ЭММ. Вариант 5. Задача 1 Графический метод решения задач линейногопрограммирования. Составить математическую модель по условию задачи
Скачать 171.28 Kb.
|
1. Проверка критерия оптимальности. Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальный план задачи. Окончательный вариант симплекс-таблицы:
Оптимальный план можно записать так: x1 = 40, x2 = 40, x3 = 0 F(X) = 40*40 + 60*40 + 80*0 = 4000 Построим двойственную задачу по следующим правилам. 1. Количество переменных в двойственной задаче равно количеству неравенств в исходной. 2. Матрица коэффициентов двойственной задачи является транспонированной к матрице коэффициентов исходной. 3. Система ограничений двойственной задачи записывается в виде неравенств противоположного смысла неравенствам системы ограничений прямой задачи. Столбец свободных членов исходной задачи является строкой коэффициентов для целевой функции двойственной. Целевая функция в одной задаче максимизируется, в другой минимизируется. Расширенная матрица A.
Транспонированная матрица AT.
Условиям неотрицательности переменных исходной задачи соответствуют неравенства-ограничения двойственной, направленные в другую сторону. И наоборот, неравенствам-ограничениям в исходной соответствуют условия неотрицательности в двойственной. Неравенства, соединенные стрелочками (↔), называются сопряженными. y1+y2+y3≥40 4y1+y2+y3≥60 3y1+2y2+2y3≥80 200y1+80y2+140y3 → min y1 ≥ 0 y2 ≥ 0 y3 ≥ 0
Решение двойственной задачи дает оптимальную систему оценок ресурсов. Используя последнюю итерацию прямой задачи найдем, оптимальный план двойственной задачи. y1=62/3, y2=331/3, y3=0 Это же решение можно получить, применив теоремы двойственности. Из теоремы двойственности следует, что Y = C*A-1. Составим матрицу A из компонентов векторов, входящих в оптимальный базис.
Определив обратную матрицу D = А-1 через алгебраические дополнения, получим:
Как видно из последнего плана симплексной таблицы, обратная матрица A-1 расположена в столбцах дополнительных переменных. Тогда Y = C*A-1 =
Оптимальный план двойственной задачи равен: y1 = 62/3, y2 = 331/3, y3 = 0 Z(Y) = 200*62/3+80*331/3+140*0 = 4000 Экономический смысл всех переменных, участвующих в решении.
Критерий оптимальности полученного решения. Если существуют такие допустимые решения X и Y прямой и двойственной задач, для которых выполняется равенство целевых функций F(x) = Z(y), то эти решения X и Y являются оптимальными решениями прямой и двойственной задач соответственно. Определение дефицитных и недефицитных (избыточных) ресурсов. Вторая теорема двойственности. Подставим оптимальный план прямой задачи в систему ограниченной математической модели: 1*40 + 4*40 + 3*0 = 200 = 200 1*40 + 1*40 + 2*0 = 80 = 80 1*40 + 1*40 + 2*0 = 80 < 140 1-ое ограничение прямой задачи выполняется как равенство. Это означает, что 1-й ресурс полностью используется в оптимальном плане, является дефицитным и его оценка согласно второй теореме двойственности отлична от нуля (y1 ≠ 0). 2-ое ограничение прямой задачи выполняется как равенство. Это означает, что 2-й ресурс полностью используется в оптимальном плане, является дефицитным и его оценка согласно второй теореме двойственности отлична от нуля (y2 ≠ 0). 3-ое ограничение выполняется как строгое неравенство, т.е. ресурс 3-го вида израсходован не полностью. Значит, этот ресурс не является дефицитным и его оценка в оптимальном плане y3 = 0. Неиспользованный экономический резерв ресурса 3 составляет 60 (140-80). Этот резерв не может быть использован в оптимальном плане, но указывает на возможность изменений в объекте моделирования (например, резерв ресурса можно продать или сдать в аренду). Двойственные оценки отражают сравнительную дефицитность различных видов ресурсов в отношении принятого в задаче показателя эффективности. Оценки показывают, какие ресурсы являются более дефицитными, (они будут иметь самые высокие оценки), какие менее дефицитными и какие совсем недефицитны (избыточны) - они будут равны нулю. |