Главная страница
Навигация по странице:

  • 7.5. Гидравлический удар в трубопроводе

  • 6 ОСОБЫЕ СЛУЧАИ ТЕЧЕНИЯ ЖИДКОСТИ 6.1 Течение капельной жидкости с кавитацией

  • Гидравлика. Введение гидравлика относится к числу древнейших наук


    Скачать 5.48 Mb.
    НазваниеВведение гидравлика относится к числу древнейших наук
    АнкорГидравлика
    Дата27.10.2022
    Размер5.48 Mb.
    Формат файлаdoc
    Имя файлаc6dfbb4.doc
    ТипДокументы
    #757246
    страница7 из 8
    1   2   3   4   5   6   7   8

    5.4 Трубопровод с насосной подачей
    Как уже отмечалось, основным способом подачи жидкости в машиностроении является принудительное нагнетание ее насосом. Насосом называется гидравлическое устройство, преобразующее механическую энергию привода в энергию потока рабочей жидкости. В гидравлике трубопровод, в котором движение жидкости обеспечивается за счет насоса, называется трубопроводом с насосной подачей (рисунок 5.4, а).

    Целью расчета трубопровода с насосной подачей, как правило, является определение напора, создаваемого насосом (напора насоса). Напором насоса Нн называется полная механическая энергия, переданная насосом единице веса жидкости. Таким образом, для определения Нннеобходимо оценить приращение полной удельной энергии жидкости при прохождении ее через насос, т.е.

    , (5.9)

    где Нвх, Нвыхудельная энергия жидкости соответственно на входе и выходе из насоса.

    Рассмотрим работу разомкнутого трубопровода с насосной подачей (см. рисунок 5.4, а). Насос перекачивает жидкость из нижнего резервуара А с давлением над жидкостью p0 в другой резервуар Б, в котором давление р3. Высота расположения насоса относительно нижнего уровня жидкости H1 называется высотой всасывания, а трубопровод, по которому жидкость поступает к насосу, всасывающим трубопроводом, или гидролинией всасывания. Высота расположения конечного сечения трубопровода или верхнего уровня жидкости Н2называется высотой нагнетания, а трубопровод, по которому жидкость движется от насоса, напорным, илигидролинией нагнетания.


    Рисунок 5.4 - Схема трубопровода с насосной подачей (а) и график определения рабочей точки (б)




    Запишем уравнение Бернулли для потока жидкости во всасывающем трубопроводе, т.е. для сечений 0-0 и 1-1:

    , (5.10)

    где — потери напора во всасывающем трубопроводе.

    Уравнение (5.10) является основным для расчета всасывающих трубопроводов. Давление p0обычно ограничено (чаще всего это атмосферное давление). Поэтому целью расчета всасывающего трубопровода, как правило, является определение давления перед насосом. Оно должно быть выше давления насыщенных паров жидкости. Это необходимо для исключения возникновения кавитации на входе в насос. Из уравнения (5.10) можно найти удельную энергию жидкости на входе в насос:

    . (5.11)

    Запишем уравнение Бернулли для потока жидкости в напорном трубопроводе, т. е. для сечений 2-2 и 3-3:

    , (5.12)

    где — потери напора в напорном трубопроводе.

    Левая часть этого уравнения представляет собой удельную энергию жидкости на выходе из насоса Hвых. Подставив в (5.9) правые части зависимостей (5.11) для Hвх и (5.12) для Hвых, получим

    , (5.13)

    Как следует из уравнения (5.13), напор насоса Hн обеспечивает подъем жидкости на высоту 1+H2), повышение давления с р0до p3 и расходуется на преодоление сопротивлений во всасывающем и напорном трубопроводах.

    Если в правой части уравнения (5.13) обозначить Hст и заменить на KQm, то получим Hн=Hcr + KQm.

    Сравним последнее выражение с формулой (5.2), определяющей потребный напор для трубопровода. Очевидна их полная идентичность:

    , (5.14)

    т.е. насос создает напор, равный потребному напору трубопровода.

    Полученное уравнение (5.14) позволяет аналитически определить напор насоса. Однако в большинстве случаев аналитический способ достаточно сложен, поэтому получил распространение графический метод расчета трубопровода с насосной подачей.

    Этот метод заключается в совместном построении на графике характеристики потребного напора трубопровода (или характеристики трубопровода )и характеристики насоса . Под характеристикой насоса понимают зависимость напора, создаваемого насосом, от расхода. Точка пересечения этих зависимостей называется рабочей точкой гидросистемы и является результатом графического решения уравнения (5.14).

    На рисунке 5.4, б приведен пример такого графического решения. Здесь точка Аи есть искомая рабочая точка гидросистемы. Ее координаты определяют напор Hн, создаваемый насосом, и расход Qн жидкости, поступающей от насоса в гидросистему.

    Если по каким-то причинам положение рабочей точки на графике не устраивает проектировщика, то это положение можно изменить, если скорректировать какие-либо параметры трубопровода или насоса.
    7.5. Гидравлический удар в трубопроводе
    Гидравлическим ударом называется колебательный процесс, возникающий в трубопроводе при внезапном изменении скорости жидкости, например при остановке потока из-за быстрого пере­крытия задвижки (крана).

    Этот процесс очень быстротечен и характеризуется чередованием резкого повышения и понижения давления, что может привести к разрушению гидросистемы. Это вызвано тем, что кинетическая энергия движущегося потока при остановке переходит в работу по растяжению стенок труб и сжатию жидкости. Наибольшую опасность представляет начальный скачок давления.

    Проследим стадии гидравлического удара, возникающего в трубопроводе при быстром перекрытии потока (рисунок 7.5).

    Пусть в конце трубы, по которой жидкость движется со скоростью vq, произведено мгновенное закрытие крана А. Тогда (см. рисунок 7.5, а)скорость частиц жидкости, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается. Давление в остановившейся жидкости возрастает на Δpуд. На заторможенные частицы жидкости у крана набегают другие частицы и тоже теряют скорость, в результате чего сечение п—п перемещается вправо со скоростью с, называемой скоростью ударной волны, сама же переходная область (сечение п—п), в которой давление изменяется на величину Δpуд, называется ударной волной.

    Когда ударная волна достигнет резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы — растянутыми. Ударное повышение давления Δpуд распространится на всю трубу (см. рис. 7.5, б).

    Но такое состояние не является равновесным. Под действием повышенного давления (р0 + Δpуд) частицы жидкости устремятся из трубы в резервуар, причем это движение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение п—п перемещается по трубопроводу в обратном направлении — к крану — с той же скоростью с, оставляя за собой в жидкости давление p0 (см. рисунке 7.5, в).

    frame25
    Жидкость и стенки трубы возвращаются к начальному состоянию, соответствующему давлению p0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость , но направленную в противоположную сторону.

    С этой скоростью «жидкая колонна» (см. рисунок 7.5, г) стремится оторваться от крана, в результате возникает отрицательная ударная волна (давление в жидкости уменьшается на то же значение Δpуд). Граница между двумя состояниями жидкости направляетсяот крана к резервуару со скоростью с, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость (см. рисунок 7.5, д). Кинетическая энергия жидкости вновь переходит в работу деформации, но с противоположным знаком.

    Состояние жидкости в трубе в момент прихода отрицательной ударной волны к резервуару показано на рисунке 7.5, е. Так же как и для случая, изображенного на рисунке 7.5, б,оно не является равновесным, так как жидкость в трубе находится под давлением (р0 + Δpуд), меньшим, чем в резервуаре. На рисунке 7.5, ж показан процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью .

    Очевидно, что как только отраженная от резервуара ударная волна достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится.

    Теоретическое и экспериментальное исследования гидравлического удара в трубах было впервые выполнено Н.Е.Жуковским. В его опытах было зарегистрировано до 12 полных циклов с постепенным уменьшением Δpуд. В результате проведенных исследований Н.Е.Жуковский получил аналитические зависимости, позволяющие оценить ударное давление Δpуд. Одна из этих формул, получившая имя Н.Е.Жуковского, имеет вид

    , (7.14)

    где скорость распространения ударной волны с определяется по формуле

    ,

    где К — объемный модуль упругости жидкости; Е — модуль упругости материала стенки трубопровода; d и δ — соответственно внутренний диаметр и толщина стенки трубопровода.

    Формула (7.14) справедлива при прямом гидравлическом ударе, когда время перекрытия потока tзакр меньше фазы гидравлического удара t0:

    ,

    где l — длина трубы.

    Фаза гидравлического удара t0 — это время, за которое ударная волна движется от крана к резервуару и возвращается обратно. При tзакр > t0 ударное давление получается меньше, и такой гидроудар называют непрямым.

    При необходимости можно использовать известные способы «смягчения» гидравлического удара. Наиболее эффективным из них является увеличение времени срабатывания кранов или других устройств, перекрывающих поток жидкости. Аналогичный эффект достигается установкой перед устройствами, перекрывающими поток жидкости, гидроаккумуляторов или предохранительных клапанов. Уменьшение скорости движения жидкости в трубопроводе за счет увеличения внутреннего диаметра труб при заданном расходе и уменьшение длины трубопроводов (уменьшение фазы гидравлического удара) также способствуют снижению ударного давления.
    6 ОСОБЫЕ СЛУЧАИ ТЕЧЕНИЯ ЖИДКОСТИ
    6.1 Течение капельной жидкости с кавитацией
    В


    Рисунок 6.1 – Схема установки

    для демонстрации кавитации



    Рисунок 6.2 - Изменение коэффициента местного сопротивления ζ при кавитации

    некоторых случаях при движении жидкости в закрытых руслах происходят явления, связанные с изменением агрегатного состояния жидкости, т.е. с превращением ее в пар, а также с выделением из жидкости растворенных в ней газов. Например, при течении жидкости через местное сужение трубы увеличивается скорость и падает давление. Если абсолютное давление при этом достигает значения, равного давлению насыщенных паров этой жидкости при данной температуре, или давлению, при котором начинается выделение из нее растворенных газов, то в данном месте потока начинается интенсивное парообразование (кипение) и выделение газов. В расширяющейся части скорость потока уменьшается, а давление возрастает, и выделение паров и газов прекращается; выделившиеся пары конденсируются, а газы постепенно вновь растворяются. Это местное нарушение сплошности течения с образованием паровых и газовых пузырей (каверн), обусловленное местным падением давления в потоке, называется кавитацией.

    Наглядно это явление можно продемонстрировать на простом устройстве (рисунок 6.1). Вода или иная жидкость под давлением в несколько атмосфер подводится к регулировочному крану (вентилю) А и далее протекает через прозрачную трубку Вентури, которая сначала плавно сужает поток, затем еще более плавно расши­ряет и через кран Б выводит в атмосферу.

    При небольшом открытии регулировочного крана и, следовательно, при малых значениях расхода и скорости жидкости падение давления в узком месте трубки незначительно, поток вполне прозрачен, и кавитация отсутствует. При постепенном открытии крана происходит увеличение скорости жидкости в трубке и падение абсолютного давления.

    При некотором значении этого давления, которое можно считать равным давлению насыщенных паров (рабс2 = рн.п), в узком месте трубки появляется отчетливо видимая зона кавитации, представляю­щая собой область местного кипения жидкости и последующей конденсации паров. Размеры зоны кавитации возрастают по мере дальнейшего открытия крана, т. е. при увеличении давления в сечении 1-1, а следовательно, и расхода. Однако как бы при этом ни возрастал расход, давление в узком сечении 2-2 сохраняется строго постоянным потому, что постоянно давление насыщенных паров.

    Кавитация сопровождается характерным шумом, а при длительном ее воздействии также эрозионным разрушением металлических стенок. Последнее объясняется тем, что конденсация пузырьков пара (и сжатие пузырьков газа) происходит со значительной скоростью, частицы жидкости, заполняющие полость конденсирующегося пузырька, устремляются к его центру и в момент завершения конденсации (схлопывания пузырька) вызывают местные удары, т. е. значительное повышение давления в отдельных точках. Материал при кавитации разрушается не там, где выделяются пузырьки, а там, где они конденсируются.

    При возникновении кавитации значительно увеличивается сопротивление трубопроводов и, следовательно, уменьшается их пропускная способность, потому что каверны уменьшают живые сечения потоков, скорость в которых резко возрастает, и, как следствие, резко возрастает коэффициент местных сопротивлений (см. рисунок 6.2).

    Кавитация в обычных случаях является нежелательным явлением, и ее не следует допускать в трубопроводах и других элементах гидросистем. Она может возникать во всех местных гидравлических сопротивлениях, где поток претерпевает местное сужение с последующим расширением, например, в кранах, вентилях, задвижках, диафрагмах, жиклерах и др. В отдельных случаях возникновение кавитации возможно также и без расширения потока вслед за его сужением, а также в трубах постоянного сечения при увеличении геометрической высоты и гидравлических потерь.

    Кавитация может иметь место в гидромашинах (насосах и гидротурбинах), а также на лопастях быстро вращающихся гребных винтов. В этих случаях следствием кавитации является резкое снижение коэффициента полезного действия машины и затем постепенное разрушение ее деталей, подверженных воздействию кавитации.

    В гидросистемах кавитация может возникать в трубопроводах низкого давления — во всасывающих трубопроводах. В этом случае ее область распространяется на значительную часть всасывающего трубопровода или даже на всю его длину. Поток в трубопроводе при этом делается двухфазным, состоящим из жидкой и паровой фаз.

    В


    Рисунок 6.3 - Схемы двухфазных потоков


    начальной стадии паровыделения паровая фаза может быть в виде мелких пузырьков, приблизительно равномерно распределенных по объему движущейся жидкости (рисунок 6.3, а). При дальнейшем парогазовыделении происходит укрупнение пузырьков, которые при горизонтальном расположении трубы движутся преимущественно в верхней части ее сечения (рисунок 6.3, б).
    Очевидно, что при столь значительной парогазовой фазе нормальная подача жидкости по трубопроводу нарушается. Конденсация выделившихся паров (частичная или полная) и растворение газа происходят в насосе, где давление значительно повышается, и в напорном трубопроводе, по которому жидкость движется под высоким давлением от насоса к потребителю.
    1   2   3   4   5   6   7   8


    написать администратору сайта