Главная страница

Закон Ампера. Закон БиоСавараЛапласа. Магнитная индукция прямого и кругового тока


Скачать 2.54 Mb.
НазваниеЗакон Ампера. Закон БиоСавараЛапласа. Магнитная индукция прямого и кругового тока
Анкорshpora.doc
Дата27.02.2017
Размер2.54 Mb.
Формат файлаdoc
Имя файлаshpora.doc
ТипЗакон
#3177
страница8 из 12
1   ...   4   5   6   7   8   9   10   11   12
§ 217. ОБЩЕЕ УРАВНЕНИЕ ШРЕДИНГЕРА. УРАВНЕНИЕ ШРЕДИНГЕРА ДЛЯ СТАЦИОНАРНЫХ СОСТОЯНИЙ

 

Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гсйзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, г, t), так как именно она, или, точнее, величина ||2, определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами х и x+dx, уи y+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид            (217.1)

где ℏ=h/(2), т - масса частицы,  - оператор Лапласа i - мнимая единица, U (х, у, z, f)- потенциальная функция частицы в силовом поле, в котором она движется,  (х, у, z, t)искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) производные   должны быть непрерывны; 3) функция || должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

(х, t) = Acos(t-kx), если в комплексной записи  (x, t) = Aei(t-kx)Следовательно, плоская волна де Бройля имеет вид

           (217.2)

 

(учтено, что  = E/ℏ, k = p/ℏ). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только ||2, то это (см. (217.2)) несущественно. Тогда(217.3)

Используя взаимосвязь между энергией Е иимпульсом р (Е = р2/(2m)) иподставляя выражения (217.3), получим дифференциальное уравнение

 которое совпадает с уравнением (217.1) для случая U = 0 (мы рассматривали свободную частицу). Если частица движется в силовом поле, характеризуемом потенциальной энергией Uто полная энергия Ескладывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения в используя взаимосвязь между Е и р(для данного случая р2/(2m) = Е-U),придем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

Уравнение (217.1) является общим уравнением Шредннгера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость от времени, иными словами, найти уравнение Шредингера для стационарных состояний состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U(х, у, z)не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем  , так что            (217.4)

где Е- полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

 

откуда после деления на общий множитель е   и соответствующих преобразовании придем к уравнению, определяющему функцию :                                (217.5)

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями ф. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерыввый, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

13 Уравнение Максвела. Ток смещения. Вектор электрического смещения. Закон полного тока.Система уравнений Максвела в интегральной форме и физический смысл входящих в нее уравнений.§ 137. Вихревое электрическое полеИз закона Фарадея ξ=dФ/dt следует, что любое изменениесцепленного с контуром потока магнитной индукции приводит к возникновению элек­тродвижущей силы индукции и вследствие этого появляется индукционный ток. Сле­довательно, возникновение э.д.с. электро­магнитной индукции возможно и в непод­вижном контуре, находящемся в перемен­ном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы — силы неэлектростатического про­исхождения. Поэтому возника­ет вопрос о природе сторонних сил в дан­ном случае.Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с хи­мическими процессами в контуре; их воз­никновение также нельзя объяснить сила­ми Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнит­ное поле возбуждает в окружающем про­странстве электрическое поле, которое

и является причиной возникновения ин­дукционного тока в контуре. Согласно представлениям Максвелла, контур, в ко­тором появляется э.д.с., играет второсте­пенную роль, являясь своего рода лишь «прибором», обнаруживающим это поле.Итак, по Максвеллу, изменяющееся во времени магнитное поле порождает элек­трическое поле ЕB, циркуляция которого, по (123.3),

где EBl— проекция вектора EB на направ­ление dl.Подставив в формулу (137.1) выраже­ние , получим Если поверхность и контур неподвиж­ны, то операции дифференцирования и ин­тегрирования можно поменять местами. Следовательно, где символ частной производной подчерки­вает тот факт, что интеграл является

функцией только от времени. Согласно (83.3), циркуляция вектора напряженности электростатического поля (обозначим его eq) вдоль любого замкну­того контура равна нулю:

Сравнивая выражения (137.1) и (137.3), видим, что между рассматриваемыми по­лями (ЕB и eq) имеется принципиальное различие: циркуляция вектора ЕB в отли­чие от циркуляции вектора eq не равна нулю. Следовательно, электрическое поле ЕB, возбуждаемое магнитным полем, как и само магнитное поле, явля­ется вихревым.

§ 138. Ток смещения

Согласно Максвеллу, если всякое пере­менное магнитное поле возбуждает в окру­жающем пространстве вихревое электри­ческое поле, то должно существовать и об­ратное явление: всякое изменение элек­трического поля должно вызывать появле­ние в окружающем пространстве вихрево­го магнитного поля. Для установления количественных соотношений между изме­няющимся электрическим полем и вызыва­емым им магнитным полем Максвелл ввел в рассмотрение так называемый ток сме­щения.

Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор

«протекают» токи смещения, причем в тех участках, где отсутствуют проводники.

Найдем количественную связь между изменяющимся электрическим и вызывае­мым им магнитным полями. По Максвел­лу, переменное электрическое поле в кон­денсаторе в каждый момент времени со­здает такое магнитное поле, как если бы между обкладками конденсатора су­ществовал ток проводимости, равный току в подводящих проводах. Тогда можно утвер­ждать, что токи проводимости (I) и сме­щения (Iсм) равны: Iсм=I. Ток проводи­мости вблизи обкладок конденсатора

(поверхностная плотность заряда на обкладках равна электрическому смещению Dв конденсаторе (см. (92.1)). Подынтегральное выражение в (138.1) можно рас­сматривать как частный случай скалярного произведения (дD/дt)dS, когда дD/дt и dS взаимно параллельны. Поэтому для обще­го случая можно записать

Сравнивая это выражение с I=Iсм = (см. (96.2)), имеем

Выражение (138.2) и было названо Мак­свеллом плотностью тока смещения.

Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и jсм. При зарядке конденса­тора (рис. 197, а) через проводник, соеди­няющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается, вектор D растет со временем;

следовательно, дD/дt>0, т.е. вектор дD/дt

направлен в ту же сторону, что и D. Из рисунка видно, что направления векторов

дD/дt и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, сое­диняющий обкладки, ток течет от левой обкладки к правой; поле в конденсаторе ослабляется, вектор D убывает со временем; следовательно, дD/дt<0, т. е. вектор at

дD/дt направлен противоположно вектору

D. Однако вектор дD/дt направлен опять так

же, как и вектор j. Из разобранных при­меров следует, что направление вектора j, а следовательно, и вектора jсм совпадает

с направлением вектора дD/дt, как это и следует из формулы (138.2).Подчеркнем, что из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно — способность создавать в окружаю­щем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем про­странстве магнитное поле (линии индук­ции магнитных полей токов смещения при зарядке и разрядке конденсатора показа­ны на рис. 197 штриховой линией).

В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно (89.2), D=0E+P, где Е — напряжен­ность электростатического поля, а Р — поляризованность (см. § 88), то плотность тока смещения

где 0дE/дt — плотность тока смещения в вакууме, дP/дt — плотность тока поляри­зации — тока, обусловленного упорядо­ченным движением электрических зарядов в диэлектрике (смещение зарядов в не­полярных молекулах или поворот диполей в полярных молекулах). Возбуждение магнитного поля токами поляризации пра­вомерно, так как токи поляризации по своей природе не от личаются от токов проводимости. Однако то, что и другая

(0 дE/дt), часть плотности тока смещения (0дE/дt), не связанная с движением зарядов, а обус­ловленная только изменением электричес­кого поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени электрического поля приводит к возникно­вению в окружающем пространстве маг­нитного поля.

Следует отметить, что название «ток смещения» является условным, а точ­нее — исторически сложившимся, так как ток смещения по своей сути — это изменя­ющееся со временем электрическое поле. Ток смещения поэтому существует не только в вакууме или диэлектриках, но и внутри проводников, по которым течет переменный ток. Однако в данном случае он пренебрежимо мал по сравнению с то­ком проводимости. Наличие токов смеще­ния подтверждено экспериментально со­ветским физиком А. А. Эйхенвальдом, изу­чавшим магнитное поле тока поляризации, который, как следует из (138.3), является частью тока смещения.

Максвелл ввел понятие полного тока, равного сумме токов проводимости (а так­же конвекционных токов) и смещения. Плотность полного тока jполн=j+дD/дt. Введя понятия тока смещения и полного тока, Максвелл по-новому подошел к рас­смотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут, т. е. на концах проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.

Максвелл обобщил теорему о циркуля­ции вектора Н (см. (133.10)), введя в ее правую часть полный ток Iполн= сквозь поверхность S, натянутую на замк­нутый контур L. Тогда обобщенная теоре­ма о циркуляции вектора Н запишется в виде

Выражение (138.4) справедливо всегда, свидетельством чего является полное со­ответствие теории и опыта.

§ 139. Уравнения Максвелла для электромагнитного поля

Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование кото­рых было впоследствии подтверждено.

В основе теории Максвелла лежат рас­смотренные выше четыре уравнения:

1. Электрическое поле (см. § 137) мо­жет быть как потенциальным (eq), так и вихревым (ЕB), поэтому напряженность суммарного поля Е=ЕQ+ЕB. Так как циркуляция вектора eq равна нулю (см. (137.3)), а циркуляция вектора ЕB оп­ределяется выражением (137.2), то цир­куляция вектора напряженности суммар­ного поля Это уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами (электрическими то­ками), либо переменными электрическими полями.

3. Теорема Гаусса для поля D: Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью , то формула (139.1) запишется в виде

4. Теорема Гаусса для поля В (см. (120.3)):

Итак, полная система уравнений Максвел­ла в интегральной форме:

Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды):D=0E, В=0Н,

j=E, где 0 и 0 — соответственно электриче­ская и магнитная постоянные,  и — соответственно диэлектрическая и магнит­ная проницаемости,  — удельная прово­димость вещества.

Из уравнений Максвелла вытекает, что источниками электрического поля мо­гут быть либо электрические заряды, либо изменяющиеся во времени магнитные по­ля, а магнитные поля могут возбуждаться либо движущимися электрическими заря­дами (электрическими токами), либо пере­менными электрическими полями. Уравне­ния Максвелла не симметричны относи­тельно электрического и магнитного полей. Это связано с тем, что в природе су­ществуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (Е=const и В=const) уравнения Максвелла при­мут вид

т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го — только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса

можно представить полную систему урав­нений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла — интегральная и дифференциальная — эквивалентны. Однако когда имеются поверхности разры­ва — поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений являет­ся более общей.

Уравнения Максвелла в дифференци­альной форме предполагают, что все вели­чины в пространстве и времени изменяют­ся непрерывно. Чтобы достичь математи­ческой эквивалентности обеих форм урав­нений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электро­магнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):

D1n=D2n, E1=E2, B1n=B2n, H1= H2

(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов прово­димости).

Уравнения Максвелла — наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом — они образуют единое электромагнитное поле.

Теория Максвелла, являясь обобщени­ем основных законов электрических и маг­нитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явле­ния. Одним из важных выводов этой тео­рии явилось существование магнитного поля токов смещения (см. § 138), что по­зволило Максвеллу предсказать существо­вание электромагнитных волн — перемен­ного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3•108 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвел­ла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857—1894), доказавшим, что законы их возбуждения и распространения полно­стью описываются уравнениями Максвел­ла. Таким образом, теория Максвелла была экспериментально подтверждена.

К электромагнитному полю применим только принцип относительности Эйнштей­на, так как факт распространения электро­магнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.

Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инер­циальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инва­риантны относительно преобразований Ло­ренца: их вид не меняется при переходе

от одной инерциальной системы отсчета к другой, хотя величины Е, В, D, Н в них преобразуются по определенным прави­лам.

Из принципа относительности вытека­ет, что отдельное рассмотрение электри­ческого и магнитного полей имеет относи­тельный смысл. Так, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь непод­вижными относительно одной инерциаль­ной системы отсчета, движутся относи­тельно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвиж­ный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке про­странства постоянное магнитное поле, дви­жется относительно других инерциальных систем, и создаваемое им переменное маг­нитное поле возбуждает вихревое электри­ческое поле.Таким образом, теория Максвелла, ее экспериментальное подтверждение, а так­же принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базиру­ющейся на представлении об электромаг­нитном поле.

14Квантовая частица в одномерной, бесконечно глубокой прямоугольной потенциальной яме. Собственные значения частицы и собственные нормированные волновые функции, описывающие ее состояние§ 220. Частица в одномерной прямоугольной «потенциальной яме» c бесконечно высокими «стенками»

 

Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

где l - ширина «ямы», а энергия отсчитывается от ее дна (рис. 296).

 



                                               Рис. 296

 

Уравнение Шредингера (217.5) для стационарных состояний в случае одномерной задачи запишется в виде     (220.1)

 По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = l)непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные условия в данном случае имеют вид  (220.2) В пределах «ямы» (0  х  l) уравнение Шредингера (220.1) сведется к уравнению  

 
220.3 или 220.4 гдеОбщее решение дифференциального уравнения (220.3): (x) = Asin kx + Bcos kx. Так как по (220.2) (x) = 0, то B = 0. Тогда                                               (220.5) Условие (220.2) (l) = Asin kl  выполняется только при k= nгде n - целые числа, т. е. необходимо, чтобы         (220.6)Из выражений (220.4) и (220.6) следует, что             (220.7)т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях , зависящих от целого числа n. Следовательно, энергия Enчастицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется. Квантованные значения энергии Enназываются уровнями энергии, а число л, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне Enили, как говорят, частица находится в квантовом состоянии n.

Подставив в (220.5) значение из (220.6), найдем собственные функции:

Постоянную интегрирования А найдем из условия нормировки (216.3), которое для данного случая запишется в видеВ результате интегрирования получим     а собственные функции будут иметь вид     (220.8)

 Графики собственных функций (220.8), соответствующие уровням энергии (220.7) при n =  1, 2, 3, приведены на рис. 297,а.На рис. 297,б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная |n(x)|2 = n(x) *n(x) для n = 1, 2 и 3.

 
Из рисунка следует, что, например, в квантовом состоянии с n = 2 частица не может находиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (220.7) вытекает, что энергетический интервал между двумя сосед ними уровнями равен               (220.9)Например, для электрона при размерах ямы l = 10-1 м (свободные электроны в металле) En  10-35 n  Дж 10-16 n эВ, т. е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l =  10-10 м), то для электрона En  10-17 n  Дж 10n эВ, т. е. получаются явно дискретные значения энергии (линейчатый спектр). Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная 22/(2ml2). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Аде частицы в «яме» шириной l равна x = l. Тогда, согласно соотношению неопределенностей (215.1), импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса р  h/l. Такому разбросу значений импульса соответствует кинетическая энергия Emin (p)2/(2m) = h2/(2ml2). Все остальные уровни (n > 1) имеют энергию, превышающую это минимальное значение.

Из формул (220.9) и (220.7) следует, что при больших квантовых числах (n >> 1)  En/En  2/n << 1т. е. соседние уровни расположены тесно: тем теснее, чем больше nЕсли n очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов - дискретность - сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.

Более общая трактовка принципа соответствия, имеющего огромную роль в со временной физике, заключается в следующем: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения, причем в определенных пре дельных случаях новая теория переходит в старую. Так, формулы кинематики и динамики специальной теории относительности переходят при v<<с в формулы механики Ньютона. Например, хотя гипотеза де Бройля приписывает волновые свойства всем телам, но в тех случаях, когда мы имеем дело с макроскопическими телами, их волновыми свойствами можно пренебречь, т. е. применять классическую механику Ньютона.

15Возникновение электромагнитной волны. Плоская электромагнитная волна. Скорость распространения электромагнитной волны. Энергия, переносимая электромагнитной волной. Вектор Умова-Пойтинга. § 161. Экспериментальное получение электромагнитных волн

Существование электромагнитных волн —

переменного электромагнитного поля, рас­пространяющегося в пространстве с ко­нечной скоростью,— вытекает из уравне­ний Максвелла (см. §139). Уравнения Максвелла сформулированы в 1865 г. на основе обобщения эмпирических законов электрических и магнитных явлений. Как уже указывалось, решающую роль для утверждения максвелловской теории сыг­рали опыты Герца (1888), доказавшие, что электрические и магнитные поля дей­ствительно распространяются в виде волн, поведение которых полностью описывает­ся уравнениями Максвелла.

Источником электромагнитных волн в действительности может быть любой электрический колебательный контур или проводник, по которому течет переменный электрический ток, так как для возбужде­ния электромагнитных волн необходимо создать в пространстве переменное элек­трическое поле (ток смещения) или со­ответственно переменное магнитное поле. Однако излучающая способность источни­ка определяется его формой, размерами и частотой колебаний. Чтобы излучение играло заметную роль, необходимо увеличить объем пространства, в котором пере­менное электромагнитное поле создается.

Поэтому для получения электромагнитных волн непригодны закрытые колебательные контуры, так как в них электрическое поле сосредоточено между обкладками конден­сатора, а магнитное — внутри катушки индуктивности.

Герц в своих опытах, уменьшая число витков катушки и площадь пластин кон­денсатора, а также раздвигая их (рис. 225, а, б), совершил переход от за­крытого колебательного контура к откры­тому колебательному контуру (вибратору Герца), представляющему собой два стер­жня, разделенных искровым промежутком (рис. 225, в). Если в закрытом колебатель­ном контуре переменное электрическое по­ле сосредоточено внутри конденсатора (рис. 225, а), то в открытом оно заполняет окружающее контур пространство (рис. 225, в), что существенно повышает интенсивность электромагнитного излуче­ния. Колебания в такой системе поддер­живаются за счет источника э.д.с., под­ключенного к обкладкам конденсатора, а искровой промежуток применяется для того, чтобы увеличить разность потенциа­лов, до которой первоначально заряжают­ся обкладки.

Для возбуждения электромагнитных волн вибратор Герца В подключался к ин­дуктору И (рис.226). Когда напряжение на искровом промежутке достигало про­бивного значения, возникала искра, закорачивающая обе половины вибратора, и в нем возникали свободные затухающие колебания. При исчезновении искры кон­тур размыкался и колебания прекраща­лись. Затем индуктор снова заряжал кон­денсатор, возникала искра и в контуре опять наблюдались колебания и т. д. Для регистрации электромагнитных волн Герц пользовался вторым вибратором, называе­мым резонатором Р, имеющим такую же частоту собственных колебаний, что и из­лучающий вибратор, т. е. настроенным в резонанс с вибратором. Когда электро­магнитные волны достигали резонатора, то в его зазоре проскакивала электриче­ская искра.

С помощью описанного вибратора Герц достиг частот порядка 100 МГц и по­лучил волны, длина Я которых составляла примерно 3 м. П. Н. Лебедев, применяя миниатюрный вибратор из тонких плати­новых стерженьков, получил миллиметро­вые электромагнитные волны с =6— 4 мм. Дальнейшее развитие методики эк­сперимента в этом направлении позволило в 1923 г. советскому физику А. А. Глаголе­вой-Аркадьевой (1884—1945) сконструи­ровать массовый излучатель, в котором короткие электромагнитные волны, воз­буждаемые колебаниями электрических зарядов в атомах и молекулах, генериро­вались с помощью искр, проскакиваемых между металлическими опилками, взве­шенными в масле. Так были получены

Таблица 5волны от 50 мм до 80 мкм. Тем самым было доказано существование волн, пере­крывающих интервал между радиоволна­ми и инфракрасным излучением.

Недостатком вибраторов Герца и Ле­бедева и массового излучателя Глаголе­вой-Аркадьевой являлось то, что свобод­ные колебания в них быстро затухали и обладали малой мощностью. Для полу­чения незатухающих колебаний необходи­мо создать автоколебательную систему, которая обеспечивала бы по­дачу энергии с частотой, равной частоте собственных колебаний контура. Поэтому в 20-х годах нашего столетия перешли к генерированию электромагнитных волн с помощью электронных ламп. Ламповые генераторы позволяют получать колеба­ния заданной (практически любой) мощ­ности и синусоидальной формы.

Электромагнитные волны, обладая ши­роким диапазоном частот (или длин волн =c/v, где с — скорость электромагнит­ных волн в вакууме), отличаются друг от друга по способам их генерации и ре­гистрации, а также по своим свойствам. Поэтому электромагнитные волны делятся на несколько видов: радиоволны, световые волны, рентгеновское и -излучения (табл.5). Следует отметить, что границы между различными видами электромаг­нитных волн довольно условны.

1   ...   4   5   6   7   8   9   10   11   12


написать администратору сайта