологии. М., 1979. 424 с.

    Дополнительная

    Алимов А. Ф. Введение в продукционную гидробиологию. Л., 1989.

    Гиляров А. М. Популяционная экология. М., 1990. 191 с.

    Лархер В. Экология растений. М., 1978. 185 с.

    Леме Ж. Основы биогеографии. М., 1976. 309 с.

    Рамад Ф. Основы прикладной экологии. Л., 1981. 543 с.

    Реймерс Н. Ф. Природопользование. М., 1990. 639 с.

    Стадницкий Г. В., Родионов А. И. Экология. С.-Петербург, 1995. 240 с.

    Сытник К. М., Брайан А. В., Городецкий А. В. Биосфера. Эко­логия. Охрана природы. Справочное пособие. Киев, 1987. 523 с.

    221

    ОГЛАВЛЕНИЕ

    Предисловие 3

    1   ...   7   8   9   10   11   12   13   14   15


    написать администратору сайта