Значение биохимии в подготовке врача. Биологическая химия
Скачать 8.33 Mb.
|
Расслабление Для процесса расслабления требуется энергия в виде АТФ, Mg+2-Ca+2 - АТФ-аза, находящаяся в мембране СР, активируясь под действием карнозина и анзерина, используя энергию АТФ, начинают перекачивать ионы кальция из саркоплазмы в полость цистерн. Вследствие этого: содержание Са+2 в саркоплазме падает ниже 10-7 моль/л ; что ведёт к распаду комплексов I, II; комплекс ТнС-4Са+2 утрачивает свой Са+2; тропонин I, реагируя с тропомиозином, подавляет дальнейшее взаимодействие миозиновой головки с F-актином; блокировка активных центров F-актина приводит к распаду актомиозина. мышца расслабляется и её длина достигает исходной. Особенности энергетического обмена в мышцах Источником АТФ служит гликолиз, ß- окисление, ЦТК и ЦПЭ В мышцах постоянно протекает ресинтез АТФ по двум основным путям: миокиназный (аденилаткиназный); креатинкиназный: (реакция Ломана, 1934) Изоферменты КК не только в разных органах, но и в одной и той же клетке. В мышечных клетках 4 : в митохондриях, миофибриллах, мембранах саркоплазматического ретикулума, в комплексе с мембранными транспортными белками -. ®-в МТХ происходит реакция превращения АТФ в КФ, а в местах использования энергии – синтез АТФ. Работами С. Гудбьярнассона и соавт. (1970) установлено, что при ишемии сокращения сердца останавливаются через 1-2 мин, когда запасы АТФ снижаются всего лишь на 20%, а содержание КФ более значительно. Синтез креатинина: в почках, метилирование в печени, транспорт в мышцы и клетки мозга. Нефермен КФ® креатинин, выводится с мочой 103. Химический состав нервной ткани. Миелиновые мембраны: особенности состава и структуры. Энергетический обмен в нервной ткани. Значение аэробного распада глюкозы. Медиаторы нервной системы. Физиологически активные пептиды мозга. Функции нервной системы:
ХИМИЧЕСКИЙ СОСТАВ НЕРВНОЙ ТКАНИ В связи с различием строения, серое и белое вещество нервной ткани отличаются по химическому составу. Химический состав серого и белого вещества головного мозга человека
Белки нервной ткани В головном мозге на белки приходиться 40% сухой массы. Методами хроматографии, электрофореза и экстракции буферными растворами. выделено более 100 белковых фракций нервной ткани В нервной ткани содержатся простые и сложные белки. 1. Простые белки
2. Сложные белки Нервной ткани представлены: нуклеопротеинами, липопротеинами, протеолипидами, фосфопротеинами, гликопротеинами и т.д.
Нейроспецифические белки В цитоплазме нейронов присутствуют кальцийнейрин, белок 14-3-2, белок S-100, белок Р-400.
Концентрация в мозге в 100 000 раз превышает содержание в других тканях и составляет до 90% растворимой фракции белков нервных клеток. Все фракции S100 специфически взаимодействуют с кальцием, но отличаются друг от друга количеством кальций-связывающих центров (от 2 до 8) Белки S100 синтезируются глиальными клетками , а затем транспортируются в нейроны. Обеспечивают функциональный гомеостаз клеток мозга путем сопряжения и интеграции разноплановых метаболических процессов Выделяют 4 основных молекулярных процесса, лежащих в основе биологической активности белков группы S100. 1.Связывание Са2+ и кальций-зависимое специфическое межмолекулярное взаимодействие белков S100 с другими белками,
Белок S100 воздействует на у , моноаминоксидазау , основной белок миелина нейроспецифическая енолаза (гликолиз) [, ряд ДНК-связывающих белков и гликопротеинов . Взаимодействие происходит по похожей схеме:
3.Влияние на состояние микротрубочек нервных клеток. В результате ассоциации/диссоциации молекул S100 и ионов Са2+ происходит изменение концентрации кальция в клетке, что определяет процесс перестройки и диссоциации микротрубочек.
4. Влияние на процессы обмена и специфической рецепции
Экспериментально доказано участие белков группы S100 в регуляции процессов направленного роста отростков нейронов , в завершении нейроонтогенеза в становлении основных форм врожденного поведения , в механизмах памяти и обучения . Белки S100 не являются жизненно важными компонентами (как ферменты гликолиза или окислительного фосфорилирования), необходимыми для поддержания общего гомеостаза живых клеток. Экспериментальные воздействия на белки S100 обычно не сопровождаются заметным ухудшением соматического состояния животных, но одновременно приводят к резким и разнообразным нарушениям интегративной функции мозга , информационного гомеостаза , в обеспечении и оптимизации которого и заключается их общебиологическая роль.
К сократительным белкам нейрона относятся нейротубулин, нейростенин, актиноподобные белки (кинезин и др.). Они обеспечивают ориентацию и подвижность цитоскелета (микротрубочек и нерофиламентов), активный транспорт веществ в нейроне, участвуют в работе синапсов. В нейронах имеются белки, осуществляющие гуморальную регуляцию. Это некоторые гликопротеины гипоталамуса, нейрофизины и подобные им белки. На мембране нейронов расположены нейроспецифические поверхностные антигены (NS1, NS2, L1) с неизвестной функцией и факторы адгезии клеток (N-САМ), важные для развития нервной системы. Нейроспецифические белки участвуют в осуществлении всех функций нервной системы - генерации и проведении нервного импульса, процессах переработки и хранении информации, синаптической передаче, клеточном узнавании, рецепции и др. Ферменты нервной ткани В мозговой ткани содержится большое количество ферментов, катализирующих обмен белков, липидов и углеводов. Также цитоплазма нейронов содержит ферменты метаболизма посредников и медиаторов. Мозговая ткань характеризуется высокой ферментативной активностью: Энергетический обмен: ферменты цикла Кребса, активна креатинкиназы (ВВ), Углеводный обмен: гексокиназа, альдолаза, в нейронах ЛДГ (ЛДГ1,ЛДГ2), в глиальных клетках преобладает ЛДГ5, Белковый обмен: АСТ, глутаматдегидрогеназа, Обмен фосфатов: кислая фосфатаза Обмен медиаторов синтез и разрушение :ацетил холинэстераза, моноаминоксидазы. Для мозга характерна так же высокая активность ферментов метаболизма циклических нуклеотидов, которые принимают участие в синаптической передаче нервного импульса. Аминокислоты нервной ткани Аминокислотный фонд мозга человека составляет в среднем 34 ммоль / 1г ткани, это значительно превышает их содержание в плазме крови и спинномозговой жидкости (СМЖ) Аминокислоты проникают в мозг молодых животных быстрее и достигают более высоких концентраций, чем у взрослых Более 50% α-аминоазота головного мозга приходится на долю глутаминовой кислоты, глутамина и глутатиона. Специфичными для мозговой ткани являются ГАМК, N-ацетиласпарагиновая кислота и цистатионин. N-ацетиласпарагиновой кислоты больше в сером веществе, чем в белом Роль ацетиласпарагиновой кислоты рассматривается в развитии алкоголизма. Глутаминовая кислота, ГАМК, глицин и др. обладают нейромдиаторной активностью. Липиды нервной ткани Нервная ткань отличается высоким содержанием и разнообразием липидов, которые придают ей специфические особенности. В сером веществе фосфоглицериды составляют более 60% от всех липидов, а в белом – около 40%. В белом веществе содержится больше холестерина, сфингомиелинов и особенно цереброзидов, чем в сером веществе.
Углеводы нервной ткани Нейроны относятся к инсулиннезависимым тканям. По сравнению с другими тканями ткань мозга содержит мало гликогена, гл-6-ф, что связано с высокой скоростью обмен. У новорожденных концентрация гликогена в мозге выше, чем у взрослых. Олигосахариды составляют 2-10% массы плазматической мембраны, большая их часть связана с белками и меньшая с - гликолипидами. Практически все они локализованы на внешней поверхности плазматической мембраны и придают ей индивидуальность и специфичность. Нуклеиновые кислоты и нуклеотиды нервной ткани Большинство нейронов ЦНС диплоидны, а небольшая их часть в некоторых отделах ЦНС (клетки Пуркинье мозжечка) может содержать избыточное количество ДНК. Особенностями хроматина нейронов являются необычно короткие нуклеосомные единицы, наличие редких вариантов гистонов, большое разнообразие негистоновых белков и высокая матричная активность. Высокое содержание РНК в нейронах связано с активным синтезом белка. Среднее отношение РНК/ДНК может достигать 50 и редко бывает ниже 3. В печени, поджелудочной железе, почках оно составляет 2-4,5. Пиримидиновые основания не синтезируются в мозге, а поступают из печени. Содержание цАМФ и цГМФ в головном мозге значительно выше, чем во многих других тканях. Уровень цАМФ в мозге составляет в среднем 1-2, а цГМФ – до 0,2 нмоль на 1г ткани. Макроэргические соединения нервной ткани Количество макроэргических соединений в нервной ткани невелико, их распределение примерно одинаково во всех отделах мозга. Макроэргические соединения представлены в основном креатинфосфатом и АТФ, на долю ГТФ, ЦТФ, УТФ приходиться менее 10% всех макроэргов. Содержание креатина и креатинфосфата более, чем в 2 раза превышает количество адениновых нуклеотидов. Количество АТФ в нервной ткани примерно такое же, как и в печени. Минеральные вещества нервной ткани Na+, K+, Cu2+, Fe2+, Ca2+, Mg2+ и Mn2+ распределены в головном мозге относительно равномерно между серым и белым веществом. Содержание фосфора в белом веществе выше, чем в сером. В мозговой ткани низкое содержание неорганических анионов, которое компенсируется отрицательно заряженными белками и липидами (у липидов нервной ткани важная роль в ионном балансе). Белковый и липидный состав миелина, белого и серого вещества человека
Строение нервного волокна. Миелиновая оболочка Из аксонов нейронов образуются нервные волокна. Каждое волокно состоит из осевого цилиндра (аксона), внутри которого находится аксоплазма с нейрофибриллами, митохондриями и синаптическими пузырьками. В зависимости от строения оболочек, окутывающих аксоны, нервные волокна делят на: безмиелиновые (безмякотные) и миелиновые (мякотные). 1. Безмиелиновое волокно Безмиелиновое волокно состоит из 7-12 тонких аксонов, которые проходят внутри тяжа, образованного цепочкой нейроглиальных клеток. Безмиелиновые волокна имеют постганглионарные нервные волокна, входящие в состав вегетативной нервной системы. 2. Миелиновое волокно Миелиновое волокносостоит из одного аксона, который окутан миелиновой оболочкой и окружен глиальными клетками. Миелиновая оболочка образована плазматической мембраной Шванновской или олигодендроглиальной клетки, которая сложена вдвое и многократно обернута вокруг аксона. По длине аксона миелиновая оболочка образует короткие чехольчики - междоузлия, между которыми имеются немиелизированные участки – перехваты Ранвье. Миелиновое волокно более совершенно, чем безмиелиновое, т.к. оно обладает более высокой скоростью передачи нервного импульса. Миелиновые волокна имеют проводниковая система соматической нервной системы, преганглионарные волокна вегетативной нервной системы.
|