Вирусология. вирь. Вакцин требует знаний структурных и функциональных особенностей вирусных антигенов, различаемых иммунной системой организма. Вирусными антигенами
Скачать 2.43 Mb.
|
Дезинфекция – обеззараживание объектов окружающей среды путем уничтожения патогенных для человека и животных микроорганизмов и вирусов физическими способами и с помощью химических веществ: растворами хлорной извести (0,1–-10%-ным), формалина, хлорамина (0,5-5%-ным), фенола (3–5%-ным), лизола (3–5%-ным), едкой щелочи (2–3%-ным) и др. Выбор дезинфицирующего вещества и его концентрации зависит от материала, подлежащего дезинфекции. В лабораториях для дезинфекции боксов чаще всего применяют пары формалина (30–35 мл 40%-ного раствора формальдегида на 1 м3 помещения), ß-пропиолактон (1,1 л на 100 м3 помещения) или испаряют карболовую кислоту (не реже одного раза в неделю) и ежедневно делают влажную уборку с применением растворов хлорамина, гидроксида натрия и др. Стерилизация – обеспложивание, т. е. полное уничтожение микроорганизмов и вирусов в различных материалах. Стерилизацию проводят физическими (воздействием высокой температуры, путем ультрафиолетового облучения, фильтрацией жидкостей через бактериальные фильтры) и химическими методами. Физические методы стерилизации: а) прокаливание в пламени спиртовки или горелки. Данный способ применяют для стерилизации препаровальных игл, петель из аппарата Такачи, пинцетов, горловин культуральных сосудов и т. д.; б) стерилизация кипячением. Этим методом стерилизуют шприцы, мелкий хирургический инструмент, предметные и покровные стекла и другие предметы. Кипятят не менее 30 мин. Однако данный метод не обеспечивает полной стерилизации, так как некоторые вирусы, например вирус гепатита, и споры бактерий могут остаться при этом жизнеспособными; в) стерилизация сухим жаром в сушильном шкафу. Метод основан на действии нагретого до 165–180°С воздуха. Сухим жаром стерилизуют стеклянную посуду; г) стерилизация в автоклаве паром под давлением. Это один из наиболее эффективных методов стерилизации, поэтому он широко применяется; д) стерилизация в аппарате Коха или автоклаве текучим паром (давление 100–150 кПа (1–1,5 ат), экспозиция 30 мин). Применяют для стерилизации материалов, не выдерживающих воздействия высокой температуры, например питательных сред с витаминами и углеводами; е) стерилизация ультрафиолетовыми лучами. Метод основан на бактерицидном действии УФ-лучей с длиной волны 260– 300 мкм. Для стерилизации воздуха в боксах используют лампы БУВ-15, БУВ-30. Обычно облучение проводят 1–2 ч; ж) фильтрование жидкостей через бактериальные фильтры. Этим методом пользуются для освобождения питательных сред, сыворотки крови, витаминов и т. д. от бактерий, но не от вирусов. Химические методы стерилизации. При этом методе используют различные химические вещества. Превращение вирусологии в одну из фундаментальных биологических наук. Принципы диагностики вирусных болезней животных. При постановке диагноза инфекционной болезни, как и при диагностике любых других заболеваний, основываются на жалобах больного, анамнезе болезни, эпидемиологическом анамнезе, результатах осмотра, данных лабораторных и инструментальных исследований. Тем не менее, необходимо учитывать, что инфекционные заболевания имеют ряд особенностей, принципиально отличающих их от других заболеваний, это: 1- Заразительность 2- Специфичность 3- Наличие инкубационного периода и циклическое развитие клинических симптомов 4- Формирование специфического инфекционного иммунитета На основании выше перечисленных особенностей должна строиться принципиальная врачебная тактика в отношении диагностики инфекционных заболеваний на амбулаторном, догоспитальном и госпитальном этапе постановки предварительного диагноза. Эти ориентиры могут оказать значимую помощь в дифференциальной диагностике инфекционных заболеваний от неинфекционных, правильно и своевременно сориентироваться во врачебной тактике. Выявить наличие особенностей возможно при грамотном сборе анамнестических данных. ИзЭпидемиологического анамнезамы можем выяснить, присуще ли заболеванию пациента заразительность ( болеет ли в настоящий момент или в определённые сроки до настоящего времени заболеванием со схожими симптомами люди из близкого окружения); в какие сроки укладывается инкубационный период заболевания (например, сыпь при эпидемическом сыпном тифе появляется на 4-6 день болезни, а при брюшном тифе на 8-10 день); Изанамнеза заболевания: порядок возникновения клинических симптомов заболевания ( например, при пищевых токсикоинфекциях, сначала появляется рвота, затем диарея, при холере-наоборот, диарея предшествует рвоте). Из анамнеза жизни пациента мы можем выяснить какими заболеваниями он переболел, тем самым можем сразу исключить из дифференциально-диагностического ряда ранее перенесённые инфекционные заболевания, сформировавшие специфический иммунитет (например, детские инфекции). После постановки предварительного диагнозаопределяется дальнейшая тактику обследования и проведения противоэпидемических мероприятий (изоляция больного, выявление лиц, с которыми общался больной, возможных источников возбудителя инфекции и механизма передачи возбудителя инфекции). Природа вирусов, их место и роль в биосфере. Роль вирусов в эволюции жизни на Земле. Современные представления о вирусах складывались постепенно. В 1892г. Д.И. Ивановский обратил внимание на широко распространенную болезнь табака, при которой листья покрываются россыпью пятен (мозаичная болезнь). После открытия вирусов Ивановским их считали просто очень мелкими микроорганизмами, не способными расти на искусственных питательных средах. Вскоре после открытия вируса табачной мозаики была доказана вирусная природа ящура, а еще через несколько лет были открыты бактериофаги. Таким образом, были открыты три основные группы вирусов, поражающее растения, животных и бактерий. Однако в течение длительного времени эти самостоятельные разделы вирусологии развивались изолированно, а наиболее сложные вирусы — бактериофаги — долгое время считались не живой материей, а чем-то вроде ферментов. Тем не менее, уже к концу 20-х — началу 30-х годов стало ясно, что вирусы являются живой материей, и примерно тогда же за ними закрепились наименования фильтрующихся вирусов, или ультравирусов. В конце 30-х — начале 40-х годов изучение вирусов продвинулось настолько, что сомнения в живой их природе отпали, и было сформулировано положение о вирусах как организмах. Основанием для признания вирусов организмами явились полученные при их изучении факты, свидетельствовавшие, что вирусы, как и другие организмы (животные, растения, простейшие, грибы, бактерии), способны размножаться, обладают наследственностью и изменчивостью, приспособляемостью к меняющимся условиям среды их обитания и, наконец, подверженностью биологической эволюции, обеспечиваемой естественным или искусственным отбором. Это является, прежде всего, взаимодействием двух геномов — вирусного и клеточного. По этому поводу были выдвинуты три основные гипотезы. Согласно первой из них, вирусы являются потомками бактерий или других одноклеточных организмов, претерпевших дегенеративную эволюцию. Согласно второй, вирусы являются потомками древних, доклеточных, форм жизни, перешедших к паразитическому способу существования. Согласно третьей, вирусы являются дериватами клеточных генетических структур, ставших относительно автономными, но сохранившим зависимость от клеток. Третья гипотеза 20—30 лет казалась маловероятной и даже получила ироническое название гипотезы взбесившихся генов. Однако накопленные факты дают все новые и новые аргументы в пользу этой гипотезы. Наряду с этим накопилось значительное число фактов, свидетельствующих о существовании в природе в широких масштабах обмена готовыми блоками генетической информации, в том числе у представителей разных, эволюционно далеких вирусов. В результате такого обмена могут быстро и скачкообразно изменяться наследственные свойства путем встраивания чужеродных генов (заимствование генной функции). Новые генетические качества могут возникнуть также благодаря неожиданному сочетанию собственных и интегрированных генов (возникновение новой функции). Наконец, простое увеличение генома за счет неработающих генов открывает возможность эволюции последних (образование новых генов). Вирусы играют эволюционную роль. Вирусы могут не только изменять генетический аппарат клетки, то есть влиять на эволюцию по вертикали (наследственно), но и осуществлять обмен генетической информацией в пределах вида и между разными группами организмов, определяя передачу генетических признаков и по горизонтали. Подобная генетическая трансформация в условиях меняющейся внешней среды - мощный эволюционный механизм. Достоверно установлен факт участия вирусов в мутационном процессе бактерий – трансдукция. По вопросу о происхождении вирусов высказывались разные предположения. Одни авторы считали, что вирусы являются результатом крайнего проявления регрессивной эволюции бактерий или других одноклеточных организмов. Гипотеза регрессивной эволюции не может объяснить разнообразия генетического материала у вирусов, неклеточной их организации и отсутствия белок-синтезирующих систем. Поэтому в настоящее время эта гипотеза имеет скорее историческое значение и не разделяется большинством вирусологов. Согласно второй гипотезе вирусы являются потомками древних, доклеточных форм жизни — протобионтов, предшествовавших появлению клеточных форм жизни, с которых и началась биологическая эволюция. Эта гипотеза также не разделяется в настоящее время большинством вирусологов, так как она не объясняет тех же вопросов, разрешить которые оказалась бессильной первая гипотеза. Третья гипотеза предполагает, что вирусы произошли от генетических элементов клеток, ставших автономными, хотя не ясно, какие из этих элементов дали начало столь большому разнообразию генетического материала у вирусов. Эта гипотеза, которую иронически назвали гипотезой «взбесившихся генов», находит наибольшее число сторонников, однако не в том первоначальном виде, в каком она была высказана, так как и она не объясняет наличие у вирусов форм генетического материала (однонитчатая ДНК, двунитчатая РНК), отсутствующих в клетках, образование капсида, существование двух форм симметрии и т. п. Вероятно, вирусы действительно являются дериватами, т.е. производными генетических элементов клеток, но они возникали и эволюционировали вместе с возникновением и эволюцией клеточных форм жизни. Природа как бы испробовала на вирусах все возможные формы генетического материала (разные виды РНК и ДНК), прежде чем окончательно остановила свой выбор на канонической его форме — двунитчатой ДНК, общей для всех клеточных форм организмов, начиная от бактерии и кончая человеком. Будучи, с одной стороны, автономными генетическими структурами, с другой стороны, неспособными развиваться вне клеток, вирусы на протяжении миллиардов лет биологической эволюции проделали настолько разнообразные пути развития, что отдельные их группы не имеют преемственной связи между собой. По-видимому, разные группы вирусов возникали в исторически разные времена из разных генетических элементов клеток и поэтому существующие в настоящее время разные группы вирусов имеют полифилетическое происхождение, т. е. не имеют единого общего предка. Таким образом, вирус - это образец, вершина универсальности, унифицированности, экономности живой природы. В его бесконечно малом пространстве сосредоточена емкая программа к дальнейшему действию, мощная система стимуляторов трансформации, способная переиначить деятельность клетки. Вирусы - не вредный, чужеродный для живой природы элемент, а необходимая составная часть, без которой, наверное, были бы невозможны существование и эволюция биосферы. Пути проникновения вирусов в организм животного. Первичная локализация и циркуляция вируса. Вторичная циркуляция вируса. Механизм повреждающего действия вирусов на клетки. Существует значительное разнообразие типов взаимодействия между вирусом и клеткой, причем исход взаимодействия в каждом частном случае определяется главным образом генетическими характеристиками вируса и клетки. Эти взаимодействия можно разбить на три основных типа: а) разрушение клеток, вызываемое цитовидными вирусами, б) персистентная инфекция, вызываемая некоторыми вирусами, не убивающими клеток, в) трансформация, вызываемая онкогенными вирусами. Взаимодействие клеток с цитоцидными вирусами характеризуется летальными повреждениями клетки, которые вызываются воздействием продуктов вирусного генома на клетку или на ее регуляторные механизмы. Несмотря на то что наши знания в области молекулярной биологии размножения вирусов существенно расширились в течение последнего десятилетия, мы все еще далеки от ясного понимания того, каким образом вирусы убивают клетки, или — на другом уровне — каким образом они вызывают заболевание. В клетках, зараженных цитоцидным вирусом, происходят резкие биохимические сдвиги. Быстро образующиеся вирусспецифические белки во многих случаях вызывают подавление синтеза клеточных белков и РНК хозяина, что само по себе несовместимо с выживанием клетки. Далее, на поздних стадиях инфекционного цикла в клетке накапливается большое количество вирусных макромолекул; часть из них, в особенности некоторые капсидные белки, могут быть токсичны. Вирусные белки или вирионы как таковые образуют большие кристаллические (кристаллоподобные) агрегаты или включения, вызывающие отчетливо видимую деформацию клетки. Инфицированные клетки обычно сильно набухают; при этом, естественно, должна изменяться и проницаемость мембран. В результате этого лизосомные ферменты клетки могут выходить в цитоплазму и вызывать аутолитическое переваривание клетки. Таким образом, в зараженной вирусом клетке происходят многочисленные изменения, которые должны привести — каждое в отдельности или все вместе — к летальному исходу. В известном смысле существенно только первое летальное событие, даже если и не оно вызывает первые видимые проявления «цитопатического эффекта» или конечный лизис клетки. Большая часть литературы по этому вопросу посвящена попыткам выяснить, какое событие отвечает непосредственно за видимые цитопатические повреждения. Эти исследования показали, что повреждения клеток могут иметь место и в тех случаях, когда выражение вирусного генома ограничено. Например, вирус может быть инактивирован (скажем, УФ-облучением), или представлять собой условно-летальный мутант, или его размножение может быть подавлено химическими ингибиторами. В качестве примеров можно привести развитие выраженного цитопатического эффекта в зараженных полиовирусом клетках в присутствии гуанидина, блокирующего размножение вируса на ранней стадии (Бабланян, 1972), или в клетках, зараженных зависимыми от хозяина мутантами вируса оспы кроликов, неспособными синтезировать ДНК и большую часть вирусных белков (Сэмбрук и др., 1965). Абортивная инфекция такого типа, разумеется, не может распространяться от клетки к клетке, хотя продукты разрушенных клеток могут быть «токсичными». Полимеразная цепная реакция, достоинства и недостатки реакции и области возможного применения в вирусологии. Полимеразная цепная реакция -- это метод амплификации in vitro, с помощью которого в течение нескольких часов можно выделить и размножить определенную последовательность ДНК в количестве, превышающем исходное в 108 раз. Такая высокая степень направленного обогащения значительно упрощает использование имеющегося образца ДНК-Некоторые области применения ПЦР: высокоэффективное клонирование геномных последовательностей, прямое секвенирование митохондриальной и геномной ДНК, анализ вариаций нуклеотидных последовательностей и выявление вирусных патогенов. Поскольку в результате цепной амплификации образуются идентичные фрагменты специфичной ДНК, сразу же может быть осуществлено клонирование или секвенирование продуктов реакции. Матрицей для ПЦР-амплификации могут служить как геномная ДНК, так и кДНК, синтезированная путем обратной транскрипции РНК- Чувствительность метода позволяет обнаружить и амплифицировать единственную молекулу ДНК- При автоматизации ПЦР и наличии нерадиоактивных материалов для мечения ДНК полнмеразная цепная реакция обещает стать в будущем стандартной молекулярно-биологической процедурой. Можно предположить, что велика будет и ее роль в диагностике наследственных и инфекционных заболеваний. ПЦР в лабораторной диагностике инфекций характеризуется быстротой, непревзойдённой чувствительностью и высокой специфичностью, что позволяет обнаруживать микроорганизмы, присутствующие в очень низких концентрациях (1-10 возбудителей в пробе). При этом ДНК инфекционных агентов может быть достаточно эффективно экстрагирована из любой биологической жидкости или ткани, а также из проб объектов окружающей среды (почвы, воды и т.д.) и продуктов питания. Полимеразная цепная реакция эффективна при обнаружении бактериальных, грибковых, паразитарных и вирусных патогенов. Одним словом, это метод, основанный на принципе амплификации, — изолированного умножения гена или его определённого фрагмента. Амплификация — один из способов выживания микроорганизмов и клеток животных в условиях действия противоопухолевых и противобактериальных препаратов. ПЦР позволяет проводить аналогичный процесс in vitro, то есть в пробирке. Основные положения амплификации ДНК in vitro были обоснованы сотрудником корпорации «Cetus» (США) Кэрри Маллисом в 1983 году. Через 10 лет за эту разработку он был удостоен Нобелевской премии по химии. |