Главная страница
Навигация по странице:

  • 1. Магнитное поле прямого тока

  • 2. Магнитное поле в центре кругового проводника с током

  • § 111. Закон Ампера. Взаимодействие параллельных токов.

  • §112.Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля

  • 2 Тепловое излучение. Спектральные характеристики теплового излучения. Закон Кирхгофа. Абсолютно черное тело. Законы Стефана-Больцмана и Вина. Формула Рэлея-Джинса и «ультрафиолетовая катастрофа».

  • Закон Ампера. Закон БиоСавараЛапласа. Магнитная индукция прямого и кругового тока


    Скачать 2.54 Mb.
    НазваниеЗакон Ампера. Закон БиоСавараЛапласа. Магнитная индукция прямого и кругового тока
    Анкорshpora.doc
    Дата27.02.2017
    Размер2.54 Mb.
    Формат файлаdoc
    Имя файлаshpora.doc
    ТипЗакон
    #3177
    страница1 из 12
      1   2   3   4   5   6   7   8   9   ...   12

    1магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Закон Био-Савара-Лапласа. Магнитная индукция прямого и кругового тока.§ 109. Магнитное поле и его характеристикиОпыт показывает, что, подобно тому, как в пространстве, окружающем электриче­ские заряды, возникает электростатиче­ское поле, так в пространстве, окружаю­щем токи и постоянные магниты, возника­ет силовое поле, называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током или постоянные маг­ниты. Особенноси магнитного поля:: действие только на движущиеся в эл. поле заряды. Опыт показывает, что характер воздействия магнитного поля на ток различен в за­висимости от формы проводника, по кото­рому течет ток, от расположения провод­ника и от направления тока. Следователь­но, чтобы охарактеризовать магнитноеполе, надо рассмотреть его действие на определенный ток.Подобно тому, как при исследовании электростатического поля использовались точечные заряды, при исследовании маг­нитного поля используется замкнутый плоский контур с током (рамка с током), размеры которого малы по сравнению с расстоянием до токов, образующих маг­нитное поле. Ориентация контура в про­странстве характеризуется направлением нормали к контуру. В качестве положи­тельного направления нормали принима­ется направление, связанное с током пра­вилом правого винта, т. е. за положитель­ное направление нормали принимается направление поступательного движения винта, головка которого вращается в направлении тока, текущего в рамке (рис. 160).

    Опыты показывают, что магнитное поле оказывает на рамку с током ориентирую­щее действие, поворачивая ее определен­ным образом. Этот результат связывается с определенным направлением магнитного поля. За направление магнитного поля в данной точке принимается направление, вдоль которого располагается положи­тельная нормаль к рамке (рис. 161). За направление магнитного поля может быть также принято направление, совпадающее с направлением силы, которая действует на северный полюс магнитной стрелки, помещенной в данную точку. Так как оба полюса магнитной стрелки лежат в близ­ких точках поля, то силы, действующие на оба полюса, равны друг другу. Следо­вательно, на магнитную стрелку действу­ет пара сил, поворачивающая ее так, чтобы ось стрелки, соединяющая южный полюс с северным, совпадала с направле­нием поля.Рамкой с током можно воспользовать­ся также и для количественного описания магнитного поля. Так как рамка с током испытывает ориентирующее действие по­ля, то на нее в магнитном поле действует пара сил. Вращающий момент сил зависит как от свойств поля в данной точке, так и от свойств рамки: М=[рmВ], (109.1)где В — вектор магнитной индукции, яв­ляющейся количественной характеристи­кой магнитного поля, рmвектор магнит­ного момента рамки с током. Для плоского контура с током Ipm = ISn, (109.2) где S — площадь поверхности контура (рамки), n—единичный вектор нормали к поверхности рамки. Направление рmсовпадает, таким образом, с направлением положительной нормали. Если в данную точку магнитного поля помещать рамки с различными магнитны­ми моментами, то на них действуют раз­личные вращающие моменты, однако от­ношение Mmax/pm max— максимальный вращающий момент) для всех контуров одно и то же и поэтому может служить характеристикой магнитного поля, назы­ваемой магнитной индукцией: В=Мmaxm.Магнитная индукция в данной точке однородного магнитного поля определяет­ся максимальным вращающим моментом, действующим на рамку с магнитным мо­ментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля. Следует отметить, что вектор В мо­жет быть выведен также из закона Ампера (см. §111) и из выражения для силы Лоренца (см. § 114).Так как магнитное поле является сило­вым, то его, по аналогии с электрическим, изображают с помощью линий магнитной индукции — линий, касательные к кото­рым в каждой точке совпадают с направ­лением вектора В. Их направление зада­ется правилом правого винта: головка винта, ввинчиваемого по направлению то­ка, вращается в направлении линий маг­нитной индукции.

    Линии магнитной индукции можно «проявить» с помощью железных опилок, намагничивающихся в исследуемом поле и ведущих себя подобно маленьким маг­нитным стрелкам. На рис. 162, а показаны линии магнитной индукции поля кругового тока, на рис. 162, б — линии магнитной индукции поля соленоида (соленоид — равномерно намотанная на цилиндрическую поверхность проволочная спираль, по которой течет электрический ток).

    Линии магнитной индукции всегда за­мкнуты и охватывают проводники с током. Этим они отличаются от линий напряжен­ности электростатического поля, которые являются разомкнутыми (начинаются на положительных зарядах и кончаются на отрицательных).

    Вектор маг­нитной индукции В характеризует резуль­тирующее магнитное поле, создаваемое всеми макро- и микротоками, т. е. при одном и том же токе и прочих равных условиях вектор В в различных средах будет иметь разные значения.

    Магнитное поле макротоков описыва­ется вектором напряженности Н. Для од­нородной изотропной среды вектор маг­нитной индукции связан с вектором на­пряженности следующим соотношением:В=0Н, (109.3)где 0 — магнитная постоянная,  — без­размерная величина — магнитная прони­цаемость среды, показывающая, во сколь­ко раз магнитное поле макротоков Н уси­ливается за счет поля микротоков среды. Сравнивая векторные характеристики электростатического (Е и D) и магнитного (В и Н) полей, укажем, что аналогом вектора напряженности электростатиче­ского поля Е является вектор магнитной индукции В, так как векторы Е и В опреде­ляют силовые действия этих полей и за­висят от свойств среды. Аналогом вектора электрического смещения D является век­тор напряженности Н магнитного поля.§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля Закон Био — Савара — Лапласа для проводника с током I, элемент которого dlсоздает в некоторой точке А (рис. 164) индукцию поля dB, записывается в виде где dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r — радиус-вектор, проведенный из элемента dl проводника в точку А поля, r— модуль радиуса-векто­ра г. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в ко­торой они лежат, и совпадает с каса­тельной к линии магнитной индукции. Это направление может быть найдено по пра­вилу нахождения линий магнитной индук­ции (правилу правого винта): направле­ние вращения головки винта дает направ­ление dB, если поступательное движение винта соответствует направлению тока в элементе. Модуль вектора dB определяется вы­ражениемгде а — угол между векторами dl и г. Для магнитного поля, как и для элек­трического, справедлив принцип суперпо­зиции: магнитная индукция результирую­щего поля, создаваемого несколькими то­ками или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каж­дым током или движущимся зарядом в от­дельности:Расчет характеристик магнитного поля (В и Н) по приведенным формулам в об­щем случае довольно сложен. Однако если распределение тока имеет определенную симметрию, то применение закона Био — Савара — Лапласа совместно с принци­пом суперпозиции позволяет довольно просто рассчитать конкретные поля. Рас­смотрим два примера.1. Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (рис. 165). В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одина­ковое направление, перпендикулярное плоскости чертежа («к нам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве по­стоянной интегрирования выберем угол а (угол между векторами dl и r), выразив через него все остальные величины. Из рис. 165 следует, что (радиус дуги CDвследствие малости dlравен r, и угол FDCпо этой же причине можно считать прямым). Подставив эти выражения в (110.2), получим, что маг­нитная индукция, создаваемая одним эле­ментом проводника, равнаТак как угол а для всех элементов прямо­го тока изменяется в пределах от 0 до я, то, согласно (110.3) и (110.4), Следовательно, магнитная индукция поля прямого тока 2. Магнитное поле в центре кругового проводника с током (рис. 166). Как следу­ет из рисунка, все элементы кругового проводника с током создают в центре магнитное поле одинакового направления — вдоль нормали от витка. Поэтому сложе­ние векторов dB можно заменить сложени­ем их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sin=1) и расстояние всех эле­ментов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2), ТогдаСледовательно, магнитная индукция поля в центре кругового проводника с током§ 111. Закон Ампера. Взаимодействие параллельных токов.Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, ис­пытываемый рамкой, есть результат дейст­вия сил на отдельные ее элементы. Обоб­щая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила dF, с которой магнитное поле действует на элемент проводника dl с током, находяще­гося в магнитном поле, прямо пропорцио­нальна силе тока I в прводнике и век­торному произведению элемента длиной dl проводника на магнитную индук­цию В:dF = I[dl, В]. (111.1) Направление вектора dF может быть найдено, согласно (111.1), по общим пра­вилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток. Модуль силы Ампера (см. (111.1)) вычисляется по формулеdF = IBdlsin, (111.2) где a — угол между векторами dl и В.

    Закон Ампера применяется для опре­деления силы взаимодействия двух токов. Рассмотрим два бесконечных прямолиней­ных параллельных тока I1и I2 (направле­ния токов указаны на рис. 167), расстоя­ние между которыми равно R. Каждый из проводников создает магнитное поле, ко­торое действует по закону Ампера на дру­гой проводник с током. Рассмотрим, с ка­кой силой действует магнитное поле тока I1 на элемент dl второго проводника с то­ком I2. Ток I1 создает вокруг себя магнит­ное поле, линии магнитной индукции кото­рого представляют собой концентрические окружности. Направление вектора b1 за­дается правилом правого винта, его мо­дуль по формуле (110.5) равен Направление силы dF1, с которой поле B1 действует на участок dl второго тока, определяется по правилу левой руки и указано на рисунке. Модуль силы, со­гласно (111.2), с учетом того, что угол  между элементами тока I2 и вектором B1 прямой, равен dF1=I2B1dl, или, подставляя значение для В1, получимРассуждая аналогично, можно пока­зать, что сила dF2, с которой магнитное поле тока I2 действует на элемент dl пер­вого проводника с током I1, направлена в противоположную сторону и по модулю равна Сравнение выражений (111.3) и (111.4) показывает, чтоdF1=dF2, т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой Если токи имеют противоположные на­правления, то, используя правило левой руки, можно показать, что между ними действует сила отталкивания, определяе­мая формулой (111.5). §112.Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля Если два параллельных проводника с то­ком находятся в вакууме (=1), то сила взаимодействия на единицу длины про­водника, согласно (111.5), равна Для нахождения числового значения 0 воспользуемся определением ампера, согласно которому при I1=I2=1А и R=1 м dF/dl=2•10-7 Н/м. Подставив это значение в формулу (112.1), получим 0=4•10-7 Н/А2=4•10-7 Гн/м, где генри (Гн) — единица индуктивности (см. §126). Закон Ампера позволяет определить единицу магнитной индукции В. Предпо­ложим, что элемент проводника dl с током I перпендикулярен направлению магнит­ного поля. Тогда закон Ампера (см. (111.2)) запишется в виде dF=IBdl, откуда Единица магнитной индукции — тесла (Тл): 1 Тл—магнитная индукция такого однородного магнитного поля, которое действует с силой в 1 Н на каждый метр длины прямолинейного проводника, распо­ложенного перпендикулярно направлению поля, если по этому проводнику проходит ток в 1 А:1Тл=1Н/(А•м). Так как 0= 4•10-7 Н/А2, а в случае вакуума (=1), согласно (1.09.3), В =0H, то для данного случая H=В/0. Единица напряженности магнитного поля — ампер на метр (А/м): 1 А/м — напряженность такого поля, магнитная индукция которого в вакууме равна 4•10-7 Тл.

    2 Тепловое излучение. Спектральные характеристики теплового излучения. Закон Кирхгофа. Абсолютно черное тело. Законы Стефана-Больцмана и Вина. Формула Рэлея-Джинса и «ультрафиолетовая катастрофа». 197. Тепловое излучение и Его характеристики Тела, нагретые до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым (температурным) излучением. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких - преимущественно длинные (инфракрасные). Тепловое излучение - практически единственный вид излучения, который может быть равновесным. Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости (излучательностн) тела - мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:где dWизлvdv - энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от v до v+dv.Единица спектральной плотности энергетической светимости (Rv,T)- джоуль на метр в квадрате (Дж/м2).Записанную формулу можно представить в виде функции длины волны: где знак минус указывает на то, что с возрастанием одной из величин (или l) другая величина убывает. Поэтому в дальнейшем знак минус будем опускать. Таким образом,        (197.1)С помощью формулы (197.1) можно перейти от Rv,T к Rl,Tи наоборот.Зная спектральную плотность энергетической светимости, можно вычислить интегральную энергетическую светимость (интегральную нзлучательность) (ее называют про сто энергетической светимостью тела), просуммировав по всем частотам:       (197.2)Способность тел поглощать падающее на них излучение характеризуется спектральной поглощательной способностью 

     показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частота ми от v до v+dv, поглощается телом. Спектральная поглощательная способность - величина безразмерная. Величины Rv,Tи Аv,Tзависят от природы тела, его термодинамической температуры и при этом различаются для излучений с различными частотами. Поэтому эти величины относят к определенным Т иv (вернее, к достаточно узкому интервалу частот от v до v+dv).

    Тело, способное поглощать полностью при любой температуре все падающее на него излучение любой частоты, называется черным. Следовательно, спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице (Ачv,T = 1). Абсолютно черных тел в природе нет, однако такие тела, как сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.

    Идеальной моделью черного тела является замкнутая полость с небольшим отверстием О, внутренняя поверхность которой зачернена (рис. 286). Луч света, попавший внутрь такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при размере отверстия, меньшего 0,1 диаметра полости, падающее излучение всех частот полностью поглощается. Вследствие этого открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен.

    Наряду с понятием черного тела используют понятие серого тела - тела, поглощательная способность которого меньше единицы, но одинакова для всех частот и зависит только от температуры, материала и состояния поверхности тела. Таким образом, дня серого тела Асv,= АТ =const <1.

    Исследование теплового излучения сыграло важную роль в создании квантовой теории света, поэтому необходимо рассмотреть законы, которым оно подчиняется.

     

      1   2   3   4   5   6   7   8   9   ...   12


    написать администратору сайта