Бродский А.К. Краткий курс общей экологии. Учебное пособие. Спб. Деан. 2000. 224 с
Скачать 2.74 Mb.
|
12.3. ЭВОЛЮЦИЯ ЭКОСИСТЕМЫ Вопрос о том, как эволюционируют экосистемы, очень важен, поскольку его решение — ключ к пониманию существующего разнообразия сообществ живых организмов на нашей планете, смены флор и фаун в ходе ее геологической истории. В основе эволюции живых организмов лежит естественный отбор, действующий на видовом или более низких уровнях. Но естественный отбор играет также важную роль и на уровне экосистем. Его можно подразделить на взаимный отбор зависящих друг от друга автотрофов и гетеротрофов (коэволюция) и групповой отбор, который ведет к сохранению признаков, благоприятных для экосистемы в целом, даже если они неблагоприятны для конкретных носителей этих признаков. В самом широком смысле коэволюцияозначает совместную эволюцию двух (или более) таксонов, которые объединены тесными экологическими связями, но которые 201 не обмениваются генами. Естественный отбор, действующий в популяции хищников, будет постоянно увеличивать эффективность поиска, ловли и поедания добычи. Но в ответ на это в популяции жертвы совершенствуются приспособления, позволяющие особям избежать поимки и уничтожения. Следовательно, в процессе эволюции взаимоотношений «хищник-жертва» жертва действует так, чтобы освободиться от взаимодействия, а хищник — так, чтобы постоянно его поддерживать. Существуют бесчисленные способы, позволяющие жертвам противостоять давлению хищников. Их можно свести к следующим категориям: защитное поведение (бегство, затаивание, использование убежищ и т. п.), защитная форма и окраска (покровительственная, отпугивающая, предупреждающая, мимикрия), несъедобность или ядовитость (обычно в сочетании с предупреждающей окраской), родительское и социальное поведение (защита потомства, предупреждающие сигналы, совместная защита группы и т. п.). Защитные средства растений включают: жесткие листья, шипы и колючки, ядовитость, репеллентные и ингибирующие питание животных вещества. Хищники и другие «эксплуататоры» имеют не менее изощренные способы настигнуть жертву. Вспомним, например, общественное охотничье поведение львов и волков, загнутые ядовитые зубы змей, длинные липкие языки лягушек, жаб и ящериц, а также пауков и их паутину, глубоководную рыбу-удильщика или удавов, которые душат свои жертвы. Замечательным примером коэволюции служит связь между муравьями и одним из видов тропических акаций. Если искусственным путем удалить муравьев, то насекомые-фитофаги, которых обычно поедают муравьи, объедают все листья акации, после чего она гибнет. Таким образом, акация зависит от насекомых, защищающих ее от других насекомых. В сопряженную эволюцию может быть вовлечено не одно, а несколько звеньев пищевой цепи. Так, бабочки-монархи способны накапливать в теле высокотоксичные сердечные гликозиды, содержащиеся в растениях с 202 млечным соком, которыми питаются их гусеницы. Тем самым они обеспечивают себя высокоэффективной защити против насекомоядных птиц. Таким образом, у бабочек выработалась способность не только питаться растениями, несъедобными для других насекомых, но и использовать яд растений для собственной защиты от хищников. Групповойотбор—это естественный отбор в группах организмов, не обязательно связанных тесными взаимодействиями. Предполагают, что он действует на уровне более высоком, чем видовой, и ведет к повышению устойчивости экологических систем. Отношение генетиков к групповому отбору противоречиво. Вместе с тем эволюция вида имеет тенденцию к сохранению признаков, которые повышают устойчивость экосистем. Внутривидовая и межвидовая конкуренция приводят к эволюции нишевых различий. В свою очередь, существование таких различий гарантирует, что ресурсы данного сообщества, включая растения и животных, будут использованы более или менее пропорционально их эффективному запасу. Эволюция жертвы приводит к уменьшению энергии, переносимой с одного трофического уровня на другой, и повышению устойчивости экосистемы, эволюция хищника — к возрастанию эффективности этого переноса и снижению устойчивости. Разнообразие видов жертв, добываемых хищником, а также способность последнего изменять свой рацион в ответ на изменение доступности жертвы, вероятно, влияют на устойчивость популяций жертвы, а, следовательно, и на устойчивость сообщества. В эволюции экосистем происходит не только повышение устойчивости биотических сообществ. Подобно тому, как индивидуальное развитие организма (онтогенез) представляет собой краткое повторение филогенеза,5 так и эволюция экосистем повторяется в их сукцессионном развитии. Если мы сравним структуру экосистем в ранние и поздние геологические эпохи, то 203 увидим, что в эволюции экосистем увеличивается их видовое разнообразие, замыкаются биогеохимические циклы, растет способность видов обеспечивать равномерное распределение ресурсов внутри системы и препятствовать их выходу из нее. Так же как в эволюции видов общее прогрессивное развитие сопровождается усложнением отдельных форм, так и в эволюции экосистем возникают такие экосистемы, которые регулируются K-отбором и осуществляют более совершенное перераспределение ресурсов. Одним из свойств K-отбора является замедление темпов эволюционного преобразования. В насыщенной, хорошо сбалансированной экосистеме эволюция встречает множество препятствий: экологические ниши плотно заполнены, связи между группами сильны. Шансы проникнуть извне в такую систему имеют только более конкурентоспособные виды, число которых весьма ограниченно. Следовательно, сбалансированность экосистемы сильно тормозит эволюцию организмов. Наибольшую возможность эволюционировать имеют крупные позвоночные животные. Они обычно обитают в нескольких экосистемах и оказывают сравнительно малое воздействие на других членов сообщества. Поэтому изменения крупных позвоночных влияют зачастую только на крупных же позвоночных (в системе хищник-жертва) и мало сказываются на стабильности системы. Мелкие животные, напротив, благодаря своей высокой продуктивности играют значительную роль в сообществе и потому в зрелых экосистемах эволюционируют медленно, несмотря на большие потенциальные возможности: высокую плодовитость, короткие жизненные циклы, частую смену поколений. Темпы эволюции экосистемы резко меняются при крупномасштабных стрессах. Любой фактор, способный вывести экосистему из стабилизированного состояния, кладет начало более быстрым темпам эволюции. В качестве таких факторов могут выступать глобальные изменения климата, геологические процессы, массовая иммиграция при соединении материков и т. д. На фоне разрушенных 204 прежних связей происходит лавиноподобное образование новых видов. Образуются новые крупные таксоны, т. е. эволюция приобретает характер макроэволюции. Естественно, этот процесс занимает миллионы лет. Подобные явления, которыми богата история Земли (меловой кризис и т. п.), называются экологическими кризисами. Примером экологического кризиса могут служить кардинальные изменения в биосфере, произошедшие в середине мелового периода, около 95—105 млн лет назад. В отложениях мелового времени в большом количестве появляются остатки цветковых растений. Ботаники считают, что эта группа возникла значительно раньше, но долгое время не играла существенной роли в биосфере. Отдельные находки пыльцы встречаются в нижнем мелу, там же обнаружены и первые остатки листьев этих растений. К концу нижнего мела таких остатков становится значительно больше. Основной перелом совершился приблизительно в течение 20 млн лет в конце раннего — начале позднего мела. В позднем мелу покрытосеменные обильно представлены уже повсеместно — их экспансия приобретает глобальный характер. Одновременно вымирает большинство ранее многочисленных растений (беннеттитовые, саговники). На тот же период приходится пик вымирания семейств насекомых и обновление их фауны. Эти изменения в мире растений и насекомых не могли не сказаться и на наземных позвоночных. Известно, что число наиболее изученной группы — динозавров — сильно уменьшилось в середине мела, хотя их полное вымирание произошло позднее. Значительные изменения испытали и другие группы рептилий — ящерицы, черепахи, крокодилы; змеи впервые появились в позднем мелу. К концу нижнего мела относятся первые находки плацентарных млекопитающих. Возможно, что в мелу уже были богато представлены птицы. Таким образом, экспансия покрытосеменных и вытеснение ими господствовавших ранее продуцентов приводит к почти полной смене фауны. Смена фауны насекомых — следствие изменений в составе растительности: насекомые самым непосредственным образом связаны с растительностью: опыление, питание, создаваемый растениями микроклимат. Изменение состава позвоночных было вызвано преобразованиями не только в мире растений, но и изменением состава насекомых. Более того, обладая иным, чем у доминировавших ранее групп 205 растений, метаболизмом, покрытосеменные должны были изменить химический состав среды своего обитания и сделать ее непригодной для жизни многих организмов, с которыми они прямо не конкурировали. Преобразованиям могла подвергнуться атмосфера, почвы и водоемы. Смена растительности оказала воздействие на сток рек, распределение почвенных вод, атмосферную циркуляцию, а через вариации содержания углекислоты в атмосфере — на атмосферный баланс планеты. Покрытосеменные обусловили предпосылки для формирования новых сообществ, которые в отличие от старых первоначально были ненасыщены и потому нестабильны. Обилие незаполненных ниш и слабая конкуренция вызвали компенсаторные эволюционные преобразования и появление новых групп из уцелевших остатков прежней фауны. Скорость этого процесса, вначале небольшая, увеличилась с ускорением вымирания древней фауны, а затем, по мере насыщения экосистем, вновь уменьшилась. Сложившиеся в результате новые стабильные сообщества сохранили свои главные черты до наших дней. Сведения о меловом экологическом кризисе дают возможность сделать ряд выводов, непосредственно связанных с проблемами охраны природы. Эффект, произведенный в экосистемах внедрением покрытосеменных растений, был тем самым эффектом, которого стремится избежать человечество. Его размах красноречиво свидетельствует о размерах экологической опасности. Достаточно сказать, что для выхода экосистем из состояния кризиса потребовалось более 30 млн лет —геологически длительный отрезок времени. Другой вывод касается самого характера кризиса. Во-первых, распад экосистем происходит скачкообразно. Во-вторых, он вызывает компенсаторные эволюционные явления и возникновение новых групп организмов — происходит одновременная эволюция множества растений и животных. Возникает реальная угроза лавинообразного формирования новых видов организмов с непредсказуемыми свойствами! Насколько радикально новыми могут быть эти свойства, видно хотя бы из того факта, что в ходе мелового кризиса появились все общественные насекомые — термиты, муравьи, осы и пчелы, тогда как до этого насекомых с социальным образом жизни не существовало. 206 Т е м а 13 ХОРОЛОГИЧЕСКИЙ АСПЕКТ ИЗУЧЕНИЯ ЭКОСИСТЕМЫ Выделение (разграничение) экосистем в природе часто оказывается далеко не простой задачей. Прежде всего, не существует единой точки зрения по поводу минимальной размерной единицы экосистемы. Некоторые исследователи склонны рассматривать в качестве таковой сравнительно простые, небольшие по размеру сообщества: сообщество разлагающегося ствола дерева, население верхней поверхности листа кувшинки и т. п. Действительно, принимая за основу первое из приведенных в теме 8 определение экосистемы: «...любое непрерывно меняющееся единство, включающее...», можно считать экосистемой любой биоценоз, отвечающий таким требованиям, как наличие трофических уровней, влияние на микроклимат и т. д. Но вспомним другую формулировку, в ней, в отличие от первой, заключен фактор времени: «...исторически сложившаяся система...». Видимо, «население» пня или комплекс видов-сапрофагов, живущих в лепешке навоза, правильнее рассматривать лишь как фрагменты экосистемы, существующие непродолжительное время. Их можно назвать микроэкосистемами (Р. Дажо дает им название «синузия»). Автономность микроэкосистемы относительна и существенно зависит от остальных фрагментов экосистемы. Исходя из этих рассуждений, минимальной размерной единицей экосистемы следует считать более крупные, чем микроэкосистемы, единства: луг, лес, поле, озеро и т. д. 13.1. ПРИНЦИПЫ РАЗГРАНИЧЕНИЯ БИОГЕОЦЕНОЗОВ При разграничении экосистем возникает проблема выбора одного из характерных признаков, которые подразделяют на физиономические, таксономические и экологические. На основе физиономических признаков можно выделить площади с растительностью, сходной по обли- 207 ку, если здесь сгруппированы в одинаковых пропорциях растения идентичных морфологических типов и одинакового сезонного развития. Подобный подход удобен, когда имеется один или два доминирующих вида растений, например сосна в сосняке, ель в ельнике или луговое сообщество лисохвоста и герани. Таксономические критерии базируются на численно преобладающих одиночных видах или на некоторой совокупности видов, которые называются характерными. Однако случаи, когда имеется небольшое число характерных видов, довольно редки. Чаще всего приходится иметь дело с целой группой характерных видов. В природных условиях в любую экосистему входит известное число элементов, которые могут встречаться и в других экосистемах, но к совместному существованию они оказываются способными только в одной конкретной экосистеме. Эта группа видов, или характерный набор, служит лучшим отличительным признаком экосистемы. Если характерный набор видов не проявляется, неизбежно, применение для его выявления статистических методов. Наконец, можно осуществить разграничение экосистем по экологическим признакам, т. е. по параметрам абиотической среды. Но этот способ очень труден, так как требует огромного количества измерений. Другой источник трудностей — определение границ экосистем. В некоторых случаях переход от одной экосистемы к другой бывает резким; таковы границы между лесом и посевами, между выжженными и неповрежденными участками леса. Поскольку реально существующей единицей экосистемы является сама экосистема, а не биотическое сообщество, там, где абиотические факторы меняются резко, выделение границ экосистемы не представляет особого труда. Об изменении абиотических факторов удобно судить по видам-индикаторам, которые, будучи стенобионтными, служат критерием резкого изменения физической среды. Крупные виды являются лучшими индикаторами, чем мелкие, потому что при том же энергетическом потоке может под- 208 дирживаться большая биомасса. Скорость оборота органического вещества у мелких организмов бывает так велика, что сдельный вид, зарегистрированный в момент исследования, может и не быть особенно полезным экологическим индикатором. В ряде случаев постепенное изменение абиотических Факторов вызывает серьезные трудности в определении границ экосистемы. Подобное явление имеет место, например, на склонах. На пологом склоне градиент абиотических факторов определяет постепенное изменение сообществ, поэтому некоторые экологи видят в них не соседствующие экосистемы, а некую непрерывность, называемую континуумом. Однако анализ биотических сообществ на территориях, достаточно ограниченных для того, чтобы единообразие сообществ было реальным, показывает относительную прерывистость и позволяет выделить на пологом склоне несколько экосистем. На крутом склоне наблюдается больший разрыв непрерывности, что облегчает определение границ экосистем. В случае резких границ между двумя конкурирующими сообществами возникает зона напряжения, или экотон. Иными словами, экотон представляет собой зону перехода между различными сообществами, например между лесом и лугом или в море между участками с мягким и твердым грунтом. Эта пограничная зона может иметь значительную протяженность, но она всегда уже территории, прилегающих к ней экосистем. Обычно в экотонное сообщество входит значительная доля видов из перекрывающихся сообществ, а иногда также виды, характерные только для экотона. Число видов и плотность популяций некоторых из них в экотоне часто выше, чем в лежащих по обе стороны от него экосистемах. Тенденция к увеличению разнообразия и плотности живых организмов на границах сообществ известна под названием краевогоэффекта. Одним из обычных и наиболее важных для человека экотонов является опушка леса. Опушку можно определить как переходное сообщество между лесным и травянистым сообщества- 209 ми. Где бы ни жил человек, он стремится сохранить поблизости от своего жилища сообщество опушек. Так, если человек селится в лесу, он вырубает его до отдельных небольших участков, перемежающихся слугами. А поселившись на открытом месте, сажает деревья, также создавая мозаичную структуру ландшафта. Некоторые виды, обычные для леса или степи, способны выжить на опушке, созданной человеком. Другие виды, хорошо адаптировавшиеся к жизни на опушках, особенно многие виды сорняков, птиц, насекомых и млекопитающих, представлены большим числом особей. Известно, что плотность певчих птиц выше на территориях усадеб, в окрестностях поселков и других местах, которые состоят из смешанных местообитаний и, следовательно, характеризуются большей протяженностью границ по сравнению с большими однородными участками леса или полей. Таким образом, границы сообщества, находящегося в состоянии равновесия с соседними сообществами, обозначены модификацией некоторых факторов среды, которые играют решающую роль в пределах этих границ. На площади, занятой таким сообществом, особенности местообитания, напротив, претерпевают изменения, совместимые с существованием и сохранением сообщества. 13.2. ИЕРАРХИЧЕСКИЙ РЯД ЭКОСИСТЕМ Установив минимальную размерную единицу экосистемы — биогеоценоз, можно построить иерархический ряд экосистем (рис. 13.1). Применяя термин «биогеоценоз» в этом смысле, мы сохраняем знак равенства между экосистемой и биогеоценозом лишь для самого низкого уровня в иерархии экосистем. Существование каждого из таких уровней определяется действием его специфического фактора. Масштаб факторов возрастает по мере перехода от низших уровней к высшим: Биосфера космический фактор Экосистемы суши и океана геологический фактор Биогеографическая область фактор эволюции 210 Биом фактор климатического климакса (региональный климат) Ландшафт фактор рельефа Биогеоценоз фактор эдафического климата (мезоклимат). Рис. 13.1. Иерархический ряд экосистем. Рассмотрим каждый из уровней. Процент площадей, способных поддерживать сообщества в состоянии климатического климакса, различен для разных областей. Но поскольку стратегия развития любой экосистемы состоит в достижении климатического климакса, то главными наземными экосистемами можно считать биомы. Они легко выделяются, в частности, по климатической климаксной растительности (рис. 13.2). По этому показателю можно выделить тундру, северный хвойный лес (тайгу), лиственный лес умеренной зоны, степь, пустыню, тропический дождевой лес и т. д. В разных биогеографических областях сообщества сильно различаются по видовому составу. Каждый вид образуется в одном, определенном месте земного шара, а затем расселяется, останавливаясь перед естественными преградами, такими как морские проливы, горные цепи и т. д. Однако всюду, где независимо от географического положения физическая среда одинакова, развиваются сходные экосистемы. Эквивалентные экологические ниши оказываются занятыми теми биологическими 211 Рис. 13.2. Основные биомы европейской части СССР (из Сукачева, 1934, с изменениями). Там, где кривая осадков пересекает восходящую линию испаряемости, расположена граница между гумидным (слева) и аридным (справа) климатом. группами, которые имеются в фауне и флоре данной, области. Так, степной биом развивается во всех областях со степным климатом, но виды злаков и травоядных животных могут быть различными. Организмы, занимающие одинаковые или сходные экологические ниши в разных географических областях, называются экологическимиэквивалентами. Кенгуру в Австралии — экологический эквивалент бизона и вилорогой антилопы в Северной Америке. Виды злаковых трав, которыми питаются травоядные, внешне очень сходны по всему земному шару, хотя конкретные виды, а также роды и даже семейства могут быть строго приурочены к данному материку или к определенной биогеографической области в его пределах. Огромные различия в физико-химических свойствах между наземными и водными средами создают в них совершенно разные условия жизни. Своеобразие экосистем океана в отличие от экосистем суши определя- 212 ется в первую очередь абиотическими факторами, а также рядом особенностей общего характера:
Каждый из иерархических уровней экосистем следует рассматривать не только как систему, объединяющую подразделения низшего порядка, но и как самостоятельную экосистему, обладающую всеми присущими ей свойствами. В зависимости от размера биотопа можно выделить экосистемы различного порядка. Так, биогеоценоз — это экосистема низшего порядка, а биосфера—экосистема высшего, или первого, порядка. Если рассматривать сравнительно ограниченный биотоп с более или менее однообразными абиотическими факторами, например луг, лес или участок морского дна, то количество видов позвоночных, входящих в состав биоценоза, определяется небольшой величиной —50-200 видов. Для более крупных биотопов, например морей умеренной зоны, количество видов позвоночных животных составляет 1-2, а для теплых морей оно возрастает до 5-8 тыс. 13.3. БИОСФЕРА Понятие биосферы вошло в науку случайно. Более 100 лет назад, в 1875 г., австрийский геолог Эдуард Зюсс, говоря о различных оболочках земного шара, впервые упот- 213 ребил этот термин в последней, наиболее общей главе своей книги о происхождении Альп. Однако это упоминание не сыграло сколько-нибудь заметной роли в развитии научной мысли. В 1926 г. были опубликованы две лекции русского минералога В. И. Вернадского, в которых им, спустя 50 лет после работ Зюсса, формулировались основные положения концепции биосферы, которую мы принимаем и сейчас. Под биосферой Вернадский понимал те слои земной коры, которые подвергались в течение всей геологической истории влиянию живых организмов. В последние годы многие ученые (Дж. Хатчинсон и др.) сужают представление о биосфере, рассматривая ее как ту часть поверхности Земли, которая в настоящее время находится под влиянием деятельности организмов. Многие научные термины в разных случаях применяются то в более широком, то в более узком понимании. Что же характерно для биосферы — этой особой оболочки земного шара? Во-первых, в биосфере весьма значительно количество жидкой воды. Во-вторых, на нее падает мощный поток энергии Солнца. В-третьих, для биосферы характерны поверхности раздела между веществами, находящимися в жидком, твердом и газообразном состояниях. Поскольку источником энергии на Земле является Солнце, то все живые организмы распределены в верхних слоях двух земных оболочек: литосферыи гидросферы (рис. 13.3). Чем лучше та или иная земная оболочка пропускает солнечные лучи, тем на большую глубину она заселена живыми организмами. Однако биосфера не кончается там, куда не доходит свет. Благодаря силе тяжести поток энергии распространяется еще дальше: из освещенных слоев в глубину моря непрестанно падают комочки экскрементов, мертвые и живые организмы. В литосферу живые организмы проникают на ничтожную глубину. Основная их масса сосредоточена в верхнем слое почвы мощностью в несколько десятков сантиметров, и редко кто проникает на несколько метров или десятков метров вглубь (корни растений, дождевые 214 Рис. 13.3. Строение биосферы. черви). По трещинам земной коры, колодцам, шахтам и буровым скважинам животные и бактерии могут опускаться на гораздо большую глубину—до 2,5-3 км. Нефть, часто залегающая глубоко от поверхности земли, имеет своеобразную бактериальную флору. Проникновение зеленых растений в глубь литосферы невозможно из-за отсутствия света. Животные не находят там питания. Механические свойства горных пород, слагающих литосферу, также препятствуют распространению в них жизни. Наконец, с продвижением в недра Земли температура возрастает и на глубине 3 км достигает 100 °С. Значит, на глубине более 3 км от земной поверхности живые организмы существовать не могут. С поверхности литосферы живые организмы проникают в нижние слои атмосферы—на высоту от нескольких сантиметров до нескольких метров. А растения возносят свои зеленые кроны иногда на несколько десятков метров. На несколько сотен метров в атмосферу проникают насекомые, летучие мыши и птицы. Восходя- 215 щие токи воздуха могут поднимать на несколько километров покоящиеся стадии (споры, цисты, семена) животных и растений. Однако организмы, проводящие всю свою жизнь в воздухе, т. е. связанные с ним как с основной средой обитания, не известцы. Гидросфера в отличие от атмосферы и литосферы заполнена жизнью по всей своей толще. Повсюду, куда проникали орудия сбора, исследователи находили живые организмы. Из этого мы можем заключить, что жидкая вода является более важным лимитирующим фактором в расселении организмов, чем свет. Так, самые жаркие пустыни формально находятся вне биосферы. Однако фактически они могут считаться парабиосферными (околобиосферными), так как живые организмы там все же есть. Например, в пустынях Намиб и Калахари под слоем сухого песка встречаются насекомые (жуки-чернотелки), существующие за счет приносимых ветром сухих пылевидных остатков растений; питаясь ими, насекомые получают метаболическую воду. Протяженность биосферы ввысь ограничена в основном недостатком жидкой воды и низким парциальным давлением углекислого газа. В горах хлорофиллсодержащие растения, видимо, не могут жить на высоте более 6200 м (Гималаи). На еще больших высотах встречаются некоторые животные, например пауки. Они питаются ногохвостками, а те, в свою очередь, довольствуются зернами пыльцы, заносимыми сюда ветром. Высокогорную область биосферы называют эоловойзоной. Если лимитирующими факторами биосферы являются жидкая вода и солнечный свет, то оптимум жизни приходится на поверхность раздела сред. Исследования фотосинтеза показали, что часто наибольший выход органических веществ дают растения, способные использовать все три фазы: твердую, жидкую и газообразную. Примером может служить тростник обыкновенный, Phragmitescommunis. Всасывание воды для него облегчается постоянным давлением жидкости на донные осадки. Необходимый для существования углекислый газ тростник получает из газообразной среды, в которой скорость проникнове- 216 ния газа через поглощающие поверхности наиболее высока; кислород тоже легче получать из воздуха, чем из воды; наконец, все остальные элементы легче извлекать из раствора в капиллярной воде осадка. Предпринимались многочисленные попытки оценить первичную продукцию биосферы. Обширные пространства Земли попадают в категорию низкопродуктивных из-за таких лимитирующих факторов, как вода (в пустынях) или питательные вещества (в открытом море). Хотя площадь суши составляет всего около 1/4 общей площади планеты, суша превосходит океаны по своей продуктивности, так как большая часть океанских вод в основном «пустынна» (таблица). В Мировом океане значения первичной продукции в разных районах существенно различаются. Наиболее продуктивны коралловые рифы, не уступающие даже тропическим лесам. Продуктивность открытых океанических зон ниже продуктивности зон апвеллинга и прибрежных районов и близка к таковой для тундры. Анализ оценок средних величин для больших площадей показывает, что продуктивность колеблется в пределах двух порядков— от 200 до 20 000 ккал на 1 м2 в год, а общая валовая продукция Земли имеет величину порядка 1018 ккал в год. Чтобы биосфера продолжала существовать, не должен прекращаться круговорот основных химических элементов. Скорость этих процессов может быть различной. Органическое вещество, которое ведет свое происхождение от атмосферного диоксида углерода, завершает цикл формирования за время, исчисляемое десятилетиями. Круговорот кальция совершается значительно медленнее. В форме бикарбоната Са(НС03)2 кальций смывается в реки из континентальных пород, осаждаясь затем в виде карбоната СаС03 в водах открытого океана главным образом в форме тончайших раковин фораминифер. Дно океана медленно перемещается к поясам горообразования на окраинах материков, и кальций возвращается на сушу. Круговорот завершается, по-видимому, за несколько сотен миллионов лет. Фосфор, как мы знаем, по характеру своего круговорота схож с каль- 217 цием, а азот имеет больше сходства с углеродом, хотя его содержание в атмосфере гораздо выше. В разных участках биосферы развитие жизни лимитируется разными веществами. Можно сказать, что в пустыне жизнь ограничена недостаточным количеством водорода и кислорода в форме воды. В открытом океане лимитирующим фактором часто служит железо, обычно присутствующее в форме труднодоступной для организмов гидроокиси. В иных средах, например в почвах влажных районов, в озерах, окраинных морях, лимитирующим фактором чаще всего является фосфор. Чистая первичная продукция больших биомов Земли (по: Рамад, 1981) 218 Мы уже говорили, что биосфера — экосистема первого порядка, или глобальная. А в экосистеме должны быть сбалансированы все компоненты, от потока энергии, субстрата, атмосферы, вод до биотической совокупности. Последняя является управляющей системой по отношению к абиотической совокупности. В биотической системе управляющей подсистемой служат консументы, так как от них зависит степень использования первичной продукции и в конечном итоге стабильность системы в целом. По правилу Эшби, управляющая подсистема или управляющая система должна быть организована не менее сложно, чем управляемая; возможно, в этом лежит разгадка тайны, почему на Земле так много животных, особенно насекомых. Поэтому глобальная экологическая пирамида имеет вид волчка (рис. 13.4). Принцип построения глобальной экологической пирамиды следующий: каждый из основных уровней (продуценты — консументы — редуценты) изображается в форме цилиндра, высота которого — биомасса, а диаметр —количество видов.
219 равновесия между экосистемами низшего порядка неминуемо вызывают саморегуляцию на высшем уровне. Это отражается на многих природных процессах — от изменения глубины залегания грунтовых вод до перераспределения воздушных потоков. Аналосичное явление наблюдается и на уровне очень крупных систем биосферы при изменении соотношения между территориями биомов. В ходе освоения земель, в самом широком понимании этого слова, нарушается и компонентное, и территориальное равновесие. До определенной степени это допустимо и даже необходимо, ибо только в неравновесном состоянии экосистемы способны давать полезную продукцию (вспомним формулу чистой продукции сообщества). Но, не зная меры, человек стремится получить больше, чем может дать природа, забывая, что запасы имеют фундамент из великого множества элементов, пока не входящих в понятие «ресурсы». Современное потребление продукции биосферы достигло 7% чистой первичной продукции суши, и это уже привело к нарушению биохимического круговорота в биосфере, замкнутость которого может поддерживаться биотой только для биологически накапливаемых биогенов. По расчетам В.Г. Горшкова (1986, 1988), такая ситуация будет продолжаться до тех пор, пока потребление первичной продукции не станет превышать 1% (доля потребления продукции всеми крупными животными). Однако для возвращения биосферы в стационарное состояние человечеству придется затрачивать энергию и труд, так как необходимо будет взять на себя те функции, которые раньше выполняла биосфера. При этом следует помнить, что КПД природных экосистем низок и не превышает 10%. Отсюда становится понятным, что необходимое для возвращения биосферы в устойчивое состояние количество энергии должно быть огромным. Человечеству пора оценить свои энергетические и прочие возможности для собственного спасения. 220 Рекомендуемая литература Основная Бигон М., Харпер Дж., Таунсенд К. Экология. Особи, популяции и сообщества: В двух томах. М., 1989. Т. 1. 667 с; Т. 2. 477 с. Дажо Р. Основы экологии. М., 1975. 415 с. Левин А. С. Введение в общую экологию. Таллин, 1996. 178 с. Одум Ю. Основы экологии. М., 1975. 740 с. Одум Ю. Экология: В двух томах. М., 1986. Т. 1. 328 с; Т. 2. 376 с. Пианка Э. Эволюционная экология. М., 1981. 399 с. Пономарева И. Н. Общая экология. С.-Петербург, 1996. 215 с. Реймерс Н. Ф. Экология. Теории, законы, правила, принципы и гипотезы. М., 1994. 367 с. Риклефс Р. Основы общей экологии. М., 1979. 424 с. Дополнительная Алимов А. Ф. Введение в продукционную гидробиологию. Л., 1989. Гиляров А. М. Популяционная экология. М., 1990. 191 с. Лархер В. Экология растений. М., 1978. 185 с. Леме Ж. Основы биогеографии. М., 1976. 309 с. Рамад Ф. Основы прикладной экологии. Л., 1981. 543 с. Реймерс Н. Ф. Природопользование. М., 1990. 639 с. Стадницкий Г. В., Родионов А. И. Экология. С.-Петербург, 1995. 240 с. Сытник К. М., Брайан А. В., Городецкий А. В. Биосфера. Экология. Охрана природы. Справочное пособие. Киев, 1987. 523 с. 221 ОГЛАВЛЕНИЕ Предисловие 3 |