Главная страница

Справочный материал. Глава 25 – Органы дыхания. Справочный материал по Физиологии. Глава 25 Органы дыхания


Скачать 0.69 Mb.
НазваниеСправочный материал по Физиологии. Глава 25 Органы дыхания
АнкорСправочный материал. Глава 25 – Органы дыхания.doc
Дата13.04.2018
Размер0.69 Mb.
Формат файлаdoc
Имя файлаСправочный материал. Глава 25 – Органы дыхания.doc
ТипДокументы
#18018
КатегорияМедицина
страница1 из 8
  1   2   3   4   5   6   7   8

Справочный материал по Физиологии.
Глава 25 – Органы дыхания.

Дыхание — газообмен кислорода и углекислого газа между клетками организма и внешней средой состоит из следующих этапов: внешнее дыхание (происходит в органах дыхания), транспорт газов во внутренней среде организма (происходит в крови) и тканевое дыхание.

 Внешнее дыхание — поступление газов (вдох) и отведение воздуха (выдох) из внешней среды по дыхательным путям к респираторному отделу лёгких и двусторонняя диффузия газов через аэрогематический барьер (т.е. между полостью альвеол и просветом кровеносных капилляров межальвеолярных перегородок). Функция внешнего дыхания рассмотрена в этой главе.

 Транспорт газов в крови рассмотрен в главе 24.

 Тканевое дыхание — двусторонняя диффузия газов из просвета кровеносных капилляров к митохондриям клеток внутренних органов — рассмотрено в главе 23. Термин «тканевое дыхание» имеет и более широкое значение — утилизация O2 в метаболизме клеток, точнее — окислительное фосфорилирование (взрослый человек в состоянии покоя на 1 кг массы в 1 мин потребляет 3,5 мл кислорода).


Внешнее дыханиЕ

Внешнее дыхание — основная функция аппарата дыхания. Помимо функции внешнего дыхания, органы дыхания выполняют множество сопряжённых и дополнительных функций (регуляция КЩР, голосообразование, обоняние [см. главу 25], кондиционирование воздуха), а также эндокринную, метаболическую и иммунологические функции.

 Аппарат дыхания состоит из дыхательных путей, респираторного отдела лёгких, грудной клетки (включая её костно хрящевой каркас и нервно мышечную систему), сосудистой системы лёгких, а также нервных центров регуляции дыхания.

 Функция внешнего дыхания — вентиляция и перфузия ткани лёгких.

 Вентиляция лёгких (V) — функция воздухоносных путей.

 Перфузия респираторного отдела (Q) — важная характеристика функции внешнего дыхания.
Лёгочная вентиляция

Функцию внешнего дыхания осуществляют лёгкие, состоящие из воздухоносных путей и респираторного отдела (респираторная поверхность).

 Воздухоносные пути (рис. 25–1, А): здесь происходит активный перенос воздуха путём конвекции (за счёт разности давлений) из атмосферы к респираторной поверхности и в обратном направлении. Начиная от трахеи, трубки воздухоносных путей разделяются дихотомически (надвое), образуя последовательно бронхи (и бронхиолы): главные  долевые  сегментарные  дольковые  ацинарные (терминальные)  респираторные. Активный перенос воздуха осуществляется за счёт работы дыхательных мышц, обеспечивающих дыхательные движения с частотой (f) от 12 за 1 мин. Другими словами, функция воздухоносных путей — вентиляция лёгких (V) Выдох в норме при спокойном дыхании является пассивным.



Рис. 25–1. ВОЗДУХОПРОВОДЯЩИЙ И РЕСПИРАТОРНЫЙ ОТДЕЛЫ ЛЁГКОГО [11]. АСхема сосудистого и бронхиального дерева дольки лёгкого. В верхней части рисунка — воздухоносные пути, в нижней части — респираторный отдел в виде 2 ацинусов. Ветвления артерий и вен малого круга кровообращения практически повторяют ход разветвлений воздухоносных путей. БГруппа альвеол в составе ацинуса, окружённая кровеносными капиллярами системы малого круга кровообращения и множеством эластических структур. ВАльвеола находится в окружении 5 срезов через кровеносные капилляры, расположенные в межальвеолярных перегородках. Поверхность альвеол образована плоскими клетками (респираторные альвеолоциты), входящими в состав аэрогематического барьера. Помимо множества респираторных альвеолоцитов (альвеолоциты типа I), в стенку альвеолы вмонтированы единичные эпителиальные клетки, синтезирующие компоненты сурфактанта (альвеолоциты типа II), а на поверхности альвеолы находятся альвеолярные макрофаги. ГАэрогематический барьер образован (слева направо, из полости альвеолы до просвета кровеносного капилляра) плёнкой сурфактанта, респираторным альвеолоцитом, его базальной мембраной, базальной мембраной эндотелиальной клетки и эндотелиальной клеткой. Между базальными мембранами альвеолоцита и эндотелия присутствуют компоненты межклеточного матрикса (в том числе эластические структуры), но диффузия газов наиболее эффективно происходит именно через аэрогематический барьер, его толщина в минимальном варианте составляет около 0,5 мкм.

 Вдох (I, от англ. inspiration — инспирация) в покое в среднем продолжается 2 с. При вдохе дыхательные мышцы нагнетают атмосферный воздух в дыхательные пути, производя работу по преодолению как сопротивления в дыхательных путях, так и сопротивления структур грудной клетки. При вдохе происходит активное увеличение объёма грудной полости и пассивное увеличение объёма лёгких. Часть энергии сокращения мышц при вдохе накапливается в упругих эластических структурах грудной клетки и лёгких.

 Выдох (E, от англ. expiration — экспирация) в покое в среднем продолжается 3 с. В состоянии покоя выдох осуществляется пассивно (в том числе за счёт растянутых эластических структур). При нагрузках на организм, когда возрастает потребность в кислороде, необходима дополнительная работа дыхательных мышц. При выдохе происходит уменьшение объёма грудной полости и объёма лёгких.

 Дыхательные мышцы подразделяют на осуществляющие вдох (инспираторные, мышцы вдоха) и выдох (экспираторные, мышцы выдоха), а инспираторные дыхательные мышцы — на основные и вспомогательные.

 Инспираторные мышцы

 Основные (обеспечивают вдох в состоянии покоя): диафрагма, наружные межрёберные, внутренние межхрящевые. При дыхании в состоянии покоя купол диафрагмы смещается вертикально примерно на 2 см, при форсированном дыхании перемещения купола диафрагмы могут достигать 10 см. Таким образом, движения диафрагмы вниз и вверх увеличивают или уменьшают вертикальные размеры грудной полости, а приподнимание или опускание рёбер соответственно увеличивает или уменьшает диаметр грудной клетки в переднезаднем и боковом направлениях.

 Вспомогательные мышцы (лестничные, грудино-ключично-сосцевидные, трапециевидные, большие и малые грудные и ряд других) включаются в обеспечение вдоха при значительных запросах организма к потреблению кислорода.

 Экспираторные мышцы: внутренние межрёберные, а также внутренние и наружные косые, прямые и поперечные мышцы живота. При сокращении брюшных мышц возрастает давление в брюшной полости, это приподнимает диафрагму и приводит к уменьшению объёма грудной полости.

 Тип дыхания. Изменение объёма грудной клетки у мужчин и женщин происходит преимущественно за счёт перемещений диафрагмы (брюшной, или диафрагмальный тип дыхания). Ранее полагали, что для женщин характерен так называемый грудной (рёберный) тип дыхания, при котором значительный вклад в увеличение объёма грудной клетки вносят сокращения наружных межрёберных мышц.

 Сопротивление (R). Работа, выполняемая дыхательными мышцами, направлена на преодоление всех видов сопротивления (сопротивление движению воздуха в дыхательных путях [около 80%], сопротивление тканей, т.е. структур лёгкого и органов грудной и брюшной полостей [около 20%], а также сил гравитации). Различают вязкое (неэластичное) и упругое (эластическое) сопротивление. На долю вязкого сопротивления приходится примерно 60%, упругого — около 40% от всего сопротивления.

 Вязкое сопротивление обусловлено аэродинамическим сопротивлением воздухоносных путей (примерно 90% всего вязкого сопротивления) и неэластическими свойствами органов и тканей (около 10%).

 Аэродинамическое сопротивление воздухоносных путей зависит от характера и скорости потока в просвете путей и от суммарной площади поперечного сечения путей.

 Характер потока (рис. 25–2) может быть ламинарным, турбулентным или сочетать свойства того и другого (промежуточный тип). Характеристики ламинарного потока описывает закон Пуазейля: поток воздуха (v) или объём вдоха (дыхательный объём, см. ниже) — VE) прямо пропорционален разности давлений — P и обратно пропорционален сопротивлению — R):

Уравнение 25–1

V (VE) = (dPRaw) = (PA – PB)  Raw

Raw = PVE

где: P — разность давлений, осуществляющая конвекцию (разность внутрилёгочного [альвеолярного — PA] и наружного барометрического [PB] давлений); VE — объём вдыхаемого воздуха (л/(c), Raw — преодолеваемое сопротивление (его величина прямо пропорциональна вязкости вдыхаемого воздуха [], длине пути [l] и обратно пропорционально радиусу трубки [r] в четвёртой степени, т.е. Raw = 8l/r4. Так, удвоение l удваивает R, но уменьшение r увеличивает R в 16 раз). Для характеристики турбулентного и промежуточного потоков предложены более сложные формулы. На практике потоки воздуха измеряют (пневмотахометрия, флоуметрия) при помощи пневмотахометра (флоуметр).



Рис. 25–2. ХАРАКТЕР ПОТОКА В ВОЗДУХОНОСНЫХ ПУТЯХ. Ламинарный поток перемещается спокойно, скорость движения воздуха небольшая, наблюдается в мелких воздухоносных путях. Турбулентность потока возникает при значительной скорости его перемещения (например, в крупных воздухоносных путях) вследствие трения о стенки трубок, в местах изменения конфигурации трубок (сужения, перегибы, разветвления). Промежуточный тип движения наблюдается в крупных и средних бронхах, особенно в местах их разветвлений и сужений.

 Суммарная площадь поперечного сечения воздухоносных путей увеличивается по мере уменьшения калибра трубок. В воздухоносных путях трубки разделяются дихотомически, от трахеи (единственная трубка) до альвеолярных ходов (см. рис. 25–1, В) и альвеол (суммарное количество около 350 млн) начитывают 23 последовательных поколения трубок. Так, на уровне поколения 0 (трахея) суммарная площадь сечения около 2,5 см2, на уровне терминальных бронхиол (поколение 16) — 180 см2, респираторных бронхиол (от 18–го поколения) — около 1000 см2 и далее >10 000 см2. Соответственно резко уменьшается скорость потока. Бронхиолы (трубки без хряща в их стенке) начинаются от 11-го поколения. Начиная с 17-го поколения появляются альвеолы (респираторный отдел лёгкого). Суммарный объём трубок от трахеи до терминальных бронхиол включительно (т.е. трубок, не принимающих участие в газообмене, проводящие воздухоносные пути) составляет анатомически мёртвое пространство (около 150 мл у мужчин, более 125 у женщин). Суммарный объём всех трубок вместе с альвеолами составляет величину около 5800 мл (общая ёмкость лёгких).

 Упругое сопротивление определяется эластичностью органов и тканей (в первую очередь эластическими структурами в составе лёгкого, вмонтированными практически во все воздухоносные пути, их особенно много на уровне альвеол) и силами поверхностного натяжения на границе раздела фаз (преимущественно на покрытой сурфактантом поверхности альвеол). На долю эластических структур приходится примерно 40%, на долю поверхностного натяжения около 60% от всего упругого сопротивления.

 Значения сопротивления

 В состоянии покоя у взрослого человека Raw варьирует от 0,6 до 2,3 см водн.ст. (среднее — 1,5 см водн.ст., при этом на глотку и гортань приходится 0,6 см водн.ст., столько же на воздухоносные пути диаметром >2 мм, а диаметром <2 мм всего 0,3 см водн.ст.).

 При хронических обструктивных заболеваниях лёгкого Raw увеличивается до 5,0 см водн.ст. и даже до 10,0 см водн.ст. (преимущественно за счёт воздухоносных путей диаметром <2 мм).

 Поскольку объём вдыхаемого воздуха (VE) обратно пропорционален Raw (уравнение 25–1), даже двукратное увеличение Raw вдвое уменьшает величину VE, требуя значительных мышечных усилий для поддержания лёгочной вентиляции.

 Увеличение значения Raw происходит в результате сокращения ГМК воздухоносных путей, что наблюдается при увеличении так называемого тонуса блуждающего нерва (освобождающийся из окончаний парасимпатических нервов ацетилхолин взаимодействует с мускариновыми ацетилхолиновыми рецепторами на поверхности ГМК) и при освобождении гистамина из тучных клеток воздухоносных путей (типичная для приступа бронхиальной астмы ситуация).

 Уменьшение значения Raw происходит в результате расслабления ГМК воздухоносных путей, что наблюдается под влиянием адреналина и других агонистов 2–адренергических рецепторов на поверхности ГМК.

 Давление в дыхательном аппарате. При осуществлении дыхательного цикла в альвеолах и во внутриплевральном пространстве лёгких изменяется давление. Наибольшее значение как для осуществления вдоха и выдоха, так и для оценки параметров функции внешнего дыхания имеют альвеолярное (PA), внутриплевральное (Ppl) и транспульмональное (PTP) давление (Рис. 25–3)



Рис. 25–3. Направления сил в течение дыхательного цикла.

 Альвеолярное давление (PA) — давление воздуха внутри лёгочных альвеол. PA — динамический (изменяющийся) параметр, характеризующий потоки воздуха, зависящий от сопротивления в лёгком и напрямую не контролируемый сознанием.

 Дыхательная пауза. В состоянии покоя (вне вдоха и выдоха) давление во всех частях дыхательной системы и во всех альвеолах равно атмосферному (PB), то есть PA составляет 0 см водн.ст.; другими словами, движения воздуха нет.

 Вдох. Во время вдоха PA уменьшается до –1 см водн.ст., и поток воздуха течёт к альвеолам.

 Выдох. На выдохе PA увеличено до +1 см водн.ст., поток воздуха течёт от альвеол во внешнюю среду.

 Внутриплевральное давление (Ppl) — давление жидкости в узком пространстве между висцеральной и париетальной плеврой. Значение PPI контролируется мозгом посредством сокращения дыхательных мышц. Ppl имеет 2 компонента — статический (-PTP) и динамический (PA). Ppl создаётся направленной внутрь эластической тягой лёгких и уравновешивающей её эластической тягой грудной клетки, направленной наружу. Ppl в покое составляет –4–5 см водн.ст. (0,3–0,5 кПа). Во время вдоха сила тяги грудной клетки наружу увеличивает отрицательное Ppl, доводя его до –7,5 см вод. ст.

 Транспульмональное давление (PTP) — разность между альвеолярным и внутриплевральным давлением (PA — Ppl). PTP — статический параметр, не влияющий на потоки воздуха и прямо не контролируемый мозгом. Нормально РTP составляет на выдохе –3–4 см водн.ст., на вдохе –9–10 см водн.ст., при глубоком вдохе до –20 см водн.ст.

 Респираторный отдел (см. рис. 25–1, Б–Г): здесь путём диффузии осуществляется перенос газов к респираторной поверхности альвеол и газообмен через аэрогематический барьер (т.е. между полостью альвеол и кровью, находящейся в кровеносных капиллярах межальвеолярных перегородок). Газообмен респираторного отдела в существенной степени зависит от параметров кровотока через капилляры межальвеолярных перегородок, т.е. от их перфузии кровью. Перфузия респираторного отдела (Q) — важная характеристика функции внешнего дыхания.

 Воздухоносные пути респираторного отдела (респираторные бронхиолы  альвеолярные ходы  преддверие  альвеолярные мешочки  полость альвеол) соответствуют поколениям трубок 17–23 с очень небольшой скоростью потока в них. Другими словами, перемещение газов в них происходит не путём конвекции (как в воздухоносных путях более крупного калибра), а путём диффузии.

 Альвеолы — полусферические структуры диаметром от 70 мкм до 300 мкм. Суммарная площадь всех альвеол (около 300 млн) от 50 м2 до 100 м2, их максимальный объём от 5 л до 6 л, что составляет не менее 97% объёма лёгких.

 Аэрогематический барьер. Между полостью альвеолы и просветом капилляра происходит газообмен. Структуры, образующие минимальной толщины аэрогематический барьер: альвеолярные клетки I типа (0,2 мкм), общая базальная мембрана (0,1 мкм), уплощённая часть эндотелиальной клетки капилляра (0,2 мкм). В сумме это составляет 0,5 мкм. Реально в состав барьера входят выстилающая альвеолярную поверхность плёнка сурфактанта и межклеточное вещество (интерстиций) между базальными мембранами альвеолоцитов и капилляров, что увеличивает путь газообмена до нескольких микрометров.

 Сурфактант — эмульсия фосфолипидов, белков и углеводов; 80% составляют глицерофосфолипиды, 10% — холестерол и 10% — белки. Общее количество сурфактанта в лёгких крайне невелико. На 1 м2 альвеолярной поверхности приходится около 50 мм3 сурфактанта. Толщина его плёнки составляет 3% общей толщины аэрогематического барьера. Эмульсия образует на поверхности альвеол мономолекулярный слой. Главный поверхностно-активный компонент сурфактанта — дипальмитоилфосфатидилхолин — ненасыщенный фосфолипид, составляющий более 50% фосфолипидов сурфактанта. Сурфактант содержит ряд уникальных белков, способствующих адсорбции дипальмитоилфосфатидилхолина на границе двух фаз. Среди белков сурфактанта выделяют SP-A, SP-B, SP-C, SP-D. Белки SP-B, SP-C и глицерофосфолипиды сурфактанта ответственны за уменьшение поверхностного натяжения на границе воздух–жидкость. Белки SP-A и SP-D участвуют в местных иммунных реакциях, опосредуя фагоцитоз. Рецепторы SP-A имеются в альвеолоцитах II типа и в макрофагах.

 Поверхностное натяжение (T) окружённого водой пузырька газа радиусом r стремится уменьшить объём газа в пузырьке и увеличить его давление (P). Состояние равновесия между действующими силами описывает уравнение Лапласа:
  1   2   3   4   5   6   7   8


написать администратору сайта