Главная страница
Навигация по странице:

  • Устойчивость измерения.

  • Обоснованность измерения.

  • Литература для дополнительного чтения

  • Рабочая книга социолога. Вторая структура социологического знания общая социологическая теория


    Скачать 3.63 Mb.
    НазваниеВторая структура социологического знания общая социологическая теория
    АнкорРабочая книга социолога.doc
    Дата19.11.2017
    Размер3.63 Mb.
    Формат файлаdoc
    Имя файлаРабочая книга социолога.doc
    ТипГлава
    #10295
    КатегорияСоциология. Политология
    страница23 из 38
    1   ...   19   20   21   22   23   24   25   26   ...   38

    Пример. Рассмотрим случай измерения в десятибалльной шкале ряди ценностей типа «любимая работа», «материальный достаток», «здоровье» и т. д. При 45 испытуемых и 14 предложенных ценно­стях получены 623 оценки, распределение которых выглядит так.



    Поскольку предполагается, что шкала должна «работать» равно­мерно, то, возможно, пункты шкалы 9, 7, 5 не удовлетворяют этому требованию.

    Для оценки аi = 9 наблюдаемая частотаn9= 67,Г ожидаемая —



     

    Подставим данные значения в формулу c2 и получим расчетную величину c2 = 22,93. Поскольку c2 = 22,93>c2 кр = 6,63 (a=0,01), то следует признать различие между наблюдаемой и ожидаемой частотами значимым. Следовательно, частота 67 для оцейки а = 9 «лишком Мала но сравнению с соседними.

    Аналогичные расчеты проводятся для пунктов шкалы а = 7 и а=5; частота пункта 7 (n7= 60) не противоречит выдвинутому требованию равномерности; частота оценки 5 (n5 = 81) слишком велика по сравнению с соседними и, таким образом, противоречит | требованию равномерности. 1

    Определение грубых ошибок. В процессе измерения иногда возникают грубые ошибки, причиной которых могут быть неправильные записи исходных данных, плохие расчеты, неквалифицированное использование измерительных средств и т. п. Это проявляется в том, что в рядах измерений попадаются данные, резко отличающиеся от совокупности всех остальных значений. Чтобы выяснить, нужно ли эти значения признать грубыми ошибками, устанавли­вают критическую границу так, чтобы вероятность превышения ее крайними значениями была достаточно малой и соответствовала некоторому уровню значимости а. Это правило основано на том, что появление в выборке чрезмерно больших значений хотя и возможно как следствие естественной вариабельности значений, но мало­вероятно.

    Если окажется, что какие-то крайние значения совокупности принадлежат ей с очень малой вероятностью, то такие значения, признаются грубыми ошибками и исключаются из дальнейшего рас­смотрения. Выявление грубых ошибок особенно важно проводить для выборок малых, объемов: не будучи исключенными из анализа, они существенно искажают параметры выборки:

    Статистический критерий t определения грубых ошибок таков , где t >tкр в качестве t выступает либо t max либо t min)15

     



     

    Здесь xmin и xmax являются крайними членами некоторой совокуп­ности значений {х}.

    В табл. XII, приводимой В. Ю. Урбахом16, даны критические значения t, соответствующие различным объемам выборки для до­верительных уровней: a= 0,05 и a= 0,01.

    Например, при выборке в 50 единиц значение t для уровня a= 0,05 будет 3,16.

    Если t расчетное окажется больше t критического, то соответствующее хсчитается маловероятным и отбрасывается как грубая ошибка.

    Пример. Представим, что получены распределения по признаку с такими выборочными параметрами: х=0,012; s = 0,160 (при объеме выборки n= 29 респондентов). В этом распределении край­ними значениями оказались такие: xmin= 0,50; xmax =0,250. Су­щественное подозрение вызывает значение, равное —0,500, посколь­ку среднее значение этого признака близко к 0 (0,012), а вариация его значений невелика (s = 0,160).



    Так как для n=29 и a=0,05 tкр = 2,94,"то с вероятностью 0,95 можно признать, что значение признака х= — 0,500 слишком мало для данной совокупности, и поэтому является грубой ошибкой а х0,250 не относится к резко выделяющимся значениям.

    Итак, дифференцирующая способность шкалы как первая существенная характеристика ее надежности предполагает: обеспече­ние достаточного разбора данных, выявление фактического использования респондентом предложенной протяженности шкалы; анализ отдельных «выпадающих» значений, исключение грубых ошибок. После того как установлена относительная приемлемость используемых шкал в указанных аспектах, следует переходить к выявлению устойчивости измерения по этой шкале.

    Устойчивость измерения.

    О высокой надежности шкалы можно говорить лишь в том случае, если повторные измерения при помощи одних и тех же объектов дают сходные результаты устойчивость проверяется на одной и той же выборке исследуемых объектов (респондентов). Сравнение же средних оценок разных выборок ничего не говорит об устойчивости измерения как таковом, а толь­ко лишь о репрезентативности выборок и их соответствий одной, и той же совокупности. Обычно устойчивость проверяй проведе­нием двух последовательных замеров с определенным временным интервалом — таким, чтобы этот промежуток не был слишком велик, чтобы сказалось изменение самого объекту но не слишком май, чтобы респондент мог по памяти «подтягивать» данные второго замера к предыдущему (т. е. его протяженность зависит от (объекта изучения и колеблется от двух до трех недель).

    Осуществление более двух измерений связано с трудностями организации эксперимента и накапливанием ошибок другой при­роды, не связанной, с устойчивостью.

    Пусть х — изучаемый на устойчивость признак, а отдельные его значения— х1, x2…хк. Каждый респондент l(l=1,…n) и при первом и при втором опросах получает некоторую оценку по изучаемому признаку — x1lи x2lсоответственно/

    Результаты двух опросов в респондентов заносятся в таблицу сопряженности (табл. 30), которая служит основой для дальнейшего изучения вопросов устойчивости. Здесь nijчисло респондентов, выбравших в первом опросе ответ хi и заменивших его при втором опросе на ответ xj.

    Существует традиция изучать устойчивость с помощью анализа корреляций между ответами проб I и II. Однако этот подход не­достаточно эффективен, поскольку не учитывает многих аспектов устойчивости.



     

    Остановимся на более результативных показателях.

    1. Показателем абсолютной устойчивости шкалы назовем вели­чину, показывающую долю совпадающих ответов в последователь­ных пробах.



    Этот показатель использует не всю информацию, содержащуюся в соотношении ответов проб I и II, а базируется лишь на частотах совпадающих ответов. Однако он хорош, например, для характе­ристики устойчивости качественных признаков.

    Для описания устойчивости количественных признаков его не­достаточно, поскольку при большом числе градаций доля совпада­ющих ответов будет чрезвычайно мала назначение W мало информативно. Здесь пригодны показатели неустойчивости, т. е. величи­ны ошибки, учитывающие не просто факт несовпадения ответов, а степень этого несовпадения. Ошибки рассчитываются по край­ней мере для порядковых признаков.

    Линейной мерой несовпадения оценок, является средняя ариф­метическая ошибка, показывающая средний сдвиг в ответах в расчете на одну пару последовательных наблюдений:



     

    Здесь х1и х11ответы по анализируемому вопросу L - го рес­пондента в I и II пробах соответственно.

    Пример. Пусть ответы на вопрос в пятибальной шкале для выборки 50 человек распределились, как в табл. 31.

    Таким образом, в I пробе оценку «1» дали 9 респондентов, из них только трое повторили ее в пробе II, пятеро отметили «2», один дал оценку «3» и т. д.



     

    Данный показатель использует всю информацию, содержащуюся в распределении, хорошо интерпретируется как средний сдвиг в ответах одного респондента, однако имеет определенные ограниче­ния аналитического характера и поэтому обычно редко использу­ется в статистических расчетах.

    Средняя квадратическая ошибка для последовательных дан­ных17 в расчете на одну пару наблюдений выглядит так:



     

     






    (совпадение Sxи 1AI в этом примере чисто случайное).

    До сих пор речь шла об абсолютный ошибках, размер которых выражался в тех же единицах, что и сама измеряемая величина, например 0,82 балла в пятибалльной шкале. Это не позволяет срав­нивать ошибки измерения разных признаков по разным шкалам. Следовательно, помимо абсолютных, нужны относительные показа­тели ошибок измерения.

    В качестве показателя для нормирования абсолютной ошибки можно использовать максимально возможную ошибку в рассмат­риваемой шкале (Dmax).

    Если число делений шкалы k, тогда Dmax равно разнице между крайними значениями шкалы (Xmax – Xmin), т. е. k—1, и относи­тельная ошибка имеет вид



     

    (здесь |D|— средняя арифметическая ошибка измерения).

    Однако зачастую этот показатель «плохо работает» из-за того, что шкала не используется на всей ее протяженности. Поэтому бо­лее показательными являются относительные ошибки, рассчитан­ные по фактически используемой части шкалы, как было рассмот­рено выше. Если число градаций в «работающей» части шкалы обозначить k', то тогда более надежной будет такая оценка ошибки:

     



    Если в качестве абсолютной ошибки использовалась средняя квадратическая ошибка S, то показатель относительной ошибки






     

    Пример. Допустим, что шкала имеет 7 градаций. При опреде­лении «работающей» части этой шкалы анализируется распреде­ление полученных в I пробе оценок:



     

     

     

    Здесь на оценки «5», «6»-, «7» приходится лишь 11 наблюдений, т. е. 2,26%. Проверка согласно критерию (формула (1)) устанав­ливает, что эта часть шкалы «не работает»; т. е. используются лишь градации 1, 2, 3, 4, поэтому Dmaх = 4 — 1 = 3. На основании соотношения ответов в I и II пробах находим сдвиги в ответах (ошиб­ки). Распределение ошибок по этой шкале оказалось следующим:



     

    измерения. Однако оценка по k также является довольно грубой и не использует всю информацию, содержащуюся в ответах I пробы ведь реально не все оценки могут дать максимальный сдвиг, а только крайние на шкале.

    Оценим для приведенного распределения максимальный сдвиг по реально работающей части шкалы: только крайние значения (233, 78 + 11) могут дать сдвиг в 3 балла, 106 и 59 ответов могут дать максимальный сдвиг в 2 балла. Таким образом, возможный сдвиг для данного исходного распределения «может быть равен средней в 2,6 балла четырех балльной шкалы, т. е. фактическая ошибка еще больше: 0,6:2,6= 0,23.

    Повышение устойчивости измерения. Для решения этой задачи необходимо выяснить различительные возможности пунктов: исполь­зуемой шкалы, что предполагает четкую фиксацию респондентами отдельных значений: каждая оценка должна быть строго отделена от соседней. На практике это означает, что в последовательных про­бах респонденты практически повторяют свои оценки. Следователь­но, высокой различимости делений шкалы должна соответствовать малая ошибка.

    Эту жё задачу можно описать в терминах чувствительности шка­лы, которая характеризуется количеством делений, приходящихся на одну и ту же разность в значениях измеряемой величины, т. е. чем больше градаций в, шкале, тем/больше ее чувствительность. Однако чувствительность нельзя повышать простым увеличением дробности, ибо высокая чувствительность при низкой устойчивости является излишней (например, шкала в 100 баллов, а ошибка из­мерения ±10 баллов).

    Во и при малом числе градаций, т. е. при низкой чувствитель­ности, может быть низкая устойчивость, и тогда следует увеличить дробность шкалы. Так бывает, когда респонденту навязывают кате­горические ответы «да», «нет», а он предпочел бы менее жесткие оценки. И потому он выбирает в повторных испытаниях иногда «да», иногда «нет» для характеристики своего нейтрального положения.

    Итак, следует найти некоторое оптимальное соотношение меж­ду чувствительностью и устойчивостью. Введём правило: использовать столько градаций в шкале, чтобы ее ошибка была меньше 0,5 балла. - : " .

    Если ошибка меньше 0,5 балла, то в последовательных опросах ответы в среднем будут совпадать. При |D| >0,5 балла ответы в последовательных опросах будут в среднем отличаться на 1 балл (и выше).

    Существуют способы, «позволяющие добиться требуемой чувстви­тельности.

    Пример. В исследовании каждый испытуемый дает 8 оценок некоторым профессиональным качествам инженеров. Значение оце­нок варьирует от +3 до —3. Проведено два измерения. Рассмотрим суммарное распределение оценок по четырем качествам (самостоя­тельность, творчество, инициативность, опытность), данных тринад­цати респондентов (табл. 32).






    Всего в табл 32 представлено 416 пар наблюдений: 13 респон­дентов X 8 оценок X 4 качества. Из них в первой пробе 226 оценок имели значение «3»; во второй пробе из них только 170 были по­вторены, 47 оценок получили значение «2», 6 оценок — значение «1» и 3 оценки — значение «О».

     

    Таким образом, для исходной оценки «3» средняя оценка во второй пробе стала равной



    На основании этого соотношения оценок получим распределение ошибок:



    Рассчитаем среднюю арифметическую ошибку çDç= 0,69. Поскольку çDç> 0,5, ищем не различающиеся градации.

    Средние оценки по каждой строке сравниваем с помощью кри­терия Стьюдента. Если окажется, что х1и xi+1отличаются незначимо (tкрит), то далее нужно сравнивать xiиxi+1и т. д. до значимого отличия средних (tti, i+tзаписаны в последнем столбце табл. 32, а значимы» значения выделены).

    Таким образом, оценки «3». и «2» отличаются между собой су­щественно, поскольку критерий Стьюдента фиксирует значимое различие между 2,70 и 2,47; оценки «2» и «1» несущественно отлича­ются друг от друга и т. д. Представим результаты сравнения ис­ходных оценок при помощи схемы разбиения совокупности оце­нок на классы эквивалентности:



    Здесь все оценки попадают в три непересекающихся класса: оценка «3» отличается от «2»; «2» и «1» не отличаются друг от друга, но отличаются от соседних оценок; последние четыре значе­ния взаимно неразличимы.

    Следовательно, респонденты различают лишь три уровня вме­сто семи предложенных, и шкала должна быть преобразована в трехбалльную, где высокой оценке соответствует исходная оценка в 3 балла, бредней — 2 и 1 балл; низкой — О, —1, —2, —3. При­своим описанным уровням новые баллы — соответственно 3, 2, 1. В итоге имеем следующее соотношение оценок (табл. 33).

    Это распределение характеризуется ошибкой çDç=0,43 балла, т. е. уже меньше 0,5 градации, и потому такая шкала устойчива.



    В общем случае возможны два варианта соотношения исходных оценок: 1) классы неразличимости оценок неё пересекаются (например, как это было в только что рассмотренном случае);



     

     

     

     

    2) классы неразличимости оценок пересекаются например так:

     

     






     

     

    В первом случае можно подобрать для шкалы числовую серию, т. е. упорядоченный ряд чисел, в котором большее число характе­ризует более высокий уровень качества.

    Во втором случае имеется полуупорядоченная система оценок, и ее можно отобразить лишь на полуупорядоченную числовую си­стему. В рассматриваемом примере возможно, в частности, такое числовое представление:



    Там, где между исходными оценками нет существенного раз­личия, разница между значениями числового представления (ниж­ний ряд чисел) меньше 1; при значимом различии разница боль­ше 1.

    Однако часто желательно иметь преобразованные оценки, вы­раженные целыми числами. В таком случае можно предложить следующую систему понижения дробности шкалы: ближайшим исходным значениям, существенно отличающимся друг от друга, присваивают ранги последовательно I, II, III и, т. д. В рассматриваемом примере будет выглядеть так:






     

    Для промежуточных значений, несущественно отличающихся от соседних (например, исходную оценку «2» можно отнести в любые классы — и в I, и во II), следует предложить дополнительные кри­терии отнесения их в один из двух соседних классов. Можно в качестве критерия использовать меру относительной близости про­межуточной оценки к тому или иному соседнему классу и путем перебора всех возможных схем объединения искать схему с наименьшей ошибкой.

    В конечном итоге порядок действия может быть таким. На ос­нове данных двух последовательных проб определяем пороги различаемости градаций шкалы, В том случае, если обнаружено смешение градаций, применяют один из двух способов.

    Первый способ, и итоговом варианте уменьшают дробность шкалы (например, из шкалы в 7 интервалов переходят на шкалу в 3 интервала).

    Второй способ. Для предъявления респонденту сохраняют прежнюю дробность шкалы и только при обработке укрупняют соот­ветствующие ее пункты (как это было показано выше).

    Второй способ кажется предпочтительнее, поскольку, как пра­вило, большая дробность шкал побуждает респондента и к более активной реакции. При обработке данных информацию следует перекодировать в соответствии с проведенным анализом различи­тельной способности исходной' шкалы.

    Итак, предложенные способы анализа целесообразны при отра­ботке окончательного варианта методики. Анализ устойчивости отдельных вопросов шкалы позволяет; а) выявить плохо сформулиро­ванные вопросы, их неадекватное понимание разными респондентами; б) уточнить интерпретацию шкалы» предложенной для оценки того или иного явления, выявить более оптимальный вариант дроб­ности значения шкалы.

    Изучение устойчивости окончательного варианта методики даст представление о надежности данных (связанной устойчивостью), которые будут получены в основном исследовании.

    Обоснованность измерения.

    Проверка обоснованности шкалы предпринимается лишь после того, как установлены достаточные правильность и устойчивость измерения исходных данных. Как уже отмечалось, проверка обоснованности — достаточно сложный про­цесс я, как правило, не до конца разрешимый, И поэтому нецелесообразно сначала применять трудоемкую технику для выявления обоснованности, а после- Этого убеждаться в неприемлемости дан­ных вследствие их низкой устойчивости.

    Обоснованность данных измерения — это доказательство соответ­ствия между тем, что измерено, и тем, что должно было быть измерено. Некоторые исследователи предпочитают исходить из так называемой наличной обоснованности, т. е. обоснованности в понятиях использованной процедуры. Например, считают, что удовлет­воренность работой— это то свойство, которое содержится в /от­ветах -на вопрос: «Удовлетворены ли Вы работой?» В серьезном социологическом исследовании, имеющем целью проверку некоторые теоретических гипотез, такой сугубо эмпирический подход не­приемлем.

    Остановимся на возможных формальных подходах к выяснению уровня обоснованности методики. Их можно разделить на три группы: 1) конструирование, типологии в соответствии с целями иссле­дования на базе нескольких признаков; 2) использование парал­лельных данных; 3) судейские процедуры.

    Первый вариант нельзя считать формальным методом — это все­го лишь некоторая схематизация логических рассуждений, начало процедуры обоснования, которая может быть на этом и закончена, а может быть подкреплена более мощными средствами.

    Второй вариант требует использования по крайней мере двух источников для выявления одного и того же свойства. Обоснованность определяется степенью согласованности соответствующих данных.

    В последнем случае мы полагаемся на компетентность судей, которым предлагается определить, измеряем > ли мы нужное Вам свойство или что-то иное.

    Рассмотрим предложенные варианты последовательно. Конструированная типологиях Один из способов —использова­ние контрольных вопросов, которые _в совокупности- с основными дают большее приближение к содержанию изучаемого свойства, раскрывая различные его стороны.

    Например, можно определять удовлетворенность работой лобо­вым вопросом: «Устраивает ли вас Ваша нынешняя работа?» Комбинация его с двумя другими косвенными: «Хотите ли Вы перейти на другую работу?» и «Предположим, что Вы по каким-то причинам временно не работаете. Вернулись бы Вы на свое прежнее месте работы?» позволяет произвести более надежную дифферен­циацию респондентов. Типология по пяти упорядоченным группам от наиболее удовлетворенных работой до наименее удовлетворенных проводится с помощью «логического квадрата.

    Обоснованность в подобного рода типологии не доказывается каким-либо формальным критерием и опирается на логические доводы.

    Единственное требование, которое может быть выдвинуто при конструировании такого рода типологии,— это положительная кор­реляция между составляющими ее признаками. Отсутствие положительной взаимосвязи между вопросами может свидетельствовать о том, что мы не понижаем сущности измеряемого явления.

    Так, попытка построить типологию самостоятельности инженера в работе на базе двух вопросов — сложность получаемых инже­нером заданий (плюс за сложность) и обращение его за консуль­тациями (плюс за самостоятельное решение) — оказалась неудач­ной, ибо вопросы коррелировали отрицательным образом и как раз сложность задания предполагала обращение к консультациям.

    Параллельные данные. Нередко целесообразно разработать два равноправных приема измерения заданного признака, что позволяет установить обоснованность методов относительно друг друга, т.е. повысить общую обоснованность путем сопоставления двух неза­висимых результатов.

    Классифицируем параллельные процедуры в зависимости от соотношения методов и исполнителей: а) несколько методов — один исполнитель. б) один метод — несколько исполнителей; в) несколь­ко методов — несколько исполнителей.

    Несколько методов — один исполнитель. Здесь один и тот же исполнитель использует два или более различных метода для изме­рения одного и того же свойства.

    Рассмотрим различные способы использования этого метода, и прежде всего — эквивалентные шкалы. Понятие эквивалентности тесно связано здесь с психологическим явлением социальной установки. Всевозможные акты поведения, обусловленные некоторой установкой, или состояние (Предрасположенности к определенному поведений: составляют целостность (универсум) данной предрасположенности. Универсум можно описать совокупностью признаков.

    Возможны равнозначные выборки признаков для описания — измерения социальной установки. Эти выборки и образуют парал­лельные шкалы, обеспечивая параллельную надежность.

    Каждую шкалу рассматриваем как способ измерения некоторого свойства в зависимости от числа параллельных шкал имеем ряд способов измерения. В качестве исполнителя выступает респондент, дающий ответы одновременно по всем параллельным шкалам. Все ответы сортируем в зависимости от принадлежности ki шкале и та­ким образом получаем параллельные данные.

    При обработке такого рода данных следует выяснить два момента: 1) непротиворечивость пунктов отдельной шкалы; 2) согласо­ванность оценок по разным шкалам.

    Первая проблема возникает в связи о тем, что модели ответов не представляют идеальной картины: ответы нередко, противоречат ДРУГ другу, Такая противоречивость свойственна как кумулятивным, так я некумулятивным шкалам. Поэтому встает вопрос, что принимать за истинное значение оценки респондента на данной шкале.

    Вторая проблема непосредственно касается сопоставления па­раллельных данных,

    Рассмотрим пример неудавшейся попытки повысить надежность измерения признака «удовлетворенность инженера профессией» с помощью трех параллельных порядковых шкал. Приведем две из них:






     

     

    15 суждений (в порядке, обозначенном слева) предъявляются респонденту общим списком, и он должен выразить свое согласие или несогласие с каждым из них. Каждому суждению присваива­ется оценка, соответствующая его рангу в указанной шкале (спра­ва). (Например, согласие с суждением 4 дает оценку «1», согласие с суждением 11 —оценку «5» и т. д.).

    Рассматриваемый здесь способ предъявления суждений списком дает возможность проанализировать пункты шкалы на непротиво­речивость. При использовании упорядоченных номинальных шкал обычно считается, что пункты, образующие шкалу, взаимно исклю­чают друг друга и респондент легко, найдет тот из них, который ему подходит.

    Изучение распределений ответов показывает, что респонденты выражают согласие с противоречивыми (с точки зрения исходной гипотезы) суждениями. Например, по шкале «S» 42 человека из 100 одновременно согласились с суждениями 13 и 12, т. е. с двумя противоположными суждениями.

    Наличие в ответе противоречивых суждений приводит к необходимости вычислять ошибку противоречивости. Это будет разница в рангах, наиболее противоположных для данной шкалы суждений в ответе респондента.

    Итак, средние ошибки, характеризующие противоречивость для рассматриваемых шкал, оказались равными

    Dа=0,37; Db=1,57

    Ошибка в 1,57 балла при пятибалльной оценке, видимо, слишком велика, чтобы считать шкалу приемлемой.

    Для эквивалентных шкал итоговая оценка респондента рассчи­тывается как суммарная (или усредненная) оценка по разным шка­лам. Однако для правомерности такой процедуры необходимо уста­новить соответствие оценок респондента по всем рассматриваемым шкалам.

    В вышеприведенном примере такого соответствия не наблюда­лось, что сказалось на коэффициенте корреляции r= -0,02.

    Поиск эквивалентной процедуры для повышения надежности шкалы весьма утомительная и кропотливая операция. Поэтому данный прием можно рекомендовать лишь при разработке ответ­ственных психологических тестов или методик, предназначенных для массового употребления или панельных исследований.

    Один метод — несколько исполнителей. Если метод надежен, то разные исполнители дадут совпадающую информацию, но если Их результаты плохо согласуются, то либо измерения ненадежны, ли­бо результаты отдельных исполнителей нельзя считать равноцен­ными. В последнем случае надо установить, нельзя ли считать ка­кую-либо группу результатов заслуживающей большего доверия. Решение этой задачи тем более важно, если предполагается, что одинаково допустимо получение информации любым из рассматри­ваемых методов (например, использование самооценок против оце­нок). Анализ параллельных данных с помощью описанных ниже процедур позволит установить правильность такого предположения.

    Для количественных признаков при решении вопроса о согласо­ванности оценок нескольких исполнителей предлагается выявить ошибки соответствия одним из приемов, рассмотренных при изуче­нии устойчивости. Прежде всего, поскольку мы имеем здесь слу­чай прямых групповых наблюдений, наиболее адекватной оценкой совпадения данных является средняя квадратическая ошибка.

    Пусть каждый раз измерение производят два человека, и респонденту приписывается значение в виде средней (х) из двух ис­ходных. Оценку точности такого измерения следует производить по формуле



     

     

     

     

     

    Пример. Двое судей оценивают опытность инженера в работе по семибальной шкале. Предположим, что 13 респондентов получили такие оценки:



    Итак, средняя ошибка при таком способе оценивания респондента составляет почти 1 балл. В том случае, если число измерений каждого объекта равно 3, формула для расчета ошибки будет

    где n – число респондентов (объектов).

     






    s2i – дисперсия оценок i-го респондента.

    Допустим, что рассмотренную выше совокупность из 13 респон­дентов оценивают не двое, а трое судей, т. е. добавляется еще одна строчка данных и следующие расчеты:



     

     

    Как видно, оценивание с помощью трех лиц значительно надеж­нее, чем с помощью двух (соответствующие ошибки 0,69 и 0,97).

    Обоснование измеряемого свойства путем определения уровня согласованности нескольких шифровальщиков — классический при­ем, используемый в контент-анализе документов. Этот метод, вы­явления надежности особенно необходим здесь, ибо, как правило, анализируемый документ не имеет в тексте четких границ измеря­емого признака, референты которого расплывчаты и толкуются неоднозначно, самые детальные инструкции по шифровке все же не дают исчерпывающих указаний.

    Тем же способом можно изучать совпадения оценок и самооце­нок. Если согласованность оценок со стороны «судей» и соответ­ствующих самооценок респондентов будет достаточно высокой, это может означать, что методика достаточно обоснованна. Во всяком случае, одновременное использование оценок и самооценок дает возможность глубже понять сущность измеряемых признаков, уточнить их смысл.

    Несколько методов и, несколько исполнителей. Одним из спосо­бов установления обоснованности измерения некоторого качества у одного и того же респондента (объекта) .является фиксирование данного свойства разными исполнителями, владеющими разными .методами. Как и предыдущих случаях, здесь нельзя установить некую абсолютную, обоснованность, поэтому рассматривается лишь, обоснованность одного способа относительно другого.

    Такая ситуация наблюдает, например, в случае, если руководитель ранжирует своих подчиненных по какому-то качеству а ис­следователь ранжирует этих же людей на основании их опроса по специально разработанной методике. Скорее всего надежность пер­вого способа ранжирования значительно выше, и обоснованность второго метода следует проверять по его согласованности с первым.

    Используя параллельные методы измерения одного и того же свойства, исследователь сталкивается с целым рядом трудностей.

    Во-первых, неясно, в какой мере оба метода измеряют одно и то же качество объекта, причем, как правило, формальных крите­риев для проверки такой гипотезы не существует. Следовательно, необходимо прибегнуть к содержательному (логико-теоретическому) обоснованию того или иного метода.

    Во-вторых, если обнаруживается, что параллельные процедуры измеряют общее свойство (данные существенно не различаются), остается вопрос о теоретико-содержательном соответствии этих процедур, .

    Нельзя не признать, что сам принцип использования парал­лельных процедур оказывается, не формальным, а скорее содержа­тельным принципом, и решение остается за теоретико-методологи­ческой концепцией исследования.

    Именно теоретическая позиция исследователя, теоретическая обоснованность метода измерения оказываются решающими фак­торами при решении вопроса о предпочтительности той или иной процедуры. Такое заключение необходимо сделать по отношению к параллельным процедурам, когда ни одна из них не обладает большей достоверностью по сравнению с другой.

    Метод судейства при обосновании процедур измерения. Один из широко распространенных подходов к установлению обоснован­ности — это использование так называемых судей. Исследователи обращаются к определенной группе людей с просьбой выступить в качестве судей или компетентных лиц. Им предлагают набор признаков, предназначенный для измерения изучаемого явления, и просят оценить правильность отнесения каждого из признаков к этому объекту. Совместная обработка мнений судей позволит присвоить признакам веса или, что то же самое, шкальные оценки в измерении изучаемого явления. В качестве набора признаков мо­жет выступить список отдельных суждений, серия предметов, со­вокупность обследуемых лиц и т. д.

    Процедуры судейства многообразны. Способ выявления отноше­ния признаков к измеряемому свойству определяет сущность ме­тода. Это могут быть методы парных сравнений, ранжирования, последовательных интервалов и т. д. В каждом случае, выбирая ту или иную технику судейства, необходимо учитывать ее специ­фические возможности, влияющие на уровень обоснования судей­ских оценок.

    Вопрос о том, кого следует считать судьями, достаточно дискуссионен. Судьи, выбираемые в качестве представителей изучаемой совокупности так или иначе должны представлять ее микромо­дель: по оценкам судей исследователь определяет, насколько адек­ватно будут истолкованы респондентами пункты опросной процеду­ры или другие обращенные к респонденту стимулы.

    Однако при отборе судей возникает трудноразрешимый вопрос, каково влияние собственных установок судей на их оценки, ведь эти установки Могут существенно отличаться от установок обследу­емых в отношении того же самого объекта.

    Ясно, что в каждом конкретном случае следует осуществлять контроль такого рода ошибок применительно к данной выборке судей.

    Так, используя мужчин и женщин в качестве судей для оценки потенциальных творческих возможностей различных занятий на досуге, нашли, что установки судей-мужчин существенно отлича­ются от установок судей-женщин. Более того, их установки зави­сят от того, увлекается ли сам судящий данным видом досуга. На­пример, женщины, которые занимаются рукоделием, значительно выше оценивают творческие возможности этого занятия, чем те, которые им не занимаются.

    В общем виде решение, проблемы состоит в том, чтобы: а) вни­мательно проанализировать состав судей с точки зрения адекват­ности их жизненного опыта и признаков социального статуса соответствующим показателям обследуемой генеральной совокупно­сти; б) выявить эффект индивидуальных уклонений в оценках судей относительно общего распределения оценок. Наконец, следу­ет оценить не только качество, но и объем выборочной совокупно­сти судей. Здесь также нет единодушия между специалистами. Рекомендуется брать то 25—30 человек, то 200—300 и более. Серьезных обоснований в обоих случаях не приводится.

    Рассмотрим эту проблему на языке измерения. Поскольку судьи должны измерить некоторое свойство, которое содержится в данном признаке, процедуру судейства можно понимать таким обра­зом: каждый судья i (1 = 1, 2, ..., N), измеряя одно и то же свой­ство, дает признаку некоторую оценку х и помещает его в неко­торый класс значений. Имея оценки N судей, получаем N измере­ний одного и того же признака. Если признаков k, то имеем Nk измерений. Количество судей надо поставить в прямую зависимость от вариаций их мнений и, таким образом, от однозначности изме­ряемого объекта.

    С одной стороны, это количество определяется согласованностью: если согласованность мнений судей достаточно высокая и соответ­ственно ошибка измерения мала, численность судей может быть небольшой. Нужно задать значение допустимой ошибки и на ос­новании ее рассчитать требуемый объем выборки.

    При обнаружении полной неопределенности объекта, т. е. в слу­чае, когда мнения судей распределятся равномерно по всем кате­гориям оценки, никакое увеличение объема выборки судей не спа­сет ситуацию и не выведет объект из состояния неопределенности.

    С другой стороны, количество измерений и соответственно чис­ло судей должны быть целесообразными. Очевидно, что 1000 судей дадут более надежные данные, но разумнее ограничиться мень­шим количеством, особенно если требования к точности измерения являются не слишком высокими.

    Здесь возникает проблема точности (устойчивости) измерения. Рассмотрим с этой точки зрения принципиально разные варианты судейства:

    1) производится классификация состояний объекта (сам объект имеет качественные градации);

    2) находится количественная оценка изменяющихся состояний объекта, представляющих собой континуум.

    В первом случае при определении объема выборки судей необходимо задать некоторый уровень определенности в их мнениях, т. е. энтропия распределения оценок должна быть не выше некоторого порогового значения. Во втором задается уровень допустимой ошибки. Далее возникает вопрос о численности градаций в судей­ских оценках, что относится к чувствительности любой измеритель­ной процедуры. В общем случае речь идет не о чем ином, как о чувствительности измерения, зависящей и от изменчивости объек­та, и от устойчивости инструмента измерения. Основной способ определения дробности судейских оценок — выявление их устойчи­вости путем двух последовательных (современным интервалом) судейств по единой процедуре. Эта операция уже рассматривалась выше в разделе об устойчивости.

    Если объект достаточно не определен, то большое число града­ций только внесет дополнительные помехи в работу судей и не принесет более точной информации. Нужно выявить устойчивость судейских мнений с помощью повторной пробы и соответственно сузить число градаций.

    Выбор того или иного конкретного способа, метода или техники проверки на обоснованность зависит от многих обстоятельств.

    Прежде всего следует четко установить, возможны ли какие-то существенные отклонения от запланированного предмета измере­ния. Как правило, интерпретация полученных данных вследствие различных погрешностей измерения не отвечает полностью эмпи­рической интерпретации понятий или свойств, которыми, согласно гипотезе, обладает этот объект. Бели программа исследования ста­вит чрезвычайно жесткие рамки следует использовать не один, а несколько приемов проверки данных на обоснованность, с тем чтобы четко определить границы достоверности заключения по ги­потезе. Если же она не столь жестко ограничивает содержание объекта, уточнение уровня обоснованности поможет интерпретиро­вать данные в несколько иных направлениях в соответствии с ре­зультатами проверки на обоснованность исходного измерения.

    Во-вторых, нужно иметь в виду, что уровни устойчивости и обоснованности данных тесно взаимосвязаны. Неустойчивая инфор­мация уже в силу недостаточной надежности при этому критерию не требует, слишком строгой проверки на обоснованность. Следует обеспечить достаточную устойчивость и уже затем принять соот­ветствующие меры для уточнения границ интерпретации данных

    Наконец, надо сказать, что для оперативных Исследований, про­грамма которых разработана лишь в общем виде: (т. е, имеется скорее общий набросок логики исследования, общий замысел), мож­но ограничиться проверкой данных на устойчивость, используя эту информацию. Для некоторых, хотя бы гипотетических, суждений относительно обоснованности.

    Выбор конкретной Техники проверки данных на обоснован­ность— задача скорее содержательная, чем формальная. Мы пока­зали, как решается эта задача в зависимости от особенностей методики, подлежащей проверке на обоснованность, того места, которое она занимает в рамках всего исследования, и, главное, в соответствии со спецификой объекта измерения.

    Многочисленные эксперименты по выявлению уровня надежно­сти исходной информации, в частности рассмотренные в этой гла­ве, позволяют заключить, что в процессе отработки инструментов измерения со стороны их надежности целесообразна следующая последовательность основных этапов работы:

    1. Предварительный контроль обоснованности методов измере­ния первичных, данных на стадии проб методики. Здесь проверяется, насколько - информация отвечает своему назначению по суще­ству и каковы пределы последующей интерпретации данных. Для этой цели достаточны небольшие выборки в 10-20 наблюдений с последующей корректировкой структуры методики.

    2. Пилотаж методики и тщательная проверка устойчивости ис­ходных данных, в особенности итоговых показателей, индексов, мно­гомерных шкал и т. п. На этом этапе нужна выборка не менее 100 человек, представляющая микромодель реальной совокупности об­следуемых с учетом представительства по существенным характе­ристикам объекта исследования.

    3. В период общего пилотажа осуществляются все необходимые операции, относящиеся к проверке, уровня обоснованности. Резуль­таты анализа данных генерального пилотажа приводят к усовер­шенствованию методики, к доработке всех ее деталей и в итоге — к- получению окончательного варианта методики для основного исследования.

    4. В начале основного исследования желательно провести проверку используемого варианта методики на устойчивость с тем, чтобы рассчитать точные показатели ее устойчивости. Доследую­щее уточнение границ обоснованности проходит через весь анализ самого исследования.

    Литература для дополнительного чтения

    Аванесов В. С. Тесты в социологическом исследовании. М.: Наука, 1982. 199 с.

    Бородкин Ф. М., Маркин Б. Г. Эмпирические, описания в социологии.— В кн.: Математика и социология. Новосибирск: Наука. Сиб. отд-ние, 1972, с. 3—41

    Воронов Ю. П., Ершова Н. П. Общие принципы социологического измерения.— В кн.: Намерение и моделирование в социологии. Новосибирск: Наука. Сиб. отд-ние, 1969, с. 3—15.

    Грин Ф. Б. Измерение установки.— В кн.: Математические методы в. современной буржуазной социологии. М.: Прогресс, 1966, с. 227—287.

    Докторов Б. 3. О надежности измерения в социологическом исследовании. Л.: Наука, 1979. 128 с.

    Жуков Ю. М. Применение шкалирования в социально-психологических иссле­дованиях.— В кн.: Методология и методы социальной психологии. М.: Наука, 1977, с. 126—135.

    Зайцева М. Л. Методы шкалирования при измерении установки.— В кн.: Со­циальные исследования. М.: Наука, 1970, вып. 5, с. 220—242.

    Клигер С. А., Косолапое М. С., Толстова Ю. И. Шкалирование при сборе и анализе социологической информации. М.: Наука, 1978. 112 с.

    Лазарсфельд П. Ф. Измерение в социологии.— В кн.: Американская социоло­гия: Перспективы, проблемы, методы. М.: Прогресс, 1972, с. 134—149.

    Осипов Г. В.. Андреев Э. П. Методы измерения в социологии. М.: Наука, 1977. 183 с.

    Процесс социального исследования. Прогресс. 1975, разд. 1,4,2. Саганенко Г. И. социологическая информация: Статистическая оценка надеж­ности исходных данных социологического исследования. Л.: Наука, 1979. 142с.

    Статистическое измерение качественных характеристик. М.: Статистика, 1972. . 173 с.

    Суппес П. Зинес Дж. Основы теории измерений.— В кн.: Психологические из­мерения. М.: Мир, 1967, с. 9—110.

     

    1   ...   19   20   21   22   23   24   25   26   ...   38


    написать администратору сайта