Главная страница
Навигация по странице:

  • 3. Регуляция желудочного сокоотделения

  • 4. задача про давление, надо рассказать про инотропные, батмотропные, дромотропные свойства сердца

  • 2. Мембранный потенциал покоя...

  • 3. ДИСТАЛЬНЫЕ КАНАЛЬЦЫ (РЕАБСОРБЦИЯ, СЕКРЕЦИЯ)

  • 4. Человека поместили в барокамеру при давлении 1100мм.рт.ст. Как изменится плевральное давление в легких при вдохе и выдохе.

  • Билет № 13 1. .торможение:механизм, виды, свойства,Сеченовское и Гольца

  • 2. механизм мерцания капилляров

  • 3. Регуляция моторики ЖКТ осуществляется тремя механизмами

  • нор.физ. нор. 1. Павлов, Сеченов, Анохин, Овсянников и тд, вклад в физиологию


    Скачать 1.37 Mb.
    Название1. Павлов, Сеченов, Анохин, Овсянников и тд, вклад в физиологию
    Анкорнор.физ.docx
    Дата28.01.2017
    Размер1.37 Mb.
    Формат файлаdocx
    Имя файланор.физ.docx
    ТипДокументы
    #384
    страница4 из 27
    1   2   3   4   5   6   7   8   9   ...   27
    Часть углекислого газа соединяется в эритроцитах с дезоксигемоглобином через аминогруппы, образуя кардаминовые соединения. Реакция протекает следующим образом:

    HbNH2+ CO2  HbNHCOOH HbNHCOO- + H+
    Основные транспортные формы углекислого газа:

    1. в виде бикарбонатов калия и натрия в эритроцитах и плазме 80 – 90 %

    2. в виде карбаминовых соединений гемоглобина – 5 – 15 %

    3. в физически растворенном виде – 5 – 10 %


    3. Регуляция желудочного сокоотделения

    I фаза - сложнорефлекторная (мозговая, цефалическая) состоит из условно- и безусловно-рефлекторного механизмов. Вид пищи, запах пищи, разговоры о ней вызывают условно-рефлекторное сокоотделение.

    Этот сок подготавливает желудок к приему пищи, имеет высокую кислотность и ферментативную активность, поэтому такой сок в пустом желудке может оказывать повреждающее воздействие Безусловный рефлекс включается при раздражении пищей рецепторов ротовой полости.

    В эту фазу блуждающий нерв активирует не только клетки желез желудка, но и G-клетки, которые секретируют гастрин

    II фаза желудочной секреции – желудочная – связана с поступлением пищи в желудок. Наполнение желудка пищей возбуждает механорецепторы, информация от которых по чувствительным волокнам блуждающего нерва направляется к его секреторному ядру. Эфферентные парасимпатические волокна этого нерва стимулируют желудочную секрецию. первый компонент желудочной фазы - чисто рефлекторный.

    Соприкосновение пищи и продуктов ее гидролиза со слизистой желудка возбуждает хеморецепторы и активирует местные рефлекторные и гуморальные механизмы. В результате этого G-клетки пилорического отдела выделяют гормон гастрин, активирующий главные клетки желез и, особенно, обкладочные клетки. Тучные клетки выделяют гистамин, стимулирующий париетальные клетки. Секреция гастрина увеличивается, когда появляются продукты переваривания белков – олигопептиды, пептиды, аминокислоты и зависит от величины pH в пилорическом отделе желудка. Если секреция соляной кислоты повышена, то гастрина высвобождается меньше. При pH-1,0 его секреция прекращается, при этом объем желудочного сока резко уменьшается. Таким образом, осуществляется саморегуляция секреции гастрина и хлористоводородной кислоты.

    Гастрин: стимулирует секрецию HCl и пипсиногенов, усиливает моторику желудка и кишечника, стимулирует панкреатическую секрецию, активизирует рост и восстановление слизистой желудка и кишечника.

    Кроме того, пища содержит биологически активные вещества (например, экстрактивные вещества мяса, овощные соки), которые также возбуждают рецепторы слизистой и стимулируют сокоотделение в эту фазу.

    Синтез HCl связан с аэробным окислением глюкозы и образованием АТФ, энергию, которой используют независимые друг от друга системы активного транспорта ионов Н+ и CL-. В апикальную мембрану встроена H+/ К+ АТФ-аза, которая выкачивает из клетки H+ ионы в обмен на калий. Одна из теорий полагает, что основным поставщиком ионов водорода является угольная кислота, образующаяся в результате гидратации углекислого газа, эту реакцию катализирует карбоангидраза. Анион угольной кислоты покидает клетку через базальную мембрану в обмен на хлор, который затем выкачивается через апикальную мембрану Сl - АТФ-азой. Другая теория в качестве источника водорода считает воду.

    Полагают, что париетальные клетки желез желудка возбуждаются тремя путями:

    1. блуждающий нерв оказывает на них прямое влияние через мускариновые холинорецепторы (М-холинорецепторы) и опосредованное, активируя G-клетки пилорического отдела желудка.

    2. гастрин оказывает на них прямое влияние через специфические Г-рецепторы.

    3. гастрин активирует ECL (тучные) клетки, секретирующие гистамин. Гистамин через Н2-рецепторы активирует париетальные клетки.


    Жирная пища стимулирует секрецию холецистокинина (ХК). ХК снижает сокоотделение в желудке и угнетает активность париетальных клеток. Снижают секрецию соляной кислоты и другие гормоны и пептиды: глюкагон, ЖИП, ВИП, соматостатин, нейротензин.

    III фаза – кишечная – начинается при эвакуации химуса из желудка в тонкий кишечник. Раздражение механо-, хеморецепторов тонкой кишки продуктами переваривания пищи регулирует секрецию в основном за счет местных нервных и гуморальных механизмов. Энтерогастрин, бомбезин, мотилин секретируются эндокринными клетками слизистого слоя, эти гормоны повышают сокоотделение. ВИП (вазоактивный интестинальный пептид), соматостатин, бульбогастрон, секретин, ГИП (гастроингибирующий пептид) – тормозят желудочную секрецию при действии на слизистую тонкого кишечника жиров, соляной кислоты, гипертонических растворов.

    Таким образом, секреция желудочного сока находится под контролем центральных и местных рефлексов, а также многих гормонов и биологически активных веществ.
    4. задача про давление, надо рассказать про инотропные, батмотропные, дромотропные свойства сердца

    Артериальное давление является одним из важных показателей гемодинамики. В нормальных условиях жизнедеятельности оно обусловлено силой сердечного выброса, объемом кровотока, эластическим сопротивлением сосудистых стенок. 

    хронотропный (увеличение частоты генерации электрических импульсов), батмотропный(повышение возбудимости), дромотропный (улучшение проводимости возбуждения).
    Сердце получает обильную эфферентную иннервацию. Тела симпатических нейронов, иннервирующих сердце, располагаются в боковых рогах 1-5 грудных сегментов спинного мозга. Преганглионарные волокна выходят из спинного мозга в составе передних корешков. Постганглионарные волокна иннервируют мускулатуру предсердий, желудочков и проводящей системы сердца. Симпатические волокна распределяются в поверхностных слоях сердца, идут вдоль коронарных артерий, а затем пронизывают миокард. Тела парасимпатических нейронов располагаются в дорсальном ядре вагуса в продолговатом мозге.

    При стимуляции блуждающих нервов уменьшается частота и сила сокращений сердца  отрицательный хронотропный и инотропный эффект. Одновременно понижается возбудимость сердечной мышцы  отрицательный батмотропный эффект, и уменьшается скорость проведения возбуждения по проводящей системе и миокарду  отрицательный дромотропный эффект.

    Симпатический нерв оказывает виляние на те же стороны деятельности сердца, что и блуждающий нерв, но эти влияния имеют противоположный характер. Они проявляются в учащении сердцебиения, усилении сокращений предсердий и желудочков, ускорении проведения возбуждения в сердце и повышении возбудимости сердца (положительные хронотропный, инотропный, дромотропный и батмотропный эффекты).
    Билет № 12

    1. 1. Вегетативная нервная система: особенности симпатического, парасимпатического и метасимпатического отделов, медиаторы. Особенности вегетативной Н.С. 



    Вегетативная нервная система - часть нервной системы, иннервирующая внутренние органы, кровеносные сосуды, железы, гладкую и отчасти поперечно-полосатую мускулатуру. В вегетативной нервной системе различают симпатический и парасимпатический отделы.

    Симпатический отдел вегетативной нервной системы – это система активности, готовности к деятельности, во время которой интенсивно работают сердечно-сосудистая, дыхательная системы, повышается активность ЦНС, расходуются метаболические запасы организма. Парасимпатический отдел вегетативной нервной системы – система покоя, восстановления запасов.

    Анатомической особенностью вегетативной нервной системы является то, что аксоны ее центральных нейронов направляются не прямо к органу, а контактируют с нервными клетками, образующими периферические нервные ганглии. Ганглии парасимпатического отдела расположены либо в стенах органа (интрамурально) или рядом (параорганно.)

    В симпатическом отделе ганглии расположены в симпатическом стволе, чревном и брызжеечном сплетениях. Таким образом, вегетативная нервная система отличается от соматической эфферентным звеном, в котором выделяют преганглионарное и постганглионарное волокна. Центры симпатических и парасимпатических рефлекторных дуг расположены в различных отделах ЦНС. Парасимпатические центры представлены краниобульбарным и сакральным отделами, симпатические расположены в боковых рогах тораколюмбального отдела спинного мозга, однако и те и другие связаны с вышележащими структурами головного мозга.

    Вегетативная нервная система оказывает три вида влияний на работу органов:

    Пусковое влияние возбуждает орган, который работает непостоянно, например, потовые железы начинают выделять свой секрет под влиянием симпатической нервной системы при повышения температуры окружающей среды.

    Корригирующее влияние - усиление или ослабление деятельности постоянно работающих органов. Например, увеличение или уменьшение частоты и силы сердечных сокращений под действием симпатических или блуждающего нервов.

    Адаптационно-трофическое влияние вегетативной нервной системы заключается во включении в регуляцию деятельности организма систем обмена веществ, обеспечивающих координированное функционирование органов и систем при нагрузке, приспособление к изменяющимся внешним условиям, восстановление после физической нагрузки, при выздоровлении. Например, увеличение темпа метаболических процессов в интенсивно работающем миокарде.

    Вегетативная симпатическая рефлекторная дуга. Двигательные нейроны симпатических рефлексов расположены в боковых рогах грудного и поясничного отделов спинного мозга, эфферентные нервные волокна прерываются в ганглиях симпатического ствола, чревном и брызжеечном сплетениях, медиатор в преганглионарных волокнах – АХ, мембранные рецепторы – Н-хр, в постганглионарных - норадреналин, мембранные рецепторы на эффекторе – αили  - адренорецепторы

    Вегетативная парасимпатическая рефлекторная дуга. Двигательные нейроны парасимпатических рефлексов расположены в среднем мозге, районе моста, продолговатом мозге и в 1 - 5 крестцовые сегментах спинного мозга, эфферентные нервные

    волокна прерываются в ганглиях параорганно или интрамурально, медиатор в преганглионарных волокнах – АХ, мембранные рецепторы – Н-хр, в постганглионарных – ацетилхолин, мембранные рецепторы на эффекторе холинорецепторы мускаринового типа (М-хр)

    2. Мембранный потенциал покоя...
    Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин:

    1) неодинакового распределения ионов по обе стороны мембраны;

    2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ.

    За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концент-рации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. Момент равновесия зависит от двух сил:

    1) силы диффузии;

    2) силы электростатического взаимодействия. Значение электрохимического равновесия:

    1) поддержание ионной асимметрии;

    2) поддержание величины мембранного потенциала на постоянном уровне.

    В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентра-ционно-электрохимическим.

    Для поддержания ионной асимметрии электрохимического равновесия недостаточно. В клетке имеется другой механизм – натрий-калиевый насос. Натрий-калиевый насос – механизм обеспечения активного транспорта ионов. В клеточной мембране имеется система переносчиков, каждый из которых связывает три иона Na, которые находятся внутри клетки, и выводит их наружу. С наружной стороны переносчик связывается с двумя ионами K, находящимися вне клетки, и переносит их в цитоплазму. Энергия берется при расщеплении АТФ. 
    3. ДИСТАЛЬНЫЕ КАНАЛЬЦЫ (РЕАБСОРБЦИЯ, СЕКРЕЦИЯ)

    Осмотическое концентрирование и разведение мочи.

    после прохождения через проксимальные канальцы канальцевая жидкость поступает в петлю Генле и дистальный сегмент нефрона. С их участием связана гомеостатических функций почки – осмотическое концентрирование мочи. В процессе осмотического концентрирования мочи принимают участие: петля Генле, дистальный каналец, собирательная трубка, сосуды и интерстиций мозгового вещества, которые функционируют как единая поворотно - противоточно-множительная система.

    процесс окончательного концентрирования мочи происходит в собирательных трубках, а условия для этого создаются работой всей поворотно – противоточно-множительной системы. Эта система создает гиперосмолярность мозгового вещества и при действии антидиуретического гормона (АДГ) заставляет воду переходить из собирательной трубки в интерстиций, а затем в кровеносные сосуды мозгового вещества, в результате чего образуется концентрированная моча. из проксимального канальца жидкость, изоосмотическая плазме крови, с концентрацией 300 мосм/л ,поступает в тонкое нисходящее колено петли Генле и, продвигаясь по нему, начинает терять воду; в результате ее осмотическая концентрация прогрессивно нарастает и на изгибе петли в сосочке достигает своего максимума (1400мосм/л). Затем она поворачивает и течет по восходящему колену в противоположном направлении (отсюда название поворотно-противоточная система), при этом происходит ее разбавление и уменьшение осмолярности до 100 мосм/л. . Далее в дистальном канальце происходит реабсорбция NаCl, воды и др. веществ и осмотическая концентрация вновь становится – 300 мосм/л, но по-прежнему канальцевая жидкость изосмотична крови,т.е.,в петле концентрирование не произошло. из дистального канальца жидкость поступает в собирательную трубку, где и будет происходить формирование окончательной мочи и процесс ее концентрирования. , осмолярность интерстициальной жидкости на каждом уровне идентична этой величине в нисходящем колене и СТ. Другими словами вокруг СТ на каждом “этаже” мозгового вещества имеется горизонтальный осмотический градиент в 200 мосм/л, а по вертикали - мощный корково-сосочковый осмотический градиент, созданный поворотно - противочной системой петли Генле. Таким образом, можно сказать, что петля Генле «работает» на собирательную трубку, создавая в интерстиции мозгового вещества зону гиперосмии. Это и будет та сила, которая способна вытянуть воду из собирательной трубки и произвести концентрирование мочи. Когда канальцевая жидкость поступает в собирательную трубку, ее осмолярность находится на том же уровне, что и осмолярность интерстициальной жидкости в этой зоне почки. В районе сосочка величина осмолярности достигает максимума (у человека она равна 1400 мосм/л), поэтому максимальная осмотическая концентрация мочи у человека тоже может достигать 1400 мосм/л.

    4. Человека поместили в барокамеру при давлении 1100мм.рт.ст. Как изменится плевральное давление в легких при вдохе и выдохе.?

    Основная цель использования барокамеры – повысить уровень кислорода, поступающий к тканям через дыхательную систему.  Для этого нужно повысить количество молекул кислорода, попадающих в организм при каждом вдохе.  Во время процедуры в барокамере количество кислорода в крови поднимается со 100 мм рт. ст. до 1100 мм рт.ст. , и даже выше в отдельных случаях. Когда поднимается количество молекул кислорода , находящихся в воздухе, больше кислорода поступает в легкие, проникает  в систему кровообращения , и через нее попадает в различные клетки организма, и помогает их обновлению. Норма вдоха -10 мм рт. ст. выдоха -5 мм рт. Ст.
    Билет № 13
    1. .торможение:механизм, виды, свойства,Сеченовское и Гольца

    Механизмы торможения проявляются в прекращении или уменьшении активности нервных клеток. В отличие от возбуждения торможение — локальный нераспространяющийся процесс, возникающий на клеточной мембране.

    Сеченовское торможение. Наличие процесса торможения в ЦНС впервые было показано Сеченовым в 1862 г. в экспериментах на лягушке. Выполняли разрез головного мозга лягушки на уровне зрительных бугров и измеряли время рефлекса отдергивания задней лапы при погружении ее в раствор серной кислоты (метод Тюрка). При наложении на разрез зрительных бугров кристаллика поваренной соли время рефлекса увеличивалось. Прекращение воздействия соли на зрительные бугры приводило к восстановлению исходного времени рефлекторной реакции. Рефлекс отдергивания лапки обусловлен возбуждением спинальных центров. Кристаллик соли, раздражая зрительные бугры, вызывает возбуждение, которое распространяется к спинальным центрам и тормозит их деятельность. И.М. Сеченов пришел к выводу, что торможение является следствием взаимодействия двух и более возбуждений на нейронах ЦНС. В этом случае одно возбуждение неизбежно становится тормозимым, а другое — тормозящим. Подавление одним возбуждением другого происходит как на уровне постсинаптических мембран (постсинаптическое торможение), так и за счет уменьшения эффективности действия возбуждающих синапсов на пресинаптическом уровне (пресинаптическое торможение).

    Пресинаптическое торможение. Пресинаптическое торможение развивается в пресинаптической части синапса за счет воздействия на его мембрану аксо-аксональных синапсов. В результате как деполяризующего, так и гиперполяризующего воздействия происходит блокирование проведения импульсов возбуждения по пресинаптическим путям к постсинаптической нервной клетке.

    Постсинаптическое торможение. Наибольшее распространение в ЦНС имеет механизм постсинаптического торможения, которое осуществляется специальными тормозными вставочными нервными клетками (например, клетки Реншоу в спинном мозге или клетки Пуркинье (грушевидные нейроны) в коре мозжечка). Особенность тормозных нервных клеток состоит в том, что в их синапсах имеются медиаторы, вызывающие на постсинаптической мембране нейрона ТПСП (тормозящие постсинаптические потенциалы), т.е. кратковременную гиперполяризацию. Например, для мотонейронов спинного мозга гиперполяризующим медиатором является аминокислота глицин, а для многих нейронов коры большого мозга таким медиатором служит гамма-аминомасляная кислота — ГАМК. Частным случаем постсинаптического является возвратное торможение.

    Реципрокное торможение. Механизм постсинаптического торможения лежит в основе таких видов торможения, как реципрокное и латеральное. Реципрокное торможение является одним из физиологических механизмов координации деятельности нервных центров. Так, попеременно реципрокно тормозятся в продолговатом мозге центры вдоха и выдоха, прессорный и депрессорный сосудодвигательные центры. Реципрокное торможение проявляется на уровне спинного мозга при осуществлении строго координированных двигательных актов (ходьба, бег, чесание). На уровне сегментов спинного мозга возбуждение группы мотонейронов, вызывающих сокращение мышц-сгибателей, сопровождается реципрокным торможением другой группы мотонейронов, приводящих к расслаблению мышц-разгибателей.

    Латеральное торможение. Активность нейронов или рецепторов, расположенных рядом с возбужденными нейронами или рецепторами, прекращается. Механизм латерального торможения обеспечивает дискриминаторную способность анализаторов. Так, в слуховом анализаторе латеральное торможение обеспечивает различение частоты звуков, в зрительном анализаторе латеральное торможение резко увеличивает контрастность контуров воспринимаемого изображения, а в тактильном анализаторе способствует дифференцировке двух точек прикосновения.

    При поступлении возбуждений к синапсам нервной клетки на постси-наптических мембранах могут возникать процессы гиперполяризации. Гиперполяризация приводит к возрастанию критического уровня деполяризации мембраны, следовательно, затрудняет возникновение возбуждения. Такие постсинаптические потенциалы получили название «тормозящие постсинаптические потенциалы» (ТПСП); они возникают в синапсах, где медиатор вызывает гиперполяризацию постсинаптической мембраны.

    Каждый нейрон синтезирует в своем теле и затем выделяет во всех своих синапсах один и тот же медиатор, поэтому нейроны и ацетилхолиновой передачей возбуждения называются холинергическими, с адреналиновой – адренергическими. К гиперполяризующим медиаторам относят ГАМК глицин. Эти медиаторы взаимодействуя с хеморецепторами постсинаптической мембраны, приводят к развитию ТПСП.
    2. механизм мерцания капилляров
    Термин «Мерцание капилляров» был впервые применен Крогом, это понятие объяснялось тем, что не все капилляры в каждый момент времени функционируют. На самом деле функционирует только часть их, т.к общая ёмкость капилляров больше, чем объем циркулирующей крови. Поэтому часть капилляров закрыта и выключена из кровообращения, а кровь протекает лишь по "дежурным" капиллярам. И эти дежурные капилляры работают в режиме "открытие-закрытие", который регулируется местными продуктами обмена. В период интенсивной деятельности органов, когда обмен в них увеличивается, количество функционирующих капилляров значительно возрастает.

    На тонус сосудистой стенки влияют:эндотелиальные клетки, которые синтезируют и выделяют факторы, влияющие на расслабление гладкомышечных клеток сосудистой стенки, также на расслабление мышц влияют:оксид углерода, АДФ, АМФ, фосфорная и молочная кислоты.

    Сокращение прекапиллярных сфинктеров и уменьшение капиллярного кровообращения обеспечивают вазопрессин и ангиотензин.

    3. Регуляция моторики ЖКТ осуществляется тремя механизмами:

    1) рефлекторным;

    2) гуморальным;

    3) местным.

    Рефлекторный компонент вызывает торможение или активацию моторной деятельности при возбуждении рецепторов. Повышает моторную функцию парасимпатический отдел: для верхний части – блуждающие нервы, для нижней – тазовые. Тормозное влияние осуществляется за счет чревного сплетения симпатической нервной системы. При активации нижележащего отдела желудочно-кишечного тракта происходит торможение выше расположенного отдела. 

    В рефлекторной регуляции выделяют три рефлекса:

    1) гастроэнтеральный (при возбуждении рецепторов желудка активируются другие отделы);

    2) энтеро-энтеральный (оказывают как тормозное, так и возбуждающие действие на нижележащие отделы);

    3) ректо-энтеральный (при наполнении прямой кишки возникает торможение).

    Гуморальные механизмы преобладают в основном в двенадцатиперстной кишке и верхней трети тонкого кишечника.

    Возбуждающее действие оказывают:

    1) мотилин (вырабатывается клетками желудка и двенадцатиперстной кишки, оказывает активирующее влияние на весь желудочно-кишечный тракт);

    2) гастрин (стимулирует моторику желудка);

    3) бамбезин (вызывает отделение гастрина);

    4) холецистокинин-панкреозинин (обеспечивает общее возбуждение);

    5) секретин (активирует моторку, но тормозит сокращения в желудке).

    Тормозное влияние оказывают:

    1) вазоактивный интестинальный полипептид;

    2) гастроингибирующий полипептид;

    3) соматостатин;

    4) энтероглюкагон.

    Гормоны желез внутренней секреции также влияют на моторную функцию. Так, например, инсулин ее стимулирует, а адреналин тормозит.

    Местные механизмы осуществляются за счет наличия метсимпатической нервной системы и преобладают в тонком и толстом кишечнике. (межмышечное сплетение –Ауэрбаха, подслизистое –Мейснерово)

    Стимулирующее действие оказывают:

    1) грубые непереваренные продукты (клетчатка);

    2) соляная кислота;

    3) слюна;

    4) конечные продукты расщепления белков и углеводов.

    Тормозное действие возникает при наличии липидов.

    1. 4.К какому типу ВНД можно отнести Н. Паганини по следующему описанию, данному А.К. Виноградовым: «… он путал горы, дни, числа, он мог хорошо вспомнить цвет зари, сияние облаков над морем, звон колоколов при повороте дороги…»

    Скорее все же сангвиник. У таких людей высокая подвижность нервных процессов, они легко перестраиваются (забывают одно, для запоминания другого, если можно так выразиться). Для таких людей также важно постоянное влияние внешних раздражителей, эмоции, впечатления.
    1   2   3   4   5   6   7   8   9   ...   27


    написать администратору сайта