Главная страница

Учебник. Пивненко-полный-перевод. Урок Вводный текст


Скачать 1.19 Mb.
НазваниеУрок Вводный текст
АнкорУчебник
Дата12.06.2022
Размер1.19 Mb.
Формат файлаdoc
Имя файлаПивненко-полный-перевод.doc
ТипУрок
#586666
страница9 из 10
1   2   3   4   5   6   7   8   9   10
Часть очистителя , состоящая из гравитационного диска

Комплект эластичных креплений для машины.

Комплект стандартных запасных частей.
Упражнения.
I. Запомните специальные термины на рис 15.

II. Перевести письменно “ Basuc Equipment”.

III.Дать русские эквиваленты словосочетаниям из текста с суффиксами – ing и – ed.
Self-cleaning typeсамоочищающегося типа

Discharged waterотлитая вода

Engineering industriesинженерные отрасли

Separated sludgeотделенный отстой

Unmanned engine room – неуправляемое человеком машинное отделение

Associated instrumentation – примыкающие приборы
IV. Запомнить следующее :

Centrifugal separator – центробежный сепаратор , lower part – нижняя часть , drive shaft – ведущий вал , friction cluch – фрикционная муфта , friction brake - фрикционный тормоз , worm gear – червячная передача , vertical bowl spindle – вертикальный шпиндель бака , oil bath – масляная ванна , upper part – верхняя часть , frame hood – кожух , fuel system – топливная система , discharge system – отливная система , clean oil – чистое масло , heavy phase liquid – жидкость тяжелой фазы , self-cleaning disc type – самоочищающегося дискового типа , hydraulic operating system – гидравлически управляемая система , controlled total discharge – контролируемая полная разгрузка , inlet device - впускное устройство , transpatent plastic tube – прозрачная пластиковая трубка.
V. Ответить на вопросы к рис 15.


  1. The separator comprises a frame, a horozontal drive shaft with friction clutch and brake , worm gear and a vertical bowl spindle. 2. Yes the frame contains a shaft. 3. Friction clutch and brake are fitted on the horizontal drive shaft. 4. The worm gear is placed in the lower part of the frame.

- 18 -
5. The bowl is fixed on the top of the spindle . 6. The frame hood carry feed and discharge systems. 7. Oil and liquid are discharged by built – in paring disc pump. 8. The bowl is of self-cleaning disc type. 9. A water manoeuvred hydraulic operating system is used for controlled total discharge . 10. Перечислить оборудование , указанное на стр 156. 11. A flow indicator shows with what speed liquid passes the tubes. 12. The revolution indicator shows the nubber of revolutions of the bowl per a set period of time. 13. The clarifier part consists of gravity disc.


  1. Расскажите о сепараторе.


1. Применение. 2. Установка. 3. Принцип работы. 4. Стандартный дизайн. 5. Основное оборудование.


  • 20 -


Урок 21.

СИСТЕМА ОХЛАЖДЕНИЯ.

Принципиальная функция системы охлаждения – это освобождение от тепла , передающегося от горящего топлива к металлу , примыкающему к камере сгорания, но для удобства она , обычно, разветвляется и направляется к пользователям , таким как : охлаждение продувочного воздуха, смазочного масла, выхлопному коллектору, направляющим крейцкопфа и т.д. Все эти возможности применения могут быть включены в единую систему , забортная вода и пресная вода , используемые как охлаждающая среда , или несколько независимых контуров могут использоваться. Наиболее часто используемая система охлаждения – замкнутая система пресной воды. В этом случае забортная вода используется для охлаждения пресной воды , масла и продувочного воздуха.

Вода , которая входит в днище рубашки каждого цилиндра , течет вверх , проходит в головку цилиндра , затем через корпус выхлопного клапана и в трубу , ведущую к рубашке выхлопного коллектора , откуда она направляется в термостат. Последний доставляет часть воды к охладителю , оставшуюся часть в циркуляционный насос для рециркуляции. Если наблюдается повышение температуры охлаждающей воды, термостат направляет большую часть воды к охладителю , а меньшая часть должна быть рециркулирована.

В многочисленных случаях поршни охлаждаются пресной водой или маслом, в этом случае система поршня является , конечно, отдельной от системы рубашки. Используется отдельный циркуляционный насос , и масло или пресная вода , оставляющие поршни, проходят через охладители и в большую цистерну , чтобы быть рециркулированными. В некоторых установках , производимых компанией Burmeister & Wain , охлаждение поршня производится маслом , а остальная часть двигателя пресной водой , морская вода используется только в охладителях , через которые пресная вода и масло пропускаются выхода из двигателя.

Легко увидеть, весь метод охлаждения моркой водой является наипростейшим устройством из-за потребности в меньшем количестве насосов , исключении водяных охладителей и расходных цистерн , но использование пресной воды имеет тенденцию к снижению неполадок , возникающих из-за накипи, отложений и коррозии. Охлаждение поршней маслом устраняет неполадки , возникающие из-за протекания воды в смазочное масло.

Текст.

Стр 163. Дополнительный материал.

Система охлаждения водой.
Циркулирующая вода.
Жизненно необходимо поддерживать поток охлаждающей воды через двигатель , пока он находится в рабочем состоянии ; отказ полной циркуляции будет иметь серьезные последствия.
Система охлаждения водой и температуры.

Метод охлаждения – это система закрытого контура. Она состоит из первичного ( пресная вода) и вторичного ( морская вода ) контура. Забортная вода циркулирует через трубчатый теплообменник. Добавочная вода поставляется из цистерны пресной воды тепло извлекается из пресной воды и смазочного масла путем прохождения забортной воды через теплообменник и охладитель смазочного масла. При условиях обычной работы на полную мощность циркуляция воды должна регулироваться , чтобы давать выходную температуру между 71 и 77 градусами
- 21 -
по Цельсию. При работе на полную мощность разница температур между впуском и выпуском

будет составлять , приблизительно, 11 градусов Цельсия.. Никогда не дозволяется превышать это различие выше 20 градусов Цельсия , а выходная температура не должна превышать 82 градуса Цельсия. Пресная и забортная вода циркулируются при помощи насосов , приводимых в действие мотором.

Образование коррозии и окалины.

Серьезное внимание следует уделять типу воды, используемой в системе охлаждения , и , во всех случаях, важно использовать смягченную воду, не превышающую три градуса жесткости

( три крупинки на галлон ( ан=4.54 л; ам= 3.78 л)), выраженные как углекислый кальций СаСЩ2 на 100,000 галлонов). Совет по обработке воды может быть получен после того, как станут известны данные анализа.

Систему закрытого контура легко обслуживать ( эксплуатировать) , так как она снижает эффекты растворенных частей , которые становятся нерастворимыми во время нагревания и , таким образом, уменьшает риск образования окалины и коррозии.

Коррозия возникает , в основном, из-за присутствия растворенного кислорода двуокиси углерода в воде. Первый растворяется из воздуха , когда вода вступает в контакт с воздухом , а вторая ( двуокись углерода) также растворяется из воздуха , но может , далее, быть образовыванной , когда определенные растворенные части в воде нагреваются и разлагаются в рубашках двигателя. Поэтому причина использования система теплообменника является закрытого типа в том , что контакт воздуха и воды снижен до минимума ; следует , однако, четко понимать, что что даже в этой системе невозможно полностью устранить коррозию, так как наличие свободной двуокиси углерода приводит к малой кислотности дистиллированной воды или конденсату.

Образующие окалину растворенные части известны как « жесткость воды », которая объясняется выше; чем жестче вода, тем больше образуется окалины. Жесткость либо карбонатного типа , которая вызывает образование отложений карбонатной окалины и высвоблждает коррозионную двуокись углерода , либо сульфатного ( сульфат – соль серной кислоты) типа , котораявызывает образование твердой плотной сероватой окалины ; обычно оба типа обнаруживаются вместе.

Образование окалины снижает эфективность охлаждения и создает закупоривание труб и водяных рубашек , особенно, в самых жарких местах, таких как головки цилиндров и выхлопные коллекторы. Результатами этого являются общая неэффективность , высокие затраты , износ двигателя и , наконец, повреждение из-за перегрева.

Дренажная система.

Дренажные краны и заглушки установлены на двигателе , чтобы облегчить слив и чистку.

Дренажные краны и заглушки должны быть установлены в самом нижнем положении на всех трубопроводах . это относится к выхлопной , водяной системам и системе сжатого воздуха.

Если главный двигатель останавливается на значительное времяв в морозную погоду, охлаждающая вода от вспомогательных установок , которые работают, может пропускаться через систему главного двигателя , чтобы предотвратить повреждения из-за замораживания. Это также является преимуществом в очень холодную погоду перед запуском двигателя.

Текст.

Что является центральной системой охлаждения ? ( стр 165)
Центральная система охлаждения означает, что машинное отделение почти полностью освобождено от присутствия забортной воды. Все оборудование охлаждается пресной водой вместо коррозионной и грязной морской воды. Центральная система охлаждения расположена в

  • 22 –


виде закрытого контура пресной воды, и тепло , поглощаемое пресной водой передается морской воде в охладителе или группе охладителей , известных как центральные охладители .Этот контур забортной воды к центральным охладителям состоит из только насосов забортной воды , фильтров и очень коротких труб забортной воды.

Рисунок 17 демонстрирует полную центральную систему охлаждения , в которой все компоненты охлаждаются пресной водой . система может быть поделена на три главные части – клнтур морской воды, контур высокой температуры и контур низкой температуры .

( 1) Контур морской воды.

Насосы забортной воды F принимают воду из моря и пропускают её через центральные охладители Е , а впоследствии за борт. Обычно, один насос обслуживает охладители , а другой находится в положении готовности. Повышение температуры воды составляет , примерно, 10 градусов Цельсия.

(2) Контур высокой температуры.

Насосы пресной воды С перекачивают воду для охлаждения цилиндра главного двигателя А и вспомогательных двигателей В. на выходе из двигателя вода принимается в дистиллятор

( испаритель) ( нагрев для испарения морской воды). Из выпускного отверстия дистиллятора пресной воды вода направляется обратно к насосам С. впускная температура к двигателям составляет , около, 58 градусов Цельсия , подъем температуры составляет , около, 7 градусов Цельсия. Этот уровень температуры и различие варьируют, конечно, в соответствии с типом двигателя.

( 3) Контур низкой температуры.

Пресная вода оставляет центральные охладители при температуре 35 градусов Цельсияи распределяется к двум группам вспомогательных механизмов , соединенных последовательно. В каждой группе компоненты соединяются параллельно , как указано на рисунке.

Первая группа состоит из компрессоров , охладителей топлива, установки кондиционирования воздуха и конденсатора для дистиллятора пресной воды. Во второй группе охладители воздуха и масла главного двигателя расположены параллельно. Охладители воздуха и масла для вспомогательных двигателей также подсоединены параллельно к этим группам. Основной объем пресной воды затем направляется обратно к центральным охладителям .
Контроль температуры охлаждения цилиндра.

Темло , поглощаемое пресной водой в в контуре высокой температуры, будет переноситься к контуру низкой температуры в точке Н. Регулирующий температуру клапан D смешивает воду при температуре , примерно, 44 градуса Цельсия , поступающую от контура низкой температуры ( точка G)с более теплой водой с температурой 65 градусов Цельсия , поступающей от двигателей и выпускного отверстия дистиллятора пресной воды до подходящего уровня для впуска в двигатели.

Вследствие ( по причине) баланса в контуре высокой температуры тотже поток , проходя точку G, оставит контур в точке Н , и впускная температура в центральные охладители будет достигать около 50 градусов Цельсияю

Урок 22.

СИСТЕМА СМАЗКИ.
Примечание . Этот урок состоит из нескольких текстов по смазке дизельного двигателя и его оборудования. Они предлагаются дл явашего чтения и понимания. Прочитайте, переведите, чтобы получить информацию по предмету. Проверьте понимание , ответив нва вопросы по тексту.

Смазка. Важности правильной смазки нельзя не уделитььособого внимания. Принятие специальных мер предосторожности и внимания этому пункту будет иметь материальный эффект на срок службы работающих частей двигателя. Имеется в наличии много хороших и недорогих масел для смазки , подходящих для использования с дизельными двигателями, но следует соблюдать осторожность при выборе.

Если не указано иначе , масло для смазки одного из производителей , упомянутых ниже или их уполномоченных распределителей , одобрено для использования в обслуживании. Рекомендуются моющие масла.

Маркетинговые компании :Shell, Gastrol, Mobil, ESSO, the Power Petroleum Co.LTd ( UK), B.P.Co’s, Germ, Gulf

Cистема смазки.

Продувочный смазочный насос напрвляет масло от картера и доставляет его в наружную цистерну смазочного масла. Насос давления подает масло от цистерны и доставляет его под давлением через охладитель масла и фильтр в трубу главного распределителя смазочного масла, залитую неотьемлемо с картером , и к подшипникам двигателя и т.д. Двигатель спроектирован для работы в системе сухого картера. Однако, в случае поломки одного насоса , смазочная система может быть отрегулирована для работы на одном насосе как мокрый картер путем установки контрольных кранов.

Прии\ работе на системе мокрого картера важно, чтобы уровень масла в картере проверялся при помощи мерной рейки , а уровень масла должен поддерживаться между отметками высокого или низкого уровня на мерной рейке. Нв каждом насосе расположен предохранительный клапан. Клапан предотвращает создание избыточного давления в системе и охладителе масла. Жизненно важные части двигателя , такие как рамовые подшипники , подшипники большого и малого конца шатуна , подшипники кулачкового вала , регулятор и колеса шестерни все принудительно смазываются. Другие части , такие как поршни , кулачки и ролики толкателей обильно смазываются распылением , а механизм привода клапана смазывается.
Текст стр 169. Охладитель смазочного масла.

Охладитель смазочного масла трубчатого типа расположен около двигателя. Сырая вода , проходящая через охладитель масла , течет через трубки охлаждая горячее масло , которое проходит вокруг пучка трубок охладителя.

Охладитель трубчатого типа состоит из трех главных частей : цилиндра, пучка труб и водяных коробок. Один концевой лист пучка труб закреплен на цилиндре , а другой конец свободно расширяется при помощи двух круглых разъемных колец и проставочного кольца сальника. Расширение полного пучка может происходить без возможности протекания масла в водяную камеру и наоборот. Проставоче\ное кольцо сальника имеет круглый паз с равноотстоящими отверстиями , просверленными на окружности , поэтому любое протекание является наружным и будет немедленно замечено , т.к. его сразу видно через эти отверстия.

Если , после периода службы, наблюдается неожиданное повышение температуры выше нормального рабочего состояния , это почти всегда происходит из-за накопления грязи и т.д. внутри труб. Охладитель должен быть очищен при первой возможности путем демонтажа водяных коробок , чтобы добраться до пучка труб; трубы могут быть очищены путем использования щетки и штока.

Коррозия образуется, в большей степени, из-за поступающего воздуха ; следует принять меры , чтобы предотвратить образование воздушной пробки.
Стр 170. Давление смазочного масла.

Оно не должно падать ниже 18 пси ( 1.26 кг/см2) при полной скорости. Рекомендованный диапазон 25/30 пси ( 1.76/2.11 кг/см2).

Предохранительный клапан устанавливается на рабочее состояние , чтобы давать рекомендованное давление масла . но должен регулироваться , пока двигатель работает , если необходимо, чтобы соответствовать системе трубопровода. Регулировки давления масла производятся путем увеличения или снижения нагрузки на пружину путем поворачивания пробки.

Всегда затягивайте стопорную гайку ( контргайку) после выполнения регулировки.

Давление масла в распределителе указывается прибором на контрольном конце двигателя.

Измеритель давления устанавливается в системе смазки , которая издаст звуковой сигнал в случае , если давление упадет до 1.26 кг/см2.

Фильтр смазочного масла.

Масляный насос доставляет масло через фильтр до того , как оно попадает на любые работающие части. Стандартный масляный фильтр двойного поточного типа , расположенный так , что один элемент может быть демонтирован для чистки , пока другой элемент находится в использовании.

Фильтр должен чистится ежедневно или так ,как показывает опыт.

Замена смазочного масла.

Полная замена смазочного масла должна производиться в сроки, рекомендованные поставщиками масла. Образцы масла отстойникадолжны браться на обследование через интервалы , установленные по обоюдному соглашению.
Стр 171. Масляные насосы и передачи.
Насосы сдвоенного шестереночного типа устанавливаются на носовом конце двигателя приводятся в действие посредством шестерён от выступающего вала коленчатого вала. Шестерня на выступающем вале устанавливается с пружинной передачей , чтобы устранить эффект вибрации коленчатого вала. Насосы идентичны и взаимосвязаны с подходящими клапанами с тем , чтобы в случае поломки одного насоса , система смазки могла быть отрегулирована для работы на одном насосе , как для двигателя с масляным картером. Один насос обычно установлен для снабжения под давлением системы двигателя , а другой для слива масла от основания двигателя и возврата масла в масляную цистерну. Диаграмма может указать положение переключающих кранов для обычной работы и также любого неработающего насоса.

Стопорное устройство при выходе из строя системы смазки.

Оно устанавливается , чтобы защитить подшипники двигателя , если возникает поломка в системе смазки. Цилиндр стопорного устройства подсоединен к стороне давления масляного насоса так , что это давление масла оттягивает поршень. Если давление падает , или становится опасно низким , пружина толкает поршень обратно и расцепляет стопор на контрольной тяге, который перемещает контрольный вал топливного насоса в положение «стоп».

Вышеупомянутое устройство переключается вручную путем отжатия рукоятки , которая примыкает к регуляторам на конце маховика .

Урок 23.

НАДДУВ.
Наддув , или зарядка под давлением, это средство увеличения выходной мощности данного двигателя. Это процесс заполнения цилиндра двигателя до начала хода сжатия с воздухом под давлением несколько фунтов ( 2-2.5 кг/см2)выше атмосферного; это делается с целью получения большего веса воздуха в цилиндре , чем может быть получено обычным методом. Так как соотношение воздуха в начале и конце сжатия для любого состояния закреплено, следует, что если мы начнем с высокого давления , окончательное давление сжатия будет выше. Это означает , что если двигатель с наддувом, объем камеры сжатия должен быть увеличен, если давление сжатия должно поддерживаться темже.

Имея больший вес воздуха в цилиндре мы можем сжигать больше топлива. Хотя сжигается больше топлива, присутствует больше воздуха , и соотношение топлива к воздуху является темже , как и без наддува. Выхлоп происходит при более высоком давлении , но температура выхлопа даже ниже , чем при обычной работе. Причиной этого является то , что регулировка клапанов расположена так , что впускной клапан открывается до того , как закрывается выхлопной клапан; давление впускного воздуха выше , чем у выхлопных газов в то время , когда открывается впускной клапан , воздух продувается через камеру сжатия , выдувая газы и охлаждая их , а также охлаждая поршень и стенки цилиндра. Это действие такде полностью заполняет камеру сжатия , т.е. камеру цилиндра с пресным воздухом. Чистое увеличение мощности , созданное в двигателе , может составлять 50 %.

В современных дизельных двигателях широко используется газотурбонаддув. Турбонагнетатели , приводимые в действие выхлопными газами, работают на импульсной системе или по принципу постоянного давления , и не зависят от коленчатого вала. Их скорость меняется с нагрузкой на двигатель. Никакого вспомогательного привода или воздуходувки не требуется для запуска или для работы на частичных нагрузках. Воздух, сжатый турбонагнетателями, затекает в приемник продувочного воздуха и через невозвратные клапана в камеры, расположенные под каждым цилиндром. Здесь он далее сжимается поршнями во время его хода вниз до затекания в камеру сгорания , когда поршни откравают продувочные отверстия. Насосное действие подпоршневых полостей достаточно для выдувания и зарядки цилиндров, когда двигатель запускается до того, как турбонагнетатели приходят в действие. Фактически, даже если все турбонагнетатели не будут раюотать, судно все равно будет двигаться со скоростью = 75% от обычной. Другое последствие этого расположения в том, чтовыхлоп выхлоп остается полностью свободным даже при снижении до низкой частичной нагрузки.
Дополнительный материал.

Турбонагнетание.
Эта инструкция предназначена для дизельных двигателей, построенных как обычные без наддува с турбонагнетением и турбонагнетением с охлаждением воздуха.

В четырехтактном естественно наддуваемом двигателе воздух для горения затягивается вовнутрь во время хода всасывания. Однако, получаемый вес воздуха для горения в конце хода всасывания не равен ёмкости цилиндра , умноженной на удельный вес атмосферного воздуха , но снижен остаточным выхлопным газом , увеличением температуры воздуха , затягиваемого вовнутрь из-за смешивания с выхлопным газом , а также дросселирования и сопротивления трению впускных клапанов и отверстий ( проходов).

В двигателе с турбонаддувом воздух поставляется предварительно сжатым и ,в некоторых случаях, охлажденным. Больший вес воздуха для горения имеется , таким образом, в наличии в цилиндре , и из-за перекрытия клапана цилиндр освобождается ( выдувается) от выхлопных газов. Поэтому, отсюда следует , что эффект турбонаддува заключается в следующем :

  1. увеличить вес воздуха , имеющегося для горения.

  2. продуть оставшиеся газы

  3. охладить все части камеры сгорания.

С большим весом воздуха большее количество топлива может быть сожжено и увеличение мощности получено без увеличения температуры и , следовательно, тепдового напряжения в двигателе.

Турбонаддув существует в системе Buchi. Турбонагнетатель включает одноступенчатую осевую турбину , приводимую в действие выхлопными газами, приводящую в действие центробежный воздушный компрессор , который затягивает воздух из атмосферы и доставляет его под давлением в воздушный впускной коллектор , затем через воздушные впускные клапана к цилиндрам. Колесо газовой турбины и воздушный маховик устанавливаются на вал обычного ротора, несомого в подшипниках , установленных на каждом конце вала.

Пульсирующая энергия газов от различных цилиндров используется для приведения в действие турбонагнетателя , и , таким образом , нет никакой потери мощности ддвигателя. Чтобы обеспечить эффективное продувание , необходимо иметь большое перекрытие воздушных и выхлопных клапанов.с этим перекрытием на многоцилиндровых двигателях важно избежать помехи в выхлопных трубах между выхлопными импульсами от последовательных цилиндров , так как это помешает эффективному продуванию . чтобы устранить это, две, три или четыре выхлопные трубы используются в зависимости от количества цилиндров.
Стр.180. Система турбонагнетателя.
Двигатель поставляется с продувочным воздухом от турбонагнетателей , приводимых в действие выхлопным газом от двигателя.

Выхлопной газ течет к турбонагнетателям от выхлопных клапанов через коленные патрубки , количество патрубков зависит от количества цилиндров двигателя., последовательности вспышек и проекта турбонагнетателя.

Выхлопные патрубки присоединены на болтах к впускному корпусу турбины. Компенсация для расширения изготавливается путем установки компенсатора сильфонного типа между каждым выхлопным патрубком и выхлопным клапаном .

Решетка устанавливается в каждом впускном газовом отверстии чтобы предотвратить ,например, попадание поломанных колец поршней в турбину и повреждение лопастей ротора.

Выхлопной газ течет от турбин через отводную трубу в обычную выхлопную трубу. Воздух, необходимый для горения , всасывается вовнутрь через фильтр и глушитель на маховике , и , после сжатия маховиком и в диффузоре , нагнетается через охладитель воздуха по трубе и проходит в приемник продувочного воздуха.

Ребристые трубы в охладителе воздуха охлаждаются забортной водой , которая проходит через трубу.
Стр. 181. Турбонагнетатели.
B & Ws выхлопной турбонагнетатель состоит из одноступенчатого центробежного компрессора , приводимого в действие одноступенчатой газовой турбиной. Воздух всасывается через воздушный фильтр и глушитель , после чего он проходит через протектор и маховик (кралатку). От маховика воздух течет между лоптками диффузора охладителя воздуха.

Турбина приводится в действие выхлопным газом от двигателя. Газ напрвляется вовнутрь через впускное отверстие турбины и через впускные каналы в лопатки сопла , которое придает выхлопному газу правильное направление потока по отношению к лопаткам турбины. Выхлопной газ затем идет от выпускного отверстия турбины к выхлопному коллектору , а затем в атмосферу. Между выхлопным коллектором и атмосферой может быть установлен утилькотел или глушитель.

Подшипники смазываются от гравитационной цистерны. Поток смазочного масла через подшипники может быть проверен через два смотровых стекла , одно установлено во впускном отверстии смазочного масла от компрессора, и одно в выпускном отверстии от турбины. Используемая смазка – устойчивое к воздействию температур турбинное масло с вязкостью 4-5 градусов по Энглеру при 50 градусах С.

Урок 24.

Инструкции по работе дизельного двигателя.

Подготовка для запуска двигателя.
Все морские двигатели запускаются сжатым воздухом , и очень важно , чтобы подача пускового воздуха и устройства по замене были достаточными.

Пусковой воздух хранится в танках, цилиндрах , которые могут иметь объединенную ёмкость 2100 кубических футов. Правилом является подача 35 кубических футов пускового воздуха для каждого двигателя , для каждого кубического фута объема , прогоняемого одним поршнем в одном рабочем цилиндре. Воздух обычно переносится под давлением 300 – 400 футов ( около 30 кг/см2).

Подготовка судна к состоянию « на ходу» начинается в МО за час или два часа до отплытия.

На нервой стадии нужно повернуть каждый двигатель на полный оборот при помощи валоповоротного устройства , чмобы увридеть, что все свободно и не мешает работе , после чего валоповоротное устройство отсоединяется. Затем запускается циркуляционный масляный насос и другие насосы , производится инспекция , чтобы убедиться , что масло циркулирует свободно и достигает всех подшипников.

Если сжатие в рабочем цилиндре правильное , и все другие условия нормальные , любой дизельный двигатель должен запускаться легко ; но быстрый запуск предполагается , если предоставляется устройство для подогрева цилиндров и головок перед запуском.

Финальные стадии подготовки должны включать открытие главных стопорных клапанов в магистралях пускового воздуха , инспекцию измерительных приборов , чтобы увидеть, что давление воздуха в норме , а расходные цистерны топлива полные.

Когда приборы регулирования воздуха передвинуты в стартовое положение, впуск достаточного количества воздуха для придания быстрого ускорения поршню является средством ускорения горения топлива , но слишком быстрый поворот гребного винта создаст опасный толчок на месте швартовки. Этот толчок может быть предотвращен , если двигатель поворачивается быстро сначала , чтобы получить быстрое начало горения , затем контрольные приборы топлива быстро дросселируют , чтобы придать самую медленную скорость , при которой двигатель будет работать и зажигаться регулярно.

После работы в одном направлении пока все будет в порядке , двигатель должен быть реверсирован, чтобы испытать реверсивный механизм. Запуск в реверсивном направлении должен производиться очень медленно.
Текст стр 183. Подготовка перед запуском.


  1. Открыть нагнетающий клапан циркуляцинного водяного насоса или любую другую попеременно действующую подачу к двигателю.

  2. Открыть выпускной клапан.

  3. Открыть индикаторные краны давления , чтобы стравить сжатие , пока прокручиваете двигатель.

  4. Убедитесь, что контрольный маховик находился в положении СТОП,

  5. Проверьте давление в ресивере ( приемнике) пускового воздуха.

  6. Прокрутите двигатель , по крайней мере, на два оборота. Запустите систему смазочного масла во время прокручивания , пока давление будет указано на приборе.

  7. Закройте все индикаторные краны давления

  8. Откройте коан на трубопроводе подачи топлива.

  9. Настройте остановочный механизм отказа подачи масла

  10. Настройте круровую шкалу предела нагрузки на регуляторе.


Чтобы запустить двигатель .

  1. открыть пусковой клапан на ресивере ворздуха.

  2. Вращайте контрольный маховик по часовой стрелке , пока стрелка установится в положение « старт ».удерживайте, пока двигатель заработает, затем поверните стрелку в положение « работа ». всегда вращайте маховик по часовой стрелке. Если двигатель не сможет запуститься при первой попытке, поверните маховик в положение « старт » и попробуйте ещё раз. Никогда не возвращайтесь к положению « старт » без прохождения через положение « стоп».


Стр 184. Пусковая система.
Дизельный двигатель запускается сжатым воздухом с давлением , не превышающим 30 кг/см2. Нагретый двигатель может быть запущен при минимальном давлении воздуха 9 кг/см2.

Пусковая система состоит из главного пускового клапана , загружающего клапана , распределителя воздуха, пускового клапана на цилиндр, поста управления, резервуаров воздуха и трубопроводов.

Преимущество этого дизельного двигателя состоит в наличии тщательно разработанной пусковой системы. Во-первых, двигатель начинает запускаться с помощью воздуха , затем, воздух продолжает затекать в цилиндры вместе с топливом.

Такая система обеспечивает быстрый запуск и реверсирование и значительно снижает количество требуемого пускового воздуха.

Двигатель контролируется с помощью одной рукоятки – свойство, очень ценное в работе. Рукоятка управления позволяет запустить, остановить , реверсировать двигатель и менять подачу топлива. Двигатель имеет блокирующее устройство. Последнее, связанное с рычагами управления, поддерживает работу двигателя данных предусмотренных режимах работы.

Щит с контрольно-измерительными приборами , установленный над рукояткой управления , несет следующие инструменты : монометры воды, топлива и пускового воздуха, дистанционные датчики температуры и тахометр.

Двигатель реверсируется с помощью рукоятки пуска и установки . коленчатый вал меняет направление вращения после того, как распределительный вал меняет свое положение , а барабан распределителя воздуха поворачивается.

Смазочное масло к подшипникам двигателя , масло охлаждения поршня и масло высокого давления для смазки цилиндра идет от системы циркуляции смазочного масла , проходя шестереночный насос фильтры грубой и мелкой очистки и охладитель масла , охлаждаемый морской водой. Цилиндры смазываются двумя или тремя плунжерными насосами , подающими точные объемы масла.


Стр 186. Система пускового воздуха ( B & W ).
Система пускового воздуха состоит из главного пускового клапана ( два шаровых клапана с приводами), невозвратный клапан, распределитель пускового воздуха, пусковые клапана в крышках цилиндров. Главный пусковой клапан подсоединяется к работающей системе , которая контролирует запуск и медленное поворачивание двигателя. Система для МЕДЛЕННОГО ПОВОРОТА приводится в действие вручную из поста управления , автоматическое приведение в действие используется только, когда установка устанавливается на контроль с мостика.

Распределитель пускового воздуха контролирует пусковой воздух к пусковым клапанам в крышках цилиндров , таким образом, чтобы пусковой воздух подавался в цилиндры в правильной последовательности. Распределитель пускового воздуха имеет два комплекта кулачков – одини комплект для ДВИЖЕНИЯ ВПЕРЕД , а другой для ДВИЖЕНИЯ НАЗАД и один контрольный клапан для каждого цилиндра.
ПОДГОТОВКА ПРИ ОБЫЧНЫХ УСЛОВИЯХ .
Если двигатель находился в положении готовности только в течение короткого периода времени, процедура следующия:

  1. Разъединить валоповоротное устройство.

  2. Продуть систему пускового воздуха для удаления любой воды и смазать все клапана в системе.

  3. Продуть пневматическую пусковую систему для удаления любой воды.

  4. Запустить масляные насосы для следующего: главного двигателя, распределительного двигателя и турбонагнетателей усилителя регулятора.

  5. Проверить давление масла и поток масла через систему смотровые стекла масла на главном двигателе и турбонагнетателях.

  6. Проверить . чтобы масленки были заполнены должным типом масла , и чтобы они доставляли масло при ручном управлении.

  7. Запустить насосы охлаждения водой и проверить давление.

  8. Смазать подшипники соединения в механизме маневрирования.

  9. Установить стопорный клапан в положение «Работа» и открыть подачу воздуха к пневматичекой пусковой системе .Стопорный клапан должен быть в положении «Работа», когда судно находится в плавании и в положении « Блокировка» во время ремонта.

  10. Включить подачу энергии для электрооборудования в системе маневрирования.

  11. Во время следующих проверок клапан к распределителю пускового воздуха должен быть закрыт, селектор команд должен находиться в положении « Аварийный режим», а распределительный вал должен быть в наружном положении для движения ВПЕРЕД и НАЗАД. Проверьте , чтобы указатель ( стрелка) для всех топливных насосов соответствовала различным положениям ручки маневрирования , в конце проверки откройте клапан к распределителю пускового воздуха.

  12. Запустить пусковой насос и насос охлаждения сопла , проверить давление.

  13. Провентилировать топливные клапана.

  14. Медленно повернуть коленчатый вал двигателя на один оборот с открытыми индикаторными кранами , чтобы предотвратить повреждение , возникающее в результате соединений смазочного масла , топлива и воды в коронах поршней. Медленный поворот достигается путем установки ручки телеграфа в требуемое положение вращения , а ручки маневрирования в положение « ПУСК». Когда коленчатый вал повернут на один оборот , потянуть ручку маневрирования обратно в положение « СТОП ». Медленный поворот двигателя должен всегда производиться как можно позже до запуска и во всех случаях максимально за полчаса до выполнения первых маневров.

  15. Закрыть индикаторные краны.

  16. Установить селектор команд в требуемое положение.

  17. Проинформировать мостик , что двигатель готов.



Стр 188 . Урок 25.

Маневрирование судна и на ходу.
При маневрировании судна техническое обслуживание системы подачи пускового воздуха имеет очень важное значение. При тёплом двигателе не более двух оборотов на воздухе требуется до начала горения топлива.

В случае реверсирования направления движения автоматическое вентилирование цилиндров предотвращает воздействие на любой цилиндр сопротивления сжатого воздуха , находящегося над ним , клгда он начинает движение назад в другом направлении. Если маневрирование двигателя вовлекает реверсирование , когда судно значительную силу инерции по воде , двигатель имеет тенденцию продолжать поворот под влиянием гребного винта. Двигатель Доксфорда использует систему автоматического торможения контрвоздухом, в которой все цилиндры соединяются трубопроводами контрвоздуха. Распределительные клапана ( клапана управления) подсоединены таким образом , что при торможении сообщение открывается между завершающим сжатием цилиндра и только одним пусковым сжатием , добавленное сопротивление к сжатию быстро останавливает двигатель.

Во время долго продолжающихся периодов маневрирования следует уделять внимание работе независимого насоса охлаждения водой. Если значительный период времени прошел между последовательными пусками двигателя , не следует поддерживать насос в рабочем состоянии долгое время , чтобы сильно охладить цилиндры. После того, как двигатель набирает обычную рабочую скорость, масленки и охлаждающая вода будут отрегулированы пока не будут получены требуемые рабочие температуры, компрессор пускового воздуха входит в режим, начинается обычная морская работа. Обычно, тмеются определенные условия , которые должны поддерживаться, чтобы обеспечить хорошую работу со стороны двигателей. Эти условия принципиально должны относиться к топливу, охлаждающей воде, смазочному маслу.

Следует следить за показаниями змерительных приборов на расходных топливных системах , чтобы видеть, что подача масла к дозирующим насосам поддерживается.

Дополнительно, для наблюдения за давлением в системе охлаждения водой должны сниматься регулярные показатели с термометров , установленных на различных магистралях , а клапана управления должны быть отрегулированы , чтобы поддерживать равномерные температуры во всех рубашках.

Большинство двигателей с принудительной смазкой подшипников имеют закрытые корпуса , и имеется немного проверочной работы , которая может быть выполнена в районе ощупывания кривошипа , крейцкопфа, рамовых подшипников , но следует наблюдать за термометрами на маслопроводах , чтобы заметить любое неожиданное повышение температуры , которое указывает на нагрев подшипника.

Форма используемого лага машинного отделения варьирует на разных судах , но какую-бы форму записи не соблюдали , записи должнв производиться , по крайней мере , каждый час.


Стр 191 Дополнительный материал.

Переведите следующие инструкции без словаря .
Процедура, когда двигатель работает :

  1. Закрыть пусковой клапан на приемнике воздуха

  2. Отрегулировать регулятор скоростина приёмнике воздуха.

  3. Проверить давление смазочного масла.

  4. Перезарядить приемник воздуха как можно быстрее до 300 пси (21.1 кг/см2).

  5. Установить шкалу предела нагрузки на регуляторе.


Работа с нагрузкой:

  1. отрегулировать воду охлаждения , чтобы дать температуру выхода между 160 градусами по Фарингейту и 170 градусами по Фарингейту ( 71 градус цельсия и 77 градусов Цельсия ).

  2. Поддерживать давление масла на уровне 30 пси ( 2.11 кг/см2).

  3. Когда потребуется, отрегулировать топливные насосы , чтобы дать отбалансированные температуры выхода выхлопа и максимальные показатели давления.


Чтобы остановить двигатель :

  1. Повернуть маховик в положение СТОП.

  2. Закрыть кран на системе подачи топлива.

  3. Где позволяют системы, желательно дать возможность циркулирующей воде течь через двигатель примерно 15 минут после того, как двигатель остановлен ,позволяя двигателю медленно охлаждаться.


Первый запуск:

Если двигатель запускается после ревизии ( переборки) , должна быть принята следующая процедура:

  1. Проверить все наружные части на признаки перегрева. СМ



  1. Остановить двигатель после 5/10 минут работы.

  2. Демонтировать инспекционные двери станины и проверить внутренние подшипники и работающую шестерню ( редуктор) . чтобы убедиться , что нет ненормального нагрева. Если во время работы наблюдаются какие-либо признаки внутреннего перегрева , остановите двигатель немедленно , но не демонтируйте никакие двери , пока не пройдёт , по крайней мере, 15 минут после остановки двигателя.

  3. Увеличивайте нагрузку постепенно в течение первых нескольких часов всякий раз, когда это возможно, особенно, если установлены .овые поршни и втулки



Урок 26. Стр 191-193

Неполадки во время работы.
Каждый механик знает, что невозможно предсказать все возможные неполадки , которые могут возникнуть в машинном отделении. Большинство возможностей отклонений от нормы общего характера включают следующее :

Вода в топливе. Вода может попасть в топливные танки путем протекания через поврежденные сварные швы танков , из-за попеременного использования танков для топлива и водяного балласта или в результате того, что топливо при его доставке в танки может содержать значительное количество влаги , которое конденсируется. Неполадки в следствие этого следующие : треснувшие головки и поршни , прогоревшие выхлопные клапана, клапан впрыска, топливные насосы высокого давления.

Неправильно очищенное масло. Топливо должно во время очистки обрабатываться серной кислотой , и эта кислота должна позже нейтрализоваться содой. Когда двигатель открывают после работы на недостаточно очищенном масле , вся поверхность камер сгорания в цилиндрах имеет покрытие в виде зернистого (песчаного ) материала , которым , в основном, является мульфат натрия. Он является причиной значительного износа колец поршня и втулок цилиндров.

Потеря мощности или замедление двигателя. Когда этот возникает, первой возможностью, которую надо исследовать, являются горячие подшипники. Другими причинами являются неполадки с подачей топлива к одному или более цилиндрам, отклонение отнормы клапанов или распределительных устройств клапанов или падение температуры охлаждающей воды.

Треснувшие цилиндры или головки цилиндров. Трещины могут появиться из-за неравномерного нагрева из-за плохого проекта , плохого покрытия , воздушных пробок в рубашках, недостатка охлаждающей воды и перегрева. В результате первых двух причин редко возникают трещины. Неполадки , возникающие от воздушных карманов , устраняются путем периодического открывания вентиляционных кранов на головках цилиндров. Когда ,по какой – либо причине, подача охлаждающей воды к части или ко всем цилиндрам нарушается, двигатель нельзя долго держать в рабочем состоянии , пока неполадка устраняется. Трещины, которые возникают из-за местной перегрузки , создаваемой из-за неполадок с топливными насосами или некоторых других условий , которые являются причиной прекращения горения в одном или более цилиндрах.

Треснувшие коленчатые валы. Когда коленчатый вал трескается, трещина ,обычно, возникает в пальце кривошипа или щеке коленчатого вала. Если один подшипник изнашивается больше, чем другие, вал сгибается, что приводит к поломке.

Вибрация. Объем вибрации двигателя и корпуса судна , в котором он установлен, зависит от того, как хорошо отбалансированы поршневые и вращающиеся массы в двигателе , и положения двигателя относительно к узловой точки в корпусе. Обычно дизельные двигатели работают с очень незначительной вибрацией , но иногда случается , что двигатель имеет критическую скорость , при которой крутящиеся импульсы , переданные коленчатому валу давлением , воздействующим на поршень, совпадают с естественным периодом вибрации коленчатого вала. При этой скорости возникаетсильнейшая вибрация. Эта критическая скорость должна быть пройдена как можно быстрее при маневрировании , и двигатель должен всегда работать выше или ниже этих скоростей.

Стр 195 . Внезапное возникновение проблем.
Следующее включает краткое описание некоторых остановок , которые могут возникнуть и их причины.

Трудности при запуске.

Коленчатый вал вращается слишком медленно или неравномерно на пусковом воздухе.

Причина :

1.- поршни в распределителе пускового воздуха застревают.

2.- пусковые клапана в крышках цилиндров повреждены.

3.- неправильная настройка распределителя пускового воздуха.

Коленчатый вал поворачивается на пусковом воздухе , но отсутствует впрыск топлива, так как стрелка ( указатель ) насоса находится слишком низко.

1.- инертность маневрового устройства.

2.- поршень в стопорном цилиндре не движется либо из-за замедления , либо из-за того, что не отключена функция « отключение».

3.- давление маневрового воздуха к генератору слишком мало.

4.- нарушение в регуляторе или усилителе.

5.- неправильная настройка маневрового устройства.

Топливо впрыскивается , но отсутствует горение.

Причина :

1.- вода в топливе.

2.- топливные клапана или форсунки повреждены.

3.- давление сжатия во время старта очень низкое.

4.- впрыскивание топлива происходит слишком поздно.

5.- вязкость топлива слишком высокая.
Стр 196. Трудности во время работы.
Температура выхлопа увеличивается в одном индивидуальном цилиндре.

Причина :

1.- поврежденный топливный клапан или форсунка.

2.- утечка в выхлопном клапане.

3.- отсутствие подачи топлива или другие утечки в камере сгорания..

4.- неправильная настройка кулачка топливного насоса.

Температура выхлопа понижается в одном индивидуальном цилиндре.

1.- воздушные пробки в топливном насосе и/или топливном клапане.

2.- шток в топливном клапане застревает.

3.- всасывающий клапан в топливном насосе поврежден.

4.- поршень топливного насоса застревает или протекает.

Дымный выхлоп приувеличенной нагрузке.

Причина :

1.- скорость турбонагнетателя не соответствует скорости коленчатого вала.

2.- подача воздуха для горения неадекватная.

3.- поврежденные топливные клапана или форсунки.

4.- неполадки в охлаждении сопла.

5.- огонь в баллоне продувочного воздуха.

Стр 197. ТЕКСТЫ ДЛЯ ЧТЕНИЯ.

Судовой двигатель.
Судовой двигатель состоит из четырех дизельных двигателей простого действия нереверсивных, четырехтактных , тронкового типа ОЕМ Pielstick с наддувом.

Два носовых двенадцати цилиндровых двигателя управляют каждый валом через редукторы , который расположен перед этими редукторами, тогда как два кормовых шестнадцати цилиндровых двигателя расположены позади редукторов.

Два двигателя присоединяются к одному редуктору через гидравлические муфты Вулкан делая возможным во время плавания соединять или отключать оба двигателя , если потребуется, с главного пульта управления машинного отделения .

Четыре главные двигателя имеют оборудование для сгорания тяжелого топлива. Каждый двигатель имеет свою собственную независимую топливную систему , состоящую из нагревателей насосов устройств по автоматическому регулированию вязкости и другие устройства , предназначенные для обеспечения должной подкачки и сгорания топлива.

Главные редекторы были спроектированы и изготовлены Fairfield и представляют тип одноступенчатого редуктора, мощность двух двигателей Pielstick объединяется , вращающий момент передается валу гребного винта. Редукторы снижают скорость двигателя от 620 об/мин до 115 об/мин на вале.

Ведущая шестерня изготовлена из никилиевохромомолибденовой стали , а главное колесо редуктора из чугуна с посаженным в горячем состоянии стальным кольцом.

Смазка шестерен осуществляется при помощи двух двух масляных насосов , приводимых в действие электрически, которые доставляют смазочное масло от сточноц цистерны через охладитель масла к гравитационным танкам , расположенным в шахте машинного отделения.

От гравитационных танков масло идет самотеком к подшипникам и шестерням.
Стр 198 – 199. Главные и вспомогательные двигатели .
Главный двигатель – это Doxford двухтактное устройство с противоположно двигающимися поршнями с четырьмя цилиндрами , имеющими внутренний диаметр 700 мм , общим ходом 2320 мм и эксплуатационной мощностью 4800 тормозных ( эффективных) лошадиных сил при 112 об/мин , максимальным давлением горения 640 пси. Это устройство – камера картера с диафрагмой для предотвращения загрязнения камеры картера отходами горения ;двигатель имеет самое современное оборудование впрыска топлива регулирующего клапана.

Как обычно, верхние поршни охлаждаются дистиллированной водой от системы охлаждения рубашки главного двигателя , но нижние поршни охлаждаются смазочным маслом в отдельной системе при помощи телескопических впускных и выпускных труб. Эти трубы изготавливаются из стали и проходят через металлические покрытия. Термостатически контролируемый управляемый паром нагреватель масла устанавливается трубопроводе охлаждения маслом нижнего поршня для того, чтобы поднять температуру масла , как требуется до запуска. Этот нагреватель устанавливается на перепускной магистрали и имеет предохранительный клапан и термометр. Система пускового воздуха включает вращающийся распределитель воздуха с впускными патрубками для работы вперед и назад и выпускными патрубками к управляющему цилиндру на каждом клапане пускового воздуха. На кормовом конце двигателя находится Doxford четырёх плунжерный топливный насос высокого давления стандартного типа, который приводится в действие роликовой цепью от цепного колеса , присоединенного к коленчатому валу. Подающие трубы от главного и подкачивающего насосов подсоединяются к блоку центрального распределительного клапана и устроены так , что (а) все подающие трубы могут соединяться в общую линию или (в) так, что каждая подкачка может быть изолирована к её соответствующему цилиндру.

Два котла Cochran устанавливаются, каждый : 6 футов 6 дюймов на 15 футов 9 дюймов высотой – установка, работающая на выхлопных газах , спроектированная для рабочего давления 120 пси и устроенная для приема выхлопных газов от главного двигателя. Другой – вертикальный котел с нефтяным отоплением 7 футов 6 дюймов и 18 футов 6 дюймов высотой также для рабочего давления 120 пси и оборудованного для сжигания топлива под

воздействием системы давления топлива.

Имеется три генератора с дизельными двигателями , каждый включает тип VEBZ Ruston пятицилиндровый четырехтактный двигатель , напрямую соединенный с компаундным ( со смешанным возбуждением) открытого типа генератором постоянного тока 175 квт 220 вольт. Данная производительность 175 квт достигается при скорости 500 об/мин.
Стр 200. Главные двигатели.
Главная энергетическая установка включает два комплекта дизельных двигателей Lindholmenbuilt Pielstick тип 18 PC 2.5 V каждый с эффективной мощностью11700 л.с. при 520 об/мин. Номинальная длительная эффективная мощность при 90% максимальной длительной мощности составляет 11530 л.с. при 500 об/мин. Скорость на испытаниях при 90 % максимальной длительной мощности составляет, примерно, 19.2 узла , а скорость с полной загрузкой судна при 90 % максимальной длительной мощности , 15 % морской надежности

( запаса прочности ) составляет , примерно , 19 узлов. Потребление топлива составляет 148 г/л.с./ч. плюс 5 % при горении топлива с более низкой величиной калорийности 10,100 ккал/кг. Главный двигатель спроектирован для сжигания топлива до 177 сантистоксов при 50 градусах Цельсия , что эквивалентно топливу 1,500 секунд.

Потребление топлива следующее :

19 узлов с полной нагрузкой – 67 т/день,

19 узлов , 7.4 м осадка – 55 т/день.

Все эти расчеты основываются на на судне , сжигающем топливо 177 сантистоксов с нагревом топлива при помощи пара от экономайзера выхлопных газов или вспомогательного котла. Главные двигатели соединяются с с редукторами с двумя горизонтальными валошестернями , соотношение вращения их 4.4 : 1, т.е. на 4.4 оборота двигателя приходится 1 оборот вала. Главные гребные винты были поставлены компанией Lips спроектированы с контролируемым шагом.
Стр 202. Дизельный двигатель ЗС2 – 5 , 2900 – 8600 квт ( 4000 – 12000 л.с.)
Мощность.

Двигатели РС2-5 с внутренним диаметром 400 мм и 520 об/мин составляют вместе с РС3 и РС4 среднюю скорость S.E.M.T. Группа двигателей Pielstick – РС типа. Эти двигатели имеют диапазон мощности от 2200 до 20000 квт. Их вес и общие размеры – 10.5 кг/квт и 185 квт/м3 для РС2 – 5 , что позволяет им соответствовать возрастающим жёстким требованиям для морских энергетических установок.
Главные данные.

Внутренний дтаметр … 400 мм

Ход поршня … 460 мм

Рабочий объем … 57.81 кубических футов

Скорость … 500-520 об/мин

Диапазон мощности ( 650 эффективная мощность в л.с../ цил)… 478 квт/цил.

Среднее тормозное эффективное давление :

( при 520 об/мин) ( 19.1 бар) … 1910 кПа

Количество и расположение цилиндров :

На одной линии …. 6.8,9.

В виде V … 12,14,16,18.

Вес в килограммах :

( 12 – 18 циллиндры) … 11.5 – 10.5 кг/квт.
Прочность.

Основываясь на долгом опыте , S.E.M.T смогла спроектировать двигатель РС2-5 , камеру сгорания ,которая несмотря на среднее тормозное эффективное давление 2000 кПа ( 20 бар) . подвержена меньшему тепловому напряжению , чем её предшественники. Это происходит благодаря охлаждению внутреннего диаметра втулок и использованию составного поршня с юбкой из лёгкого сплава и стальным венцом охлаждаемым маслом путем эффекта «шейкера»

( шейкер – сосуд для приготовления коктейля).
Два вида топлива.

РС2 двигатель может быть принят для сжигания естественных или промышленных газов. При сжигании газов мавсимальная непрерывная производительность равнв 394 квт/цил ( 535 эффективная мощность в л.с) Газы зажигаются путем впрыскивания жидкого топлива сервоклапаном. В случае с двумя видами топлива двигатель может , если возникает недостача газа , сжигать только жидкое топливо при любой нагрузке. Переключение с двух видов топлива на только жидкое топливо и наоборот выполняется без прерывания выходной мощности двигателя.
Остаточное топливо.

Рс 2-5 двигатель способен сжигать все виды остаточного топлива , имеющиеся в настоящее время на рынке. Двигатель снабжен либо охлаждпемыми водой клапанами , либо клапанами . оборудованными устройством с поворотной крышкой “ rotocap” и охлаждаемыми водой основаниями, в зависимости от содержания ванадия в топливе.
Дистанционный контроль.

Двигатели РС2-5 и их вспомогательные механизмы всегда проектировались для использования дистанционного контроля . Это удовлетворяет требованиям сегодняшнего дня по снижению количества работающего персонала на морских и береговых установках и улучшению их комфорта.

Стр. 203 ТЕКСТ.
Цилиндр.

Каждый цилиндр , включая водяную рубашку и втулку с охлаждаемым внутренним диаметром, устанавливается в 1неразъемный сварной картер из жесткой стали.
Коленчатый вал.

Кованый вал , опирающийся на рамовые подшипники подвешенного типа , установлен между вкладышами подшипника. Для приведения машины в действие с только одним подшипником , дополнительный подшипник может быть прикручен болтами к наружной поверхности картера.
Штоки.

Штоки расположены рядом для двигателей , имеющих V форму. Поверхность раздела стержня и колпачка диагональная и зазубренная . тонкие вкладыши подшипников.

Поршень.

Поршни составного типа со стальным венцом , охлаждаемым маслом « шейкер» и юбкой из легкого сплава. Петлевой штырь плавучего типа.
Головка цилиндра.

Головки цилиндров затянуты на водяные рубашки восьмью соединительными болтами , закрепленными на ступицах картера. Каждая имеет четыре клапана и один центральный эжектор и устанавливается с одним пусковым клапаном и одним предохранительным клапаном для морских служб.
Клапана.

Выхлопные клапана автоматически вращающегося типа “ Rotocap” для работы на тяжёлом топливе либо с неохлаждаемыми основаниями, либо с охлаждаемыми водой основаниями. Для того, чтобы сжечь тяжёлое топливо с самым высоким содержанием ванадия, используются охлаждаемые водой клапана. Предоставляется независимый контур смазочного масла для смазки клапанного паро – газораспределительного устройства.
Эжекторы.

Эжекторы, охлаждаемые независимым контуром пресной воды. Подающая труба эжекторного насоса пересекает камеру в головке цилиндра предотвращая , таким образом , любое загрязнение смазочного масла.
Распределительный вал.

Двигатель реверсируется путем использования двухдорожечных кулачков , которые зацепляются путём перемещения распредвала при помощи гидравлического привода.
Подшипники.

Рамовые подшипники распредвала крепятся прямо под опорами эжекторного насоса четырьмя болтами. Это расположение позволяет избежать передачи эжекторных нагрузок картеру. Каждый распредвал вместе с его подшипниками может быть отодвинут в сторону от стороны двигателя. Вращающийся распределитель пускового воздуха приводится в действие на конце распредвала.
Наддув.

Наддув с использованием турбонагнетателей , установленных на любом конце двигателя в соответствии с трубованиями установки. Промежуточные охладители воздуха пересекаются контуром морской воды или другой необработанной воды .

Стр. 205. Текст.
Технические данные.

Данные . соответствующие установленным рабочим условиям 478 квт/цил ( 650 эффективная мощность в л.с.) 520 об/мин :

Атмосферное давление … 100 кПа ( 750 мм ртутного столба )

Температура атмосферного воздуха … 20 градусов Цельсия

Температура воды … 30 градусов Цельсия

Топливо.

Потребление без ведомых насосов … 200 г/квт/час

Низкая теплотворность 42280 кдж/рс (10100 кг/кал)…( 147 г /дж)

Минимальная скорость потока питательного насоса на цилиндр … 250 л/час

Вода охлаждения.

а) система пресной воды

Качество воды…обработанной пресной водой

Скорость потока на цилиндр …17.5 м3/час

Температура выпускной воды двигателя :
1   2   3   4   5   6   7   8   9   10


написать администратору сайта