Главная страница
Навигация по странице:

  • 36. Анализ статистической значимости параметров множественной регрессии.

  • 37. Прогноз на основе модели множественной регрессии.

  • 38. Эластичность на основе множественной регрессии.

  • 39. Понятие гомоскедастичности и гетероскедастичности.

  • 1. Определение эконометрики. Термин эконометрика


    Скачать 3.6 Mb.
    Название1. Определение эконометрики. Термин эконометрика
    Дата12.11.2019
    Размер3.6 Mb.
    Формат файлаdocx
    Имя файлаEkonometrika_Otvety.docx
    ТипДокументы
    #94836
    страница8 из 21
    1   ...   4   5   6   7   8   9   10   11   ...   21

    35. Оценка качества модели множественной регрессии.

    При анализе качества модели регрессии, в первую очередь, используется коэффициент детерминации, который определяется следующим образом:



    где - среднее значение зависимой переменной,

    - предсказанное (расчетное) значение зависимой переменной.

    Коэффициент детерминации показывает долю вариации результативного признака, находя­щегося под воздействием изучаемых факторов, т. е. определяет, ка­кая доля вариации признака Y учтена в модели и обусловлена влия­нием на него факторов.

    Чем ближе к 1, тем выше качество модели.

    Для проверки значимости модели регрессии используется F-критерий Фишера. Если расчетное значение с 1= k и 2 = (n - k - 1) степенями свободы, где k – количество факторов, включенных в модель, больше табличного при заданном уровне значимости, то модель считается значимой.



    В качестве меры точности применяют несмещенную оценку дис­персии остаточной компоненты, которая представляет собой отно­шение суммы квадратов уровней остаточной компоненты к величи­не (n- k -1), где k – количество факторов, включенных в модель. Квадратный корень из этой величины () называется стандартной ошибкой:



    36. Анализ статистической значимости параметров множественной регрессии.

    значимость отдельных коэффициентов регрессии проверяется по t-статистике пу­тем проверки гипотезы о равенстве нулю j-го параметра уравнения (кроме свободного члена):

    ,

    где Saj это стандартное (среднеквадратическое) отклонение коэффициента уравнения регрессии aj.Величина Saj представляет собой квадратный корень из произ­ведения несмещенной оценки дисперсии и j -го диагонального эле­мента матрицы, обратной матрице системы нормальных уравнений.



    где - диагональный элемент матрицы .

    Если расчетное значение t-критерия с (n - k - 1) степенями сво­боды превосходит его табличное значение при заданном уровне зна­чимости, коэффициент регрессии считается значимым. В противном случае фактор, соответствующий этому коэффициенту, следует ис­ключить из модели (при этом ее качество не ухудшится).
    37. Прогноз на основе модели множественной регрессии.

    Уравнение регрессии применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции.

    Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения параметра, является точечным. Вероятность реализации такого прогноза ничтожна мала. Целесообразно определить доверительный интервал прогноза.

    Для того чтобы определить область возможных значений резуль­тативного показателя, при рассчитанных значениях факторов следует учитывать два возможных источника ошибок: рассеивание на­блюдений относительно линии регрессии и ошибки, обусловленные математическим аппаратом построения самой линии регрессии. Ошибки первого рода измеряются с помощью характеристик точ­ности, в частности, величиной . Ошибки второго рода обусловле­ны фиксацией численного значения коэффициентов регрессии, в то время как они в действительности являются случайными, нормально распределенными.

    Для линейной модели регрессии доверительный интервал рассчи­тывается следующим образом. Оценивается величина отклонения от линии регрессии (обозначим ее U):.

    где .
    38. Эластичность на основе множественной регрессии.

    Эластичность Y по отношению к Х(j) определяется как процентное изменение Y, отнесенное к соответствующему процентному изменению Х. В общем случае эластичности не постоянны, они различаются, если измерены для различных точек на линии регрессии. По умолчанию стандартные программы, оценивающие эластичность, вычисляют ее в точках средних значений:



    Эластичность ненормирована и может изменяться от - до + . Важно, что она безразмерна, так что интерпретация эластичности =2.0 означает, что если изменится на 1%, то это приведет к изменению на 2%. Если = -0.5, то это означает, что увеличение на 1% приведет к уменьшению на 0.5%.
    39. Понятие гомоскедастичности и гетероскедастичности.

    Условиеозначает гомоскедастичность (homoscedasticity – однородный разброс) дисперсий случайных ошибок модели регрессии.

    Под гомоскедастичностью понимается предположение о том, что дисперсия случайной ошибки βi является известной постоянной величиной для всех наблюдений.

    Но на практике предположение о гомоскедастичности случайной ошибки βi или остатков модели регрессии ei выполняется не всегда.

    Под гетероскедастичностью (heteroscedasticity – неоднородный разброс) понимается предположение о том, что дисперсии случайных ошибок являются разными величинами для всех наблюдений, что означает нарушение второго условия нормальной линейной модели множественной регрессии:



    Для обнаружения гетероскедастичности остатков модели регрессии необходимо провести их анализ. При этом проверяются следующие гипотезы.

    Основная гипотеза H0 предполагает постоянство дисперсий случайных ошибок модели регрессии, т. е. присутствие в модели условия гомоскедастичности:



    Альтернативная гипотеза H1 предполагает непостоянство дисперсиий случайных ошибок в различных наблюдениях, т. е. присутствие в модели условия гетероскедастичности:



    Гетероскедастичность остатков модели регрессии может привести к негативным последствиям:

    1) оценки неизвестных коэффициентов нормальной линейной модели регрессии являются несмещёнными и состоятельными, но при этом теряется свойство эффективности;

    2) существует большая вероятность того, что оценки стандартных ошибок коэффициентов модели регрессии будут рассчитаны неверно, что конечном итоге может привести к утверждению неверной гипотезы о значимости коэффициентов регрессии и значимости модели регрессии в целом.
    1   ...   4   5   6   7   8   9   10   11   ...   21


    написать администратору сайта