Главная страница

Анатомия (Людмила). Вопросы по предмету Анатомия и физиология 201516


Скачать 1.86 Mb.
НазваниеВопросы по предмету Анатомия и физиология 201516
Дата07.04.2023
Размер1.86 Mb.
Формат файлаdoc
Имя файлаАнатомия (Людмила).doc
ТипДокументы
#1044451
страница1 из 14
  1   2   3   4   5   6   7   8   9   ...   14

Вопросы по предмету «Анатомия и физиология 2015/16

  1. Клетка, основные части клетки, свойства клетки. Органеллы клетки и их функции

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей все процессы их жизнедеятельности. В то же время любая клетка – сложная живая самовоспроизводящаяся биологическая система, состоящая из многих частей и их структурных компонентов. Для своего самовоспроизведения клетка обладает генетическим материалом в форме ДНК.

Из клеток состоят все живые существа. В органическом мире клетки представлены как отдельные самостоятельные одноклеточные организмы и как части, структурные единицы многоклеточных организмов.

У многоклеточных организмов клетки функционируют как особые биосистемы – самостоятельно, дискретно и в то же время взаимодействуют вместе как части целого.

У многоклеточных организмов имеются группы клеток, сходных по строению и выполняемым функциям. Расположенные рядом друг с другом, связанные между собой межклеточным веществом и специализированные для выполнения определенных функций, эти клетки образуют ткани. Ткани возникли в ходе эволюционного развития органического мира вместе с появлением многоклеточности. Специализация клеток и тканей лучше обеспечивает процессы жизнедеятельности целостного организма. В соответствии с выполняемыми функциями в той или иной ткани клетки приобрели различную форму, размеры и особенности внутреннего строения.

Клетки разных тканей различаются не только по своей структуре, но и по продолжительности жизни. Длительность жизненного цикла некоторых из них занимает менее двух часов (клетки кроветворных органов человека, образовательной ткани растений). Клетки тонкой кишки живут не более 36 часов, эритроциты – около трех месяцев, а нервные клетки – в течение всей жизни организма.

Одноклеточные организмы в основном устроены так же, как и любые эукариотические клетки. Естественно, у них встречаются разнообразные отклонения в строении внутриклеточных структур, но их форма и количество практически те же, что и в клетках многоклеточных организмов. Лишь немногие внутриклеточные структуры, известные у одноклеточных, например у простейших, не встречаются в клетках высокоразвитых организмов.

Основными функциональными частями клетки являются: поверхностный комплекс, оформленное или неоформленное ядерное вещество (ДНК) и цитоплазма, в которой располагаются органоиды и включения. Содержимое клетки (цитоплазму и ядро) принято называть протоплазмой. В клетке есть постоянные и непостоянные структурные компоненты. Постоянные структурные компоненты – органоиды, или органеллы, всегда выполняют специфические жизненно важные функции. Непостоянные структурные компоненты клетки называют включениями. В отличие от органоидов, включения то появляются в клетке, то исчезают в процессе ее жизнедеятельности. Включениями могут быть кристаллы солей, капельки жира, зерна крахмала.

Органоиды клетки - постоянные клеточные структуры, клеточные органы, обеспечивающие выполне­ние специфических функций в процессе жизнедеятельнос­ти клетки - хранение и передачу генетической информации, перенос веществ, синтез и превращения ве­ществ и энергии, деление, движение и др. К органоидам (органеллам) клеток эукариот относятся: хромосомы; клеточная мембрана; митохондрии; комплекс Гольджи; эндоплазматическая сеть; рибосомы; микротрубочки; микрофиламенты; лизосомы. В животных клетках присутствуют также центриоли, микрофибриллы, а в растительных - свойственные только им пластиды. Иногда к органоидам клеток эукариот отно­сят и ядро в целом. Прокариоты лишены большинства органоидов, у них имеются лишь клеточная мембрана и рибосомы, отличающиеся от цитоплазматических рибосом клеток эукариот. В специализированных эукариотных клетках могут быть сложные структуры, в основе которых находятся универсальные органоиды, например микротру­бочки и центриоли - главные компоненты жгутиков и ресничек. Микрофибриллы лежат в основе тоно- и нейрофибрилл. Специальные структуры одноклеточных, напри­мер жгутики и реснички (построены так же, как у клеток многоклеточных), выполняют функцию органов движения. Чаще в современной литературе термины «органоиды» и «органеллы» употребляют как синонимы. 


  1. Ткань, основные виды тканей. Положение, функции эпителиальной ткани.
    Отличительные признаки, виды эпителиальной ткани.

В процессе филогенеза и онтогенеза образовались комплексы клеток и неклеточного живого вещества, развивающиеся из одного зародышевого зачатка и имеющие общее строение и функцию — ткани.

Различают 4 вида тканей: эпителиальную, соединительную (ткани внутренней среды), мышечную и нервную.

Эпителиальная ткань покрывает организм снаружи и выстилает изнутри полые внутренние органы. Она выполняет защитную и пищеварительную функции, вырабатывает ферменты и гормоны и выделяет остаточные продукты обмена веществ. Соединительная ткань является опорой тела и обеспечивает питательную (трофическую) и защитную функции. Мышечная ткань составляет скелетную мускулатуру и мышцы внутренних органов. Нервная ткань обеспечивает взаимодействие организма с внешней средой и согласованную деятельность всех внутренних органов.

Основные функции эпителиальных тканей: барьерная, защитная, секреторная, рецепторная.

Отличительные признаки эпителиальной ткани:

-Эпителиальная ткань находится на границе внешней и внутренней среды организма.

-Она состоит из эпителиальных клеток, эти клетки образуют сплошные пласты.

-В этих пластах отсутствуют кровеносные сосуды.

-Питание этой ткани происходит путём диффузии через базальную мембрану, которая отделяет эпителиальную ткань от лежащей под ней рыхлой соединительной ткани и служит опорой эпителия.

В покровномэпителии выделяют однослойный эпителий и многослойный.

Воднослойном эпителии все клетки расположены на базальной мембране.

В многослойном эпителии на базальной мембране лежит только нижний слой клеток. Верхние слои связь с ней утрачивают и образуют несколько пластов.

Однослойный эпителий бывает однорядным и многорядным.

Клетки эпителия – эпителиоциты. В эпителиоцитах выделяютдве части. 1. Базальная часть – направлена в сторону подлежащей ткани. 2. Апикальная часть – обращена к свободной поверхности. В базальной части лежит ядро.

В апикальной части лежат органеллы, включения, микроворсинки, реснички. По форме клеток эпителий бывает плоский, кубический, цилиндрический (призматический).


  1. Особенности строения и функции соединительной ткани. Назовите виды
    соединительной ткани.

Соединительная ткань, строение и функции которой изучаются уже много веков, отвечает за работу многих органов и их систем. Ее удельный вес составляет от 60 до 90% их массы. Она формирует опорный каркас, называемый стромой, и наружные покровы органов, именуемые дермой.

Она включает в себя неподвижные клетки (фиброциты, фибробласты), составляющие основное вещество. В ней также есть волокнистые образования. Они представляют собой межклеточное вещество. Помимо этого, в ней присутствуют разные свободные клетки (жировые, блуждающие, тучные и др.). Соединительная ткань имеет в своем составе внеклеточный матрикс (основу). Желеобразная консистенция этого вещества обусловлена его составом. Матрикс представляет собой сильно гидратированный гель, образованный высокомолекулярными соединениями. Они составляют около 30% веса межклеточного вещества.

Классификация этого вида тканей усложняется их многообразием. Так, основные ее типы подразделяются, в свою очередь, еще на несколько отдельных групп. Различают такие виды:

Собственно соединительная ткань, из которой выделяют волокнистую и специфическую, отличающуюся особыми свойствами. Первая разделяется на: рыхлую и плотную (неоформленную и оформленную), а вторая - на жировую, ретикулярную, слизистую, пигментную.

Скелетная, которая подразделяется на хрящевую и костную.

Трофическую, к которой относится кровь и лимфа. Любая соединительная ткань определяет функциональную и морфологическую целостность организма. Ей присущи такие характерные черты:

    • тканевая специализация;

    • универсальность;

    • полифункциональность;

    • способность к адаптации;

    • полиморфизм и многокомпонентность.

    • Различные виды соединительной ткани выполняют следующие функции:

    • структурную;

    • обеспечения водно-солевого равновесия;

    • трофическую;

    • механической защиты костей черепа;

    • формообразующую (например, форма глаз определяется склерой);

    • обеспечения постоянства тканевой проницаемости;

    • опорно-механическую (хрящевая и костная ткань, апоневрозы и сухожилия);

    • защитную (иммунология и фагоцитоз);

    • пластическую (адаптация к новым условиям среды, заживление ран);

    • гомеостатическую (участие в этом важном процессе организма).

В общем смысле функции соединительной ткани:

  • придание телу человека формы, устойчивости, прочности;

  • защита, покрытие и соединение внутренних органов между собой.

Главная функция содержащегося в соединительной ткани межклеточного вещества опорная. Его основа обеспечивает нормальный обмен веществ. Нервная и соединительная ткань обеспечивает взаимодействие органов и различных систем организма, а также их регуляцию.



  1. Рассказать о строении и видах костной и хрящевой ткани. Привести примеры.

Хрящевая ткань состоит из клеток — хондроцитов, хондробластов и плотного межклеточного вещества, состоящего из аморфного и волокнистого компонентов. Хондробласты располагаются одиночно по периферии хрящевой ткани. Представляют собой вытянутые уплощенные клетки с базофильной цитоплазмой, содержащей хорошо развитую зернистую эндоплазматическую сеть и аппарат Гольджи. Эти клетки синтезируют компоненты межклеточного вещества, выделяют их в межклеточную среду и постепенно дифференцируются в дефинитивные клетки хрящевой ткани — хондроциты. Хондробласты обладают способностью митотического деления. В надхрящнице, окружающей хрящевую ткань, содержатся неактивные, малодифференцированные формы хондробластов, которые при определенных условиях дифференцируются в хондробласты, синтезирующие межклеточное вещество, а затем и в хондроциты.

Хондроциты по степени зрелости, по морфологии и функции подразделяются на клетки I, II и III типа. Все разновидности хондроцитов локализуются в более глубоких слоях хрящевой ткани в особых полостях — лакунах. Молодые хондроциты (I типа) митотически делятся, однако дочерние клетки оказываются в одной лакуне и образуют группу клеток — изогенную группу. Изогенная группа является общей структурно-функциональной единицей хрящевой ткани. Расположение хондроцитов в изогенных группах в разных хрящевых тканях неодинаково.

Межклеточное вещество хрящевой ткани состоит из волокнистого компонента (коллагеновых или эластических волокон) и аморфного вещества, в котором содержатся главным образом сульфатированные гликозоаминогликаны (прежде всего хондроитинсерные кислоты), а также протеогликаны. Гликозоаминогликаны связывают большое количество воды и обуславливают плотность межклеточного вещества. Кроме того, в аморфном веществе содержится значительное количество минеральных веществ, не образующих кристаллы. Сосуды в хрящевой ткани в норме отсутствуют.

В зависимости от строения межклеточного вещества хрящевые ткани подразделяются на гиалиновую, эластическую и волокнистую хрящевую ткань.

Гиалиновая хрящевая ткань характеризуется наличием в межклеточном веществе только коллагеновых волокон. При этом коэффициент преломления волокон и аморфного вещества одинаков и потому на гистологических препаратах волокна в межклеточном веществе не видны. Этим же объясняется определенная прозрачность хрящей, состоящих из гиалиновой хрящевой ткани. Хондроциты в изогенных группах гиалиновой хрящевой ткани располагаются в виде розеток. По физическим свойствам гиалиновая хрящевая ткань характеризуется прозрачностью, плотностью и малой эластичностью. В организме человека гиалиновая хрящевая ткань широко распространена и входит в состав крупных хрящей гортани (щитовидный и перстневидный), трахеи и крупных бронхов, составляет хрящевые части ребер, покрывает суставные поверхности костей. Кроме того, почти все кости организма в процессе своего развития проходят через стадию гиалинового хряща.

Эластическая хрящевая ткань характеризуется наличием в межклеточном веществе как коллагеновых, так и эластических волокон. При этом коэффициент преломления эластических волокон отличается от преломления аморфного вещества и потому эластические волокна хорошо видны в гистологических препаратах. Хондроциты в изогенных группах в эластической ткани располагаются в виде столбиков или колонок. По физическим свойствам эластическая хрящевая ткань непрозрачна, эластична, менее плотная и менее прозрачная, чем гиалиновая хрящевая ткань. Она входит в состав эластических хрящей: ушной раковины и хрящевой части наружного слухового прохода, хрящей наружного носа, мелких хрящей гортани и средних бронхов, а также составляет основу надгортанника.

Волокнистая хрящевая ткань характеризуется содержанием в межклеточном веществе мощных пучков из параллельно расположенных коллагеновых волокон. При этом хондроциты располагаются между пучками волокон в виде цепочек. По физическим свойствам характеризуется высокой прочностью. В организме встречается лишь в ограниченных местах: составляет часть межпозвоночных дисков (фиброзное кольцо), а также локализуется в местах прикрепления связок и сухожилий к гиалиновым хрящам. В этих случаях четко прослеживается постепенный переход фиброцитов соединительной ткани в хондроциты хрящевой ткани.

Различают следующие два понятия, которые нельзя путать — хрящевая ткань и хрящ. Хрящевая ткань — это разновидность соединительной ткани, строение которой изложено выше. Хрящ — это анатомический орган, который состоит из хрящевой ткани и надхрящницы. Надхрящница покрывает хрящевую ткань снаружи (за исключением хрящевой ткани суставных поверхностей) и состоит из волокнистой соединительной ткани.

В надхрящнице выделяют два слоя:

наружный — фиброзный;

внутренний — клеточный или камбиальный (ростковый).

Во внутреннем слое локализуются малодифференцированные клетки — прехондробласты и неактивные хондробласты, которые в процессе эмбрионального и регенерационного гистогенеза превращаются вначале в хондробласты, а затем в хондроциты. В фиброзном слое располагается сеть кровеносных сосудов. Следовательно, надхрящница, как составная часть хряща, выполняет следующие функции: обеспечивает трофикой бессосудистую хрящевую ткань; защищает хрящевую ткань; обеспечивает регенерацию хрящевой ткани при ее повреждении.

Трофика гиалиновой хрящевой ткани суставных поверхностей обеспечивается синовиальной жидкостью суставов, а также из сосудов костной ткани.

Развитие хрящевой ткани и хрящей (хондрогистогенез) осуществляется из мезенхимы. Вначале мезенхимные клетки в местах закладки хрящевой ткани усиленно пролиферируют, округляются и образуют очаговые скопления клеток — хондрогенные островки. Затем эти округленные клетки дифференцируются в хондробласты, синтезируют и выделяют в межклеточную среду фибриллярные белки. Затем хондробласты дифференцируются в хондроциты I типа, которые синтезируют и выделяют не только белки, но и гликозоаминогликаны и протеогликаны, то есть формируют межклеточное вещество. Следующей стадией развития хрящевой ткани является стадия дифференцировки хондроцитов, при этом появляются хондроциты II, III типа и формируются лакуны. Из мезенхимы, окружающей хрящевые островки, формируется надхрящница. В процессе развития хряща отмечается два вида роста хряща: интерстициальный рост — за счет размножения хондроцитов и выделения ими межклеточного вещества; оппозиционный рост — за счет деятельности хондробластов надхрящницы и наложения хрящевой ткани по периферии хряща.

Возрастные изменения в большей степени отмечаются в гиалиновой хрящевой ткани. В пожилом и старческом возрасте в глубоких слоях гиалинового хряща отмечается отложение солей кальция (омеление хряща), прорастание в эту область сосудов, а затем замещение обызвествленной хрящевой ткани костной тканью — оссификация. Эластическая хрящевая ткань не подвергается обызвествлению и окостенению, однако эластичность хрящей в пожилом возрасте также снижается.

2. Костная ткань является разновидностью соединительной ткани и состоит из клеток и межклеточного вещества, в котором содержится большое количество минеральных солей, главным образом фосфат кальция. Минеральные вещества составляют 70 % от костной ткани, органические — 30 %.

Функции костных тканей:

опорная;

механическая;

защитная;

участие в минеральном обмене организма - депо кальция и фосфора.

Клетки костной ткани: остеобласты, остеоциты, остеокласты. Основными клетками в сформированной костной ткани являются остеоциты. Это клетки отростчатой формы с крупным ядром и слабовыраженной цитоплазмой (клетки ядерного типа). Тела клеток локализуются в костных полостях — лакунах, а отростки — в костных канальцах. Многочисленные костные канальцы, анастомозируя между собой, пронизывают всю костную ткань, сообщаясь с периваскулярными пространствами, и образуют дренажную систему костной ткани. В этой дренажной системе содержится тканевая жидкость, посредством которой обеспечивается обмен веществ не только между клетками и тканевой жидкостью, но и межклеточным веществом. Для ультраструктурной организации остеоцитов характерно наличие в цитоплазме слабовыраженной зернистой эндоплазматической сети, небольшого числа митохондрий и лизосомы, центриоли отсутствуют. В ядре преобладает гетерохроматин. Все эти данные свидетельствуют о том, что остеоциты обладают незначительной функциональной активностью, которая заключается в поддержании обмена веществ между клетками и межклеточным веществом. Остеоциты являются дефинитивными формами клеток и не делятся. Образуются они из остеобластов.

Остеобласты содержатся только в развивающейся костной ткани. В сформированной костной ткани они отсутствуют, но содержатся обычно в неактивной форме в надкостнице. В развивающейся костной ткани они охватывают по периферии каждую костную пластинку, плотно прилегая друг к другу, образуя подобие эпителиального пласта. Форма таких активно функционирующих клеток может быть кубической, призматической, угловатой. В цитоплазме остеобластов содержится хорошо развитая зернистая эндоплазматическая сеть и пластинчатый комплекс Гольджи, много митохондрий. Такая ультраструктурная организация свидетельствует о том, что эти клетки являются синтезирующими и секретирующими. Действительно, остеобласты синтезируют белок коллаген и гликозоаминогликаны, которые затем выделяют в межклеточное пространство. За счет этих компонентов формируется органический матрикс костной ткани. Затем эти же клетки обеспечивают минерализацию межклеточного вещества посредством выделения солей кальция. Постепенно, выделяя межклеточное вещество, они как бы замуровываются и превращаются в остеоциты. При этом внутриклеточные органеллы в значительной степени редуцируются, синтетическая и секреторная активность снижается и сохраняется функциональная активность, свойственная остеоцитам. Остеобласты, локализующиеся в камбиальном слое надкостницы, находятся в неактивном состоянии, синтетические и транспортные органеллы слабо развиты. При раздражении этих клеток (в случае травм, переломов костей и так далее) в цитоплазме быстро развивается зернистая эндоплазматическая сеть и пластинчатый комплекс, происходит активный синтез и выделение коллагена и гликозоаминогликанов, формирование органического матрикса (костная мозоль), а затем и формирование дефинитивной костной ткани. Таким способом за счет деятельности остеобластов надкостницы, происходит регенерация костей при их повреждении.

Отеокласты — костеразрушающие клетки, в сформированной костной ткани отсутствуют. Но содержатся в надкостнице и в местах разрушения и перестройки костной ткани. Поскольку в онтогенезе непрерывно осуществляются локальные процессы перестройки костной ткани, то в этих местах обязательно присутствуют и остеокласты. В процессе эмбрионального остеогистогенеза эти клетки играют важную роль и определяются в большом количестве. Остеокласты имеют характерную морфологию: во-первых, эти клетки являются многоядерными (3—5 и более ядер), во-вторых, это довольно крупные клетки (диаметром около 90 мкм), в-третьих, они имеют характерную форму — клетка имеет овальную форму, но часть ее, прилежащая к костной ткани, является плоской. При этом, в плоской части выделяют две зоны:

центральная часть — гофрированная содержит многочисленные складки и островки;

периферическая (прозрачная) часть тесно соприкасается с костной тканью.

В цитоплазме клетки, под ядрами, располагаются многочисленные лизосомы и вакуоли разной величины. Функциональная активность остеокласта проявляется следующим образом: в центральной (гофрированной) зоне основания клетки из цитоплазмы выделяются угольная кислота и протеолитические ферменты. Выделяющаяся угольная кислота вызывает деминерализацию костной ткани, а протеолитические ферменты разрушают органический матрикс межклеточного вещества. Фрагменты коллагеновых волокон фагоцитируются остеокластами и разрушаются внутриклеточно. Посредством этих механизмов происходит резорбция (разрушение) костной ткани и потому остеокласты обычно локализуются в углублениях костной ткани. После разрушения костной ткани за счет деятельности остеобластов, выселяющихся из соединительной ткани сосудов, происходит построение новой костной ткани.

Межклеточное вещество костной ткани состоит из основного вещества и волокон, в которых содержатся соли кальция. Волокна состоят из коллагена I типа и складываются в пучки, которые могут располагаться параллельно (упорядочено) или неупорядочено, на основании чего и строится гистологическая классификация костных тканей. Основное вещество костной ткани, как и других разновидностей соединительных тканей, состоит из гликозоаминогликанов и протеогликанов, однако химический состав этих веществ отличается. В частности в костной ткани содержится меньше хондроитинсерных кислот, но больше лимонной и других кислот, которые образуют комплексы с солями кальция. В процессе развития костной ткани вначале образуется органический матриксосновное вещество и коллагеновые (оссеиновые, коллаген II типа) волокна, а затем уже в них откладываются соли кальция (главным образом фосфорнокислые). Соли кальция образуют кристаллы гидроксиаппатита, откладывающиеся как в аморфном веществе, так и в волокнах, но небольшая часть солей откладывается аморфно. Обеспечивая прочность костей, фосфорнокислые соли кальция одновременно являются депо кальция и фосфора в организме. Поэтому костная ткань принимает участие в минеральном обмене.

Классификация костных тканей

Различают две разновидности костных тканей:

ретикулофиброзную (грубоволокнистую);

пластинчатую (параллельно волокнистую).

В ретикулофиброзной костной ткани пучки коллагеновых волокон толстые, извилистые и располагаются неупорядочено. В минерализованном межклеточном веществе в лакунах беспорядочно располагаются остеоциты. Пластинчатая костная ткань состоит из костных пластинок, в которых коллагеновые волокна или их пучки располагаются параллельно в каждой пластинке, но под прямым углом к ходу волокон в соседних пластинках. Между пластинками в лакунах располагаются остеоциты, тогда как их отростки проходят в канальцах через пластинки.

В организме человека костная ткань представлена почти исключительно пластинчатой формой. Ретикулофиброзная костная ткань встречается только как этап развития некоторых костей (теменных, лобных). У взрослых людей они находятся в области прикрепления сухожилий к костям, а также на месте окостеневших швов черепа (стреловидный шов чешуи лобной кости).

При изучении костной ткани следует дифференцировать понятия костная ткань и кость.

3. Кость — это анатомический орган, основным структурным компонентом которого является костная ткань. Кость как орган состоит из следующих элементов:

костная ткань;

надкостница;

костный мозг (красный, желтый);

сосуды и нервы.

Надкостница (периост) окружает по периферии костную ткань (за исключением суставных поверхностей) и имеет строение сходное с надхрящницей. В надкостнице выделяют наружный фиброзный и внутренний клеточный или камбиальный слои. Во внутреннем слое содержатся остеобласты и остеокласты. В надкостнице локализуются выраженная сосудистая сеть, из которой мелкие сосуды через прободающие каналы проникают в костную ткань. Красный костный мозг рассматривается как самостоятельный орган и относится к органам кроветворения и иммуногенеза.

Костная ткань в сформированных костях представлена только пластинчатой формой, однако в разных костях, в разном участке одной кости она имеет разное строение. В плоских костях и эпифизах трубчатых костей костные пластинки образуют перекладины (трабекулы), составляющие губчатое вещество кости. В диафизах трубчатых костей пластинки прилежат друг к другу и образуют компактное вещество. Однако и в компактном веществе одни пластинки образуют остеоны, другие пластинки являются общими.

Строение диафиза трубчатой кости

На поперечном срезе диафиза трубчатой кости различают следующие слои:

надкостница (периост);

наружный слой общих или генеральных пластин;

слой остеонов;

внутренний слой общих или генеральных пластин;

внутренняя фиброзная пластинкаэндост.

Наружные общие пластинки располагаются под надкостницей в несколько слоев, не образуя однако полные кольца. Между пластинками располагаются в лакунах остеоциты. Через наружные пластинки проходят прободающие каналы, через которые из надкостницы в костную ткань проникают прободающие волокна и сосуды. С помощью прободающих сосудов в костной ткани обеспечивается трофика, а прободающие волокна связывают надкостницу с костной тканью.

Слой остеонов состоит из двух компонентов: остеонов и вставочных пластин между ними. Остеон — является структурной единицей компактного вещества трубчатой кости. Каждый остеон состоит из:

5—20 концентрически наслоенных пластин;

канала остеона, в котором проходят сосуды (артериолы, капилляры, венулы).

Между каналами соседних остеонов имеются анастомозы. Остеоны составляют основную массу костной ткани диафиза трубчатой кости. Они располагаются продольно по трубчатой кости соответственно силовым и гравитационным линиям и обеспечивают выполнение опорной функции. При изменении направления силовых линий в результате перелома или искривления костей остеоны не несущие нагрузку разрушаются остеокластами. Однако такие остеоны разрушаются не полностью, а часть костных пластин остеона по его длине сохраняется и такие оставшиеся части остеонов называются вставочными пластинками. На протяжении постнатального онтогенеза постоянно происходит перестройка костной ткани — одни остеоны разрушаются (резорбируются), другие образуются и потому всегда между остеонами находятся вставочные пластины, как остатки предшествующих остеонов.

Внутренний слой общих пластинок имеет строение аналогичное наружному, но он менее выражен, а в области перехода диафиза в эпифизы общие пластинки продолжаются в трабекулы.

Эндост — тонкая соединительно-тканная пластинка, выстилающая полость канала диафиза. Слои в эндосте четко не выражены, но среди клеточных элементов содержатся остеобласты и остеокласты.


  1. Виды, значение, местоположение мышечной ткани.

Мышца, musculus, состоит из пучков исчерченных (поперечнополосатых, произвольных) мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью в пучки первого порядка. Несколько таких первичных пучков соединяются и образуя пучки второго порядка, и т. д. Мышечные пучки всех порядков объединяются и составляя мышечное брюшко. Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы.

В мышце различают активно сокращающуюся часть – брюшко – и пассивную часть, прикрепляющуюся к костям,— сухожилие. Сухожилие состоит из плотной соединительной ткани и имеет блестящий светло-золотистый цвет, а мышцы красно-бурого цвета. Обычно сухожилие находится по обоим концам мышцы. Скелетная мышца состоит не только из поперечнополосатой мышечной ткани, но также из различных видов соединительной ткани (сухожилие), из нервной (нервы мышц), из эндотелия и гладких мышечных волокон (сосуды). Преобладающей является поперечнополосатая мышечная ткань, свойство которой (сократимость) и определяет функцию мышцы как органа сокращения. Каждая мышца является отдельным органом, имеющим определенную, присущие только ему форму, строение, функцию, развитие и положение в организме.

В мышечных тканях способность изменения формы –главная функция. Мышцы обеспечивают перемещения в пространстве всего организма в целом или его частей (скелетная мускулатура) и движение органов внутри организма (сердце, язык, кишечник).

В мышечных тканях находятся продольно расположенные миофибриллыимиофиламенты — специальные органеллы, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина. Миофиламенты обеспечивают сокращение, которое возникает при взаимодействии в них двух основных белков — актина и миозина при обязательном участии ионов кальция.

Миоглобин — это белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды.

По форме различают мышцы длинные, короткие и широкие.

Некоторые длинные мышцы начинаются несколькими головками (многоглавые). Встречаются мышцы двуглавые, трехглавые и четырехглавые.Встречаются также и другие формы мышц: квадратная, треугольная, пирамидальная, круглая,

дельтовидная, зубчатая, камбаловидная и др.

По направлению волокон различаются мышцы: с прямыми, с параллельными, с косыми, с поперечными и с круговыми волокнами.

Последние образуют жомы, или сфинктеры, окружающие отверстия. Если косые волокна присоединяются к сухожилию с одной стороны, то получается одноперистая мышца, а если с двух сторон – двуперстая.

По функции мышцы делятся на: сгибатели, разгибатели, приводящие, отводящие, вращатели.

По отношению к суставам, через которые перекидываются мышцы, их называют одно-, дву- или многосуставными.

Многосуставные мышцы, как более длинные, располагаются поверхностнее односоставных.

По положению различают:

1. Поверхностные ( мышцы, прикрепляющиеся на поясе верхней конечности на плече ( трапециевидная мышца, широчайшая мышца, мышца, поднимающая лопатку))

2. Глубокие ( аутохтонные мышцы, дорсального происхождения и глубокие мышцы вентрального происхождения).

3. Наружные

4. Внутренние

5. Латеральные

6. Медиальные мышцы.

7. Мышцы, прикрепляющиеся на рёбрах


  1. Строение нервной ткани. Виды нейронов по строению, виды нейронов по функции.
    Синапс строение и функция.

Нервная ткань является основным компонентом нервной системы. Нервная ткань состоит из нервных клеток и нейроглии (глиальные клетки). Нервные клетки способны под действием раздражения приходить в состояние возбуждения, вырабатывать импульсы и передавать их. Эти свойства определяют специфическую функцию нервной системы. Нейроглия органически связана с нервными клетками, имеет также клеточное строение и осуществляет трофическую, секреторную, изоляционную, защитную и опорную функции. Нервная ткань развивается из наружного зародышевого листа - эктодермы. Нервная ткань формирует центральную нервную систему (головной и спинной мозг) и периферическую (нервы, нервные узлы, ганглии и нервные сплетения).

Нервная клетка - это нейрон или нейроцит, представляет собой отросчатые клетки, размеры которых колеблются в значительных пределах (от 3 - 4 до 130 мкм). По форме нервные клетки очень различны.

Функциональной единицей нервной системы является нейрон.

Отростки нервных клеток проводят нервный импульс из одной части тела человека в другую. Длина отростков колеблется от нескольких микрон до 1 - 1,5 м. Различают два вида отростков нервной клетки:

1. Аксон - проводит импульсы от тела нервной клетки к другим клеткам или тканям рабочих органов, т.е. от нервной клетки к периферии. Аксон длинный, неветвящийся отросток. Нервная клетка имеет всегда только один аксон, который заканчивается концевым аппаратом на другом нейроне или в мышце, железе и др.

2. Дендрит (dendron - дерево) - они древовидно ветвятся. Их количество у разных нейронов различно. Они короткие, сильно ветвящиеся. Дендриты проводят нервные импульсы к телу нервной клетки. Дендриты чувствительных нейронов имеют на периферическом конце специальные воспринимающие аппараты - чувствительные нервные окончания - рецепторы.

По количеству отростков нейроны делятся на биполярные(двухполюсные) - с двумя отростками, мультиполярные (многополюсные) - с несколькими отростками, псевдоуниполярные(ложноднополюсные) - это нейроны, аксон и дендрит которых начинаются от общего выроста тела клетки с последующим Т - образным делением. Такая форма клеток характерна для чувствительных нейронов.

Нейрон- имеет одно ядро, которое содержит 2-3 ядрышка. Цитоплазма содержит органеллы, базофильное вещество (тигроидное вещество или вещество Ниссля) и нейрофибриллярный аппарат.

Тигроидное вещество представляет собой зернистость, образующую нерезко ограниченные глыбки, которые лежат в теле клетки и дендритах. Оно меняется в зависимости от функционального состояния клетки. В условиях перенапряжения, травмы (перерезка отростков, отравление, кислородное голодание и др.) глыбки распадаются и исчезают. Этот процесс называется тигролизом, т.е. растворения тигроидного вещества.

Нейрофибриллы - это тонкие нити. В отростках они лежат вдоль волокон параллельно друг другу, в теле клетки образуют сеть.

Нейроглия- клетки различной формы и величины. Делятся на две группы:

1. Глиоциты (макроглия);

2. Глиальные макрофаги (микроглия).

Глиоциты бывают:

1. Эпендимоциты;

2. Астроциты;

3. Олигодендроциты.

Эпендимоциты выстилают спинномозговой канал и желудочки головного мозга.

Астроциты образуют, опорный аппарат центральной части нервной системы.

Олигодендроциты окружают тела нейронов, образуют оболочки нервных волокон и входят в состав нервных окончаний. Клетки микроглии подвижны и способны фагоцитировать.

Нервные волокна бывают:

1. Безмиелиновые (безмякотные);

2. Миелиновые (мякотные).

Волокна различают в зависимости от строения оболочки. Миелиновые волокна толще безмиелиновых. Миелиновая оболочка прерывается через равные промежутки, образуя перехваты Ранвье. Снаружи миелиновая оболочка покрыта неэластической мембраной - неврилеммой. Безмиелиновые волокна встречаются в основном во внутренних органах. Пучки нервных волокон образуют нервы.

Нерв покрывает соединительнотканная оболочка - эпиневрий.

Эпиневрий проникает в толщу нерва и покрывает пучки нервных волокон - периневрий и отдельные волокна (эндоневрий). В эпиневрии располагаются кровеносные и лимфатические сосуды, которые проникают в периневрий и эндоневрий. Нервные волокна заканчиваются концевыми аппаратами - нервными окончаниями. По функции они делятся на: 1. Чувствительные (рецепторы); 2. Двигательные (эффекторы).

Рецепторы - воспринимают раздражения из внешней и внутренней среды, превращая их в нервные импульсы, которые передают другим клеткам и органам.

Рецепторы бывают:

1. Эстерорецепторы (воспринимают раздражение из внешней среды);

2. Интерорецепторы (из внутренней);

3. Проприорецепторы (в тканях тела, заложенных в мышцах, связках, сухожилиях, костях и др.) с помощью них определяется положение тела в пространстве.

Эстерорецепторы бывают:

1. Терморецепторы (измерение температуры);

2. Механорецепторы (соприкасаются с кожей, сжимают ее);

3. Ноцирецепторы (воспринимают болевые раздражения).

Интерорецепторы бывают:

1. Хеморецепторы (изменение химического состава крови);

2. Осморецепторы (реагируют на изменение осматического давления крови);

3. Барорецепторы (на изменение давления);

4. Валюморецепторы (на наполнение сосудов кровью).

Эффекторы - передают нервные импульсы от нервных клеток к рабочему органу. Они являются концевыми разветвлениями нейронов двигательных клеток. Двигательные окончания в поперечнополосатых мышцах называются моторными бляшками.

Связь между нервными клетками осуществляется при помощи синапсов (synapsis - соединение). Синапс образован концевыми ветвлениями нейрона одной клетки на теле или дендритах другой.

Синапс - это образование, в котором происходит передача импульса с одной клетки на другую.

Передача импульса осуществляется только в одном направлении (с нейрона на тело или дендриты другой клетки).

Возбуждение передается с помощью нейромедиаторов (ацетилхолин, норадреналин и др.)

В понятие синапс входит 3 образования:

1. Нервные окончания, заканчивающиеся множеством пузырьков;

2. Межсинаптическая щель;

3. Постсинаптическая мембрана.

Синаптическая бляшка - множество пузырьков, заполненных медиатором. Передача импульса по синапсу происходит в рефлекторной дуге. Рефлекторная дуга состоит из нейронов. Чем больше клеток входит в состав рефлекторной дуги, тем скорость проведения возбуждения длиннее.

Нервы, передающие импульсы в центральную нервную систему, называются афферентными (сенсорными), а от центральной нервной системы - эфферентными (моторными). Нервы со смешанной функцией передают импульсы в обоих направлениях.

Функции нервной ткани:

1. Обеспечивает проведение импульса в головной мозг;

2. Устанавливает взаимосвязь организма с внешней средой;

3. Координирует функции внутри организма, т.е. обеспечивает его целостность.

Свойства нервной ткани:

1. Возбудимость;

2. Раздражимость;

3. Выработка и передача импульса.


  1. Функции скелета. Состав кости, как органа

Помимо механических функций по поддержанию формы тела, обеспечению возможности движения и защите внутренних органов, скелет является также и местом кроветворения: в костном мозге происходит образование новых клеток крови. (Одно из самых распространённых заболеваний, поражающих костный мозг — лейкоз, часто несмотря на лечение приводит к смерти.) Кроме этого, скелет, являясь хранилищем большей части кальция и фосфора организма, играет важную роль в обмене минеральных веществ.

Кость – самостоятельный орган, состоит из тканей, главная – костная.

Химический состав кости и ее физические св-ва.

Костное вещество состоит из химических веществ: органических (оссеин) и неорганических (солей кальция – его фосфатов). Эластичность кости зависит от оссеина, а твердость – от минеральных солей.

Структурной единицей кости является остеон (система костных пластинок, концентрически расположенных вокруг центрального канала, содержащего сосуды и нервы; остеоны не прилегают друг к другу в плотную и промежутки между ними заполнены интерстициальными костными пластинками. Остеоны располагаются соответственно функциональной нагрузки на кость. Остеоны и вставочные пластинки образуют компактное корковое вещество кости). Наружный слой кости представлен пластинкой компактного вещества (построенный из пластинчатой костной ткани, пронизанной системой тонких питательных канальцев, одни ориентированы параллельно поверхности кости, в трубчатых – вдоль, в других – прободающие – каналы Фолькмана). Каналы Фолькмана служат продолжением крупных питательных каналов, открывающихся на поверхности кости в виде отверстий. Через питательные отверстия в кость, в систему ее костных канальцев входят артерия, нерв и выходит вена. Под компактным – располагается губчатое, после губчатого (пористое, построенное из костных балок с ячейками между ними). Внутри диафиза находится костно-мозговая полость, содержащая костный мозг. Кроме суставных поверхностей, покрытых хрящом, снаружи кость покрыта надкостницей. Надкостница – тонкая соединительнотканная пластинка, которая богата кровеносными и лимфатическими сосудами, нервами. В ней выделяют два слоя – наружный волокнистый, внутренний – ростковый, комбиальный (остеогенный, костеобразующий), прилежит к костной ткани. За счет надкостницы кость растет в толщину. Внутри кости находится костный мозг. Во внутриутробном периоде у новорожденного содержится красный костный мозг в костях, выполняющий кроветворную и защитную ф-ции; он представлен сетью ретикулярных волокон и клеток, в петлях этой сети находятся молодые и зрелые клетки крови и лимфоидные элементы. В костном мозге разветвляются нервы и сосуды. У взрослого человека крастный костный мозг содержится только в ячейках губчатого вещества плоских костей, в губчатых костях, эпифизах трубчатых костей. В костно-мозговой полости диафизов трубчатых костей находится желтый костный мозг, представляющий собой перерожденную ретикулярную строму с жировыми включениями.


  1. Виды костей. Рост костей в длину и ширину.

1. Длинные трубчатые (os бедра, голени, плеча, предплечья).

2. Короткие трубчатые (os пястья, плюсны).

3. Короткие губчатые (тела позвонков).

4. Губчатые (грудина).

5. Плоские (лопатка).

6. Смешанные (os основания черепа, позвонки - тела губчатые, а отростки плоские).

7. Воздухоносные (верхняя челюсть, решетчатая, клиновидная).

Благодаря надкостнице кость растет в ширину. У детей между эпифизом и диафизом имеется прослойка метафизарного хряща, за счёт этого хряща происходит рост костей в длину. С возрастом хрящ и надкостница окостеневают и рост костей прекращается.


  1. Основные виды соединений костей. Строение сустава. Основные элементы сустава.

Каждая кость занимает в теле человека определенное место и всегда находится в непосредственной связи с другими костями, тесно прилегая к одной или нескольким костям. Различают два основных вида соединений костей:

непрерывные - фиброзные соединения (синартрозы), когда кости связаны одна с другой с помощью прокладки между ними из оформленной плотной соединительной ткани, хряща или кости;

прерывные - синовиальные соединения - суставы (диартрозы), когда между сочленяющимися костями находится суставная полость, а кости удерживаются одна около другой с помощью замкнутой суставной капсулы и подкрепляющих ее связок и мышц.

К непрерывным соединениям относятся синдесмозы, синхондрозы и синостозы. По функции это или малоподвижные, или неподвижные соединения.

Синдесмоз - соединение костей при помощи оформленной плотной соединительной ткани. Самый распространенный вид синдесмоза - связки (например, межостистые и межпоперечные связки позвоночника и т.д.). Некоторые связки имеют вид перепонок или мембран (мембраны между костями предплечья, голени). Разновидностью синдесмоза являются швы черепа. Сюда же относится форма укрепления зубов в луночках челюсти - вколачивание.

Синхондроз - непрерывное соединение костей с помощью хряща. Своеобразным синхондрозом является симфиз. Например, лобковый симфиз - это хрящевое соединение лобковых костей. Межпозвоночный симфиз - соединение тел позвонков с помощью межпозвоночных дисков.

Синостоз - соединение костей с помощью костной ткани, костное сращение. Как правило, оно возникает на почве синхондроза (например, синостоз между телами затылочной и клиновидной костей).

К прерывным относятся синовиальные соединения (суставы). По функции это подвижные соединения. В суставе различают суставные поверхности сочленяющихся костей, окружающую их суставную капсулу и суставную полость. Суставные поверхности костей покрыты гиалиновым хрящом. Толщина суставного хряща колеблется от 0,5 до 4 мм.

Суставная капсула имеет два слоя: наружный - фиброзная мембрана и сращенный с ним внутренний - синовиальная мембрана. Синовиальная мембрана образует складки, ворсинки, а в некоторых суставах - выпячивания, сумки. Синовиальные сумки могут сообщаться с полостью сустава или быть изолированными. Располагаясь снаружи вокруг сустава в виде мягких прокладок между костью и сухожилиями мышц, они уменьшают трение. Внутренняя поверхность капсулы и суставные хрящи покрыты тонким слоем прозрачной тягучей синовиальной жидкости - синовией, выделяемой клетками синовиальных ворсинок. Она выполняет роль смазки - уменьшает трение и способствует скольжению.

Полость сустава представляет собой щелевидное пространство, ограниченное сочленяющимися поверхностями костей и суставной капсулой. Благодаря полному соответствию рельефа суставных хрящей и отрицательному давлению внутри сустава суставные поверхности костей всегда плотно прилежат друг к другу. Этому способствуют также связочный аппарат, укрепляющий суставную капсулу снаружи, и тяга мышц. Связки и сухожилия мышц составляют вспомогательный аппарат сустава. Одни связки укрепляют капсулу в местах наибольшего ее натяжения и ограничивают движение. Это тормозящие и направляющие связки. В результате неудачного движения или травмы может произойти растяжение и даже разрыв связок, следствием чего бывает смещение костей в суставе - вывих.

К добавочным вспомогательным приспособлениям сустава относятся также внутрисуставные хрящи - диски и мениски, суставные губы, внутрисуставные связки.

Если в образовании сустава участвуют две кости - это простой сустав. Сустав, образованный тремя или несколькими костями, называется сложным.

Нередко движения в двух или нескольких самостоятельных суставах происходят одновременно (правый и левый суставы нижней челюсти, суставы головки и бугорка ребра. Такие суставы называются комбинированными.

Суставные поверхности костей по форме можно сравнить с отрезками различных геометрических тел вращения. В соответствии с этим суставы подразделяются на шаровидные, эллипсовидные, цилиндрические, блоковидные, седловидные и плоские. Форма суставных поверхностей определяет объем и направление движений, которые совершаются вокруг трех взаимноперпендикулярных осей.

Вокруг фронтальной оси производятся сгибание (флексия) и разгибание (экстензия), вокруг сагиттальной - отведение (абдукция) и приведение (аддукция), вокруг вертикальной оси - вращение (ротация). Вращение внутрь называется пронацией, а вращение наружу - супинацией.

В шаровидных и эллипсовидных суставах конечностей возможно также периферическое вращение (циркумдукция) - движение, при котором конечность или ее часть описывает конус.

В зависимости от числа осей, вокруг которых возможны движения, суставы делятся на одноосные, двухосные и трехосные (многоосные). К одноосным суставам относятся цилиндрические и блоковидные. В цилиндрическом суставе происходит вращение вокруг вертикальной оси, совпадающей с осью кости (вращение I шейного позвонка вместе с черепом вокруг зубовидного отростка II позвонка). В блоковидных суставах движение возможно вокруг одной поперечной оси, например сгибание и разгибание в межфаланговых суставах.

К двухосным суставам относятся эллипсовидные и седловидные суставы. В эллипсовидном суставе (например, в лучезапястном) совершаются сгибание и разгибание вокруг поперечной (фронтальной) оси и отведение и приведение вокруг сигаттальной оси; возможно периферическое вращение. В единственном типичном седловидном запястно-пястном суставе большого пальца возможно не только отведение и приведение, но также и противопоставление большого пальца остальным.

Двухосным считается также мыщелковый сустав. Он имеет выпуклую суставную головку, близкую по форме к эллипсу, называемую мыщелком.

К трехосным (многоосным) относятся самые подвижные суставы - шаровидные. В результате движений в шаровидном суставе происходят сгибание и разгибание вокруг фронтальной оси, отведение и приведение вокруг сагиттальной оси, ротация вокруг вертикальной оси, а также периферическое вращение. Кроме движения вокруг трех главных осей и периферического вращения, возможны движения вокруг множества дополнительных осей, проходящих через центр шаровидной головки сустава.

К многоосным суставам относятся также плоские суставы. Они имеют плоские суставные поверхности, которые рассматриваются как участки поверхности шара с бесконечно большим радиусом. Хотя движения в этих суставах совершаются вокруг многих осей, объем движений небольшой - это лишь незначительное скольжение (например, движения в плоских сочленениях между суставными отростками позвонков).


  1. Строение позвоночника. Отличия шейных, грудных и поясничных позвонков.

Строение позвоночника человека столь же безупречно, как и все творения Создателя. Позвоночный столб человека является основой всего тела. Он служит опорой, и предохраняет от травматизма и нагрузок весь организм.

Позвоночник, словно несущая стена в здании, играет чрезвычайно важную роль в структуре человеческого тела. Он формирует основу для всей спины, которая поддерживает голову и туловище. Позвоночник также отвечает за защиту спинных нервов, производства клеток крови и хранение полезных минералов (таких как калий, кальций, натрий … и т.д.), которые высвобождаются и транспортируются кровью по всему организму по мере необходимости.

Позвоночник человека напоминает идеальную конструкцию. Он является вместилищем одного из главнейших органов — спинного мозга. Так же этот каркас охраняет от повреждений нервные сплетения и крупнейшие нервы, прикрывая их в самых уязвимых местах костями.

Позвоночник также обеспечивает форму нашей спины и служит креплением для грудных и тазовых поясов и многих мышц. В организме человека важная функция позвоночника заключается в распределении массы тела при ходьбе и стоя.

Свою ловкость и силу тело получает от мышц, которые также крепятся к отросткам позвонков. Вся эта сложнейшая система делает наше тело подвижным, выносливым и маневренным.

Позвоночник насчитывает 33-34 позвонка, располагающихся цепочкой. Рассмотрим подробнее отделы. Удобнее изучать строение позвоночника человека в картинках. По анатомии месторасположению и выполняемой функции, столб разделяют на отделы:

в первом шейном отделе 7 позвонков (кости здесь более тонкие, изящные);

грудной отдел насчитывает 12 позвонков, отличающихся массивностью и плотностью;

кости поясничного отдела позвоночника, в составе 5 штук, исключительно крепкие и мощные;

крестец представлен 5 позвонками, образовавших одну сросшуюся кость, их еще называют ложными;

заканчивается столб копчиком, который тоже представлен сросшимся конгломератом позвонков.

Более ясно рассмотреть строение позвоночника можно на видео 3D сканера позвоночника. Видео очень короткое, но дает очень емкое представление.

Шейные позвонки

Шейные позвонки испытывают меньшую нагрузку в сравнении с остальными отделами позвоночника. Поэтому они имеют небольшое тело.  Поперечные отростки шейных позвонков имеют отверстия, образующие в совокупности канал. В канале проходит позвоночная артерия в полость черепа. Каждый отросток заканчивается бугорками - передним и задним. Передний бугорок VI шейного позвонка, хорошо развитый, называют сонным бугорком. К нему при необходимости может быть прижата сонная артерия, проходящая рядом.  Суставные отростки шейных позвонков довольно короткие. Остистые отростки шейных позвонков короткие, раздвоены на конце. Остистый отросток VII шейного позвонка длиннее и толще, чем у соседних позвонков. Он легко может быть прощупан у человека, поэтому VII шейный позвонок называют выступающим позвонком

I шейный позвонок соединен с черепом и поэтому получил название атлант (по имени титана из древнегреческих мифов, удерживающего на своих плечах небесный свод). Он не имеет тела (в эмбриональном периоде оно срослось со II шейным позвонком, образовав его зуб) и представляет собой, по сути, кольцо, состоящее из передней и задней дуги, соединяющиехя по бокам двумя латеральными (боковыми) массами. Позвоночное отверстие большое, округлое. На передней дуге спереди расположен передний бугорок. На внутренней поверхности дуги имеется углубление - ямка зуба. Она предназначена для соединения с зубом II шейного позвонка. На задней дуге атланта находится задний бугорок. Он представляет собой недоразвитый остистый отросток. Сверху и снизу на каждой латеральной массе располагаются суставные поверхности. Верхние суставные ямки имеют овальную форму, они соединяются с мыщелками затылочной кости. Нижние суставные поверхности, напротив, округлые, предназначены для сочленения с II шейным позвонком.

II шейный позвонок, осевой (аксис) отличается наличием зуба-отростка, отходящего вверх от тела позвонка. Зуб имеет верхушку и две суставные поверхности - переднюю и заднюю. Передняя суставная поверхность сочленяется с ямкой на задней поверхности первого шейного позвонка, задняя - с поперечной связкой атланта. По бокам от зуба на теле позвонка имеются суставные поверхности для соединения с атлантом. Нижние суставные поверхности осевого позвонка служат для сочленения с третим шейным позвонком.

Грудные позвонки

Грудные позвонки крупнее шейных. Высота их тела нарастает в направлении сверху вниз. Она максимальная у XII грудного позвонка. Грудные позвонки (со II по IX) на задне-боковых поверхностях тела имеют верхнюю и нижнюю реберные ямки, точнее полуямки. Верхняя полуямка нижележащего позвонка совмещается с нижней полуямкой вышележащего позвонка, и вместе с ней образует суставную поверхность для головок соответствующих ребер. I, X, XI и XII грудные позвонки имеют особенности. На I шейном позвонке имеются верхние полные реберные ямки для сочленения с головками первых ребер, а также нижние полуямки, которые вместе с верхними полуямками II-го грудного позвонка образуют полные ямки для головок вторых ребер. XI и XII позвонки имеют полные ямки для соответствующих ребер.

Грудные позвонки имеют утолщенные на концах поперечные отростки. На передней поверхности поперечных отростков видны реберные ямки поперечного отростка, с которыми бугорки ребер образуют реберно-поперечные суставы. XI и XII позвонки не имеют ямок на их поперечных отростках. Остистые отростки грудных позвонков длинные, наклонены вниз и накладываются друг на друга. Такое их расположение препятствует переразгибанию позвоночного столба. Суставные отростки грудных позвонков ориентированы во фронтальной плоскости. При этом верхние суставные поверхности направлены наружу и кзади, а нижние - внутрь и кпереди.

Поясничные позвонки

Поясничные позвонки имеют крупное тело бобовидной формы. Высота тела увеличивается в направлении от I к V поясничному позвонку. Позвоночные отверстия крупные, имеют почти треугольную форму. Поперечные отростки располагаются почти во фронтальной плоскости. Остистые отростки плоские, короткие, с утолщенными концами. Суставные поверхности верхних суставных отростков направлены медиально (внутрь), а нижних - латерально (наружу). На каждом верхнем суставном отростке имеется незначительный по размерам бугорок - сосцевидный отросток.


  1. Соединение ребер с позвонками

Ребра с позвонками соединены подвижно: при помощи головок ребер - с боковыми поверхностями тел грудных позвонков и бугорком ребер - с передними поверхностями поперечных отростков.

Исключение составляют XI и XII ребра, не сочленяющиеся с поперечными отростками. Сустав головки ребра, articulatio capituli costae (рис. 220, 222, 223), образуется сочленением двух суставных фасеток - головки одного ребра с fovea costalis superior соответствующего позвонка и с fovea costalis inferior вышележащего позвонка.

Исключением являются I, XI и XII ребра, головки которых имеют лишь одну суставную фасетку, сочленяющуюся только с соответствующим позвонком. Указанные суставные поверхности покрыты гиалиновым хрящом. Суставная капсула прикреплена по краю хряща. Она достаточно тонка и подкрепляется лучистой связкой головки ребра, ligamentum capituli costae radiatum (рис. 223). Связка эта начинается на передней поверхности головки ребра, расходится радиально и прикрепляется к боковым поверхностям позвонков, с которыми данное ребро сочленяется, а также к соответствующему межпозвоночному хрящу.

Полость суставов головок II - Х ребер состоит из двух камер, разделенных межсуставной связкой головки, ligamentum capituli costae interarticulare (рис. 220). Связка эта, начавшись от crista capituli costae, располагается почти горизонтально и прикрепляется к межпозвоночному хрящу, fibrocartilago intervertebralis. Сустав бугорка ребра, articulatio costotransversaria(рис. 220, 223, 225), отсутствует у последних двух ребер. Он образуется сочленением суставной поверхности бугорка ребра, facies articularis tuberculi costae, с fovea costalis transversalis соответствующего позвонка. Суставные поверхности покрыты гиалиновым хрящом. Суставная капсула тонка и фиксируется по краям хряща. Она укрепляется связкой бугорка ребра, ligamentum tuberculi costae, которая располагается по верхней поверхности суставной капсулы от верхушки поперечного отростка к верхне-заднему отделу бугорка ребра.

Кроме того, связь ребер с позвонками укрепляется:

1). связкой шейки ребра, ligamentum colli costae, состоящей из плотных, коротких соединитель-нотканных пучков, туго натянутых между шейкой ребра и передней поверхностью поперечного отростка соответствующего позвонка. Она находится на границе между двумя выше указанными суставами заднего конца ребра;

2). передней связкой ребра и поперечного отростка, ligamentum costotransversarium anterius, натянутой от нижней поверхности поперечного отростка позвонка к гребешку шейки нижележащего ребра;

3). задней связкой ребра и поперечного отростка, ligamentum costotransversarium posterius, которая берет начало от основания поперечного отростка и прилежащего к нему участка боковой поверх ности дуги, а также от основания остистого отростка, и направляется к задней поверхности шейки нижележащего ребра.

В обоих суставах, articulationes capituliet tuberculi costae, функционирующих одновременно, происходят движения ребер при дыхании.


  1. Строение грудной клетки. Соединение ребер с грудиной.

Грудная клетка человека представляет собой каркас, состоящий из позвонков, грудины и ребер, соединенных связками и суставами. Благодаря костной структуре, которая формирует скелет человека, внутренние органы защищены от механических повреждений.

Именно в этой полости находятся такие жизненно важные органы, как сердце, легкие, печень, пищевод.

Особенностью строения грудной клетки является то, что из-за вертикального положения человека она сплющена впереди и расширена в поперечном направлении. Но такая форма каркаса обусловлена еще и воздействием на него мышцами груди.

Каркас грудной клетки имеет четыре части – это передняя, задняя и две боковые стороны. Также в ней существует два отверстия –  верхнее и нижнее.

Передняя стенка грудной клетки состоит из грудины и реберных хрящей, задняя — из двенадцати позвонков и ребер, а две стороны каркаса образованы двенадцатью пар ребер.

Вся эта конструкция ограждает внутренние органы, тем самым защищая их от различного рода повреждений. Поэтому при патологических изменениях позвонков может наблюдаться деформация и самой грудной клетки. Такой процесс очень опасен для человека, ведь при этом могут сдавливаться внутренние органы и нарушаться работа различных систем в организме.

В верхней части грудной клетки находятся семь больших ребер, которые соединены с грудиной. Чуть ниже находятся еще три ребра, сочленяющиеся с верхними сегментами с помощью хрящей. И заключающими частями грудной клетки являются два плавающих ребра. Такое название они получили по причине того, что только эти сегменты не прикреплены к грудине, а только сочленяются в задней части с грудным отделом позвоночника. Такое строение создает каркас, который является основой  скелета человека. Он практически неподвижен и имеет костную структуру.

С грудиной соединяются I VII ребра (истинные ребра, costae verae). VIII, IX и X ребра (ложные ребра, costae spuriae) соединяются своими хрящами между собой, а хрящ VIII ребра соединяется с хрящемVII ребра. XI, XII ребра располагаются своими передними концами в толще мышц брюшной стенки (колеблющиеся ребра, costae fluctuantes).

I ребро соединяется с грудиной при помощи грудино-реберных суставов, art.sternocostales.

Грудино-реберный сустав образован хрящем ребра и реберной вырезкой грудины. Сустав плоский.

Связки, укрепляющие сустав: а) Лучистая грудино-реберная связка, lig.sternocostale radiatum. ,) Внутрисосудистая грудино-реберная связка, lig. sternocostale raarticulare – эта связка хорошо выражена только в суставе II ребра. в) На передней поверхности грудины лучистые грудино-реберные связки срастаются с надкостницей и образуют мембрану грудины, membrane sterni.


  1. Соединение между отдельными позвонками.

Соединения тел позвонков. Тела позвонков, образующие собой собственно столб, являющийся опорой туловища, соединяются между собой (а также и с крестцом) при посредстве симфизов, называемых межпозвоночными дисками, disci intervertebrales. Каждый такой диск представляет волокнисто-хрящевую пластинку, периферические части которой состоят из концентрических слоев соединительнотканных волокон. Эти волокна образуют на периферии пластинки чрезвычайно крепкое фиброзное кольцо, dnnulusfibro-sus, в середине же пластинки заложено студенистое ядро, nucleus pulposus, состоящее из мягкого волокнистого хряща (остаток спинной струны). Колонна тел позвонков, соединенных между собой межпозвоночными дисками, скрепляется двумя продольными связками, идущими спереди и сзади по средней линии. Передняя продольная связка, lig. longitudinale anterius, протягивается по передней поверхности тел позвонков и дисков от бугорка передней дуги атланта до верхней части тазовой поверхности крестца, где она теряется в надкостнице. Связка эта препятствует чрезмерному разгибанию позвоночного столба кзади. Задняя продольная связка, lig. longitudinale posterius, тянется от II шейного позвонка вниз вдоль задней поверхности тел позвонков внутри позвоночного канала до верхнего конца canalis sacralis. Эта связка препятствует сгибанию.

Соединения дуг позвонков.

1.Связки между дугами позвонков состоят из эластических волокон, имеющих желтый цвет, и потому называются желтыми связками, ligg. flava. содействуют выпрямлению позвоночного столба и прямохождению.

2.Связки между остистыми отростками, межостистые, ligg. interspinal. Непосредственное продолжение межостистых связок кзади образует кругловатый тяж, котрый тянется по верхушкам остистых отростков в виде длинной надостистой связки, lig. supraspinale.В шейной части позвоночного столба межостистые связки выходят за верхушки остистых отростков и образуют выйную с в я з к у, lig. nuchae. тормозят чрезмерное сгибание позвоночного столба и головы.

3.Связки между поперечными отростками, межпоперечные, ligg. intertranvsversaria, ограничивают боковые движения позвоночного столба в противоположную сторону.

4.Соединения между суставными отростками — дугоотростчатые суставы, articulationes zygapophysiales, плоские, малоподвижные, комбинированные.Соединение тела V крестцового позвонка с копчиком происходит посредством крестцово-копчикового сустава, articulatio sacrococcygea, что позволяет копчику отклоняться назад при акте родов.Это соединение со всех сторон укреплено связками: ligg. sacrococcygeae ventrale, dorsale profundum, dorsale superficiale et late Атлантозатылочный сустав, art. atlantooccipitdlis, относится к мыщел-ковым; он образован двумя мыщелками затылочной кости, condyli occipitales, и вогнутыми верхними суставными ямками атланта, foveae articulares superi-6res atlantis. заключены в отдельные суставные капсулы, но совершают движение одновременно, образуя единый комбинированный сустав. Вспомогательные связки: 1) передняя, membrana atlantooccipitalis anterior, натянута между передней дугой атланта и затылочной костью; 2) задняя, membrana atlantooccipitalis posterior, находится между задней дугой атланта и задней окружностью большого затылочного отверстия. В атлантозатылочном суставе происходит движение вокруг двух осей: фронтальной и сагиттальной. Вокруг первой из них совершаются кивательные движения, т. е. сгибание и разгибание головы вперед и назад (выражение согласия), а вокруг второй оси — наклоны головы вправо и влево.

Суставы между атлантом и осевым позвонком . Здесь имеются три сустава. Два латеральных сустава, artt. atlantoaxiales later ales, образованы нижними суставными ямками атланта и соприкасающимися с ними верхними суставными ямками осевого позвонка, составляя комбинированное сочленение. Находящийся посередине зуб, dens axis, соединен с передней дугой атланта и поперечной связкой, lig. transversum atlantis, натянутой между внутренними поверхностями латеральных масс атланта. Зуб охватывается костно-фиброзным кольцом, образованным передней дугой атланта и поперечной связкой, вследствие чего возникает цилиндрический вращательный сустав, art. atlantoaxial medidna. От краев поперечной связки отходят два фиброзных пучка: один кверху, к передней окружности большого отверстия затылочной кости, а другой книзу, к задней поверхности тела осевого позвонка. Эти два пучка вместе с поперечной связкой образуют крестообразную связку, lig. cruciforme atlantis. Вспомогательными связками служат lig. apicis dentis, идущая от верхушки зуба, и ligg. alaria — от его боковых поверхностей к затылочной кости.


  1. Строение и функции плечевого сустава.

Самым подвижным суставом скелета человека является плечевой сустав. Благодаря ему мы можем осуществлять движения вокруг множества осей.

Это так называемый шаровидный сустав, одна из соединяемых костей которого представляет собой выпуклость, т.е. головку сустава, а вторая кость, вогнутая, образует суставную ямку или впадину.

Плечевой сустав образован сочленением плечевой кости и кости лопатки. Головка плечевой кости присоединена к лопатке за счет суставной капсулы.

Движения плечевого сустава стабилизируются и укрепляются благодаря небольшому количеству связок и мышечному каркасу, образованному вокруг сустава, они препятствуют смещению мышц поверхности плеча.

Можно выделить 3 основные оси движения плечевого сустава:
  1   2   3   4   5   6   7   8   9   ...   14


написать администратору сайта