Главная страница

физиология. 1. Предмет физиологии


Скачать 263.23 Kb.
Название1. Предмет физиологии
Дата18.01.2019
Размер263.23 Kb.
Формат файлаdocx
Имя файлафизиология.docx
ТипЗадача
#64248
страница11 из 12
1   ...   4   5   6   7   8   9   10   11   12

137. Сходства и отличия условных и безусловных рефлексов. Условия образования безусловных рефлексов.

Отличия:

  1. Безусловные – врожденные. Условные – приобретенные.

  2. Безусловные – видовые, т.е. они одинаковы у всех людей. Условные – индивидуальные.

  3. Безусловные – постоянные в течение всей жизни. Условные – непостоянны, могут исчезнуть.

  4. Безусловные – постоянная рефлекторная дуга. Условные – не имеют постоянную рефлекторную дугу, меняется.

  5. Безусловные – осуществляются всеми частями ЦНС. Условные – только корой…

  6. Безусловные – возникают в ответ на действие адекватного раздражителя. Условные – на действие разнообразных раздражителей.

Сходства:

  1. Имеют рефлекторную дугу

  2. Конечный результат одинаковый

  3. Причинно обусловленные.

  4. Необходима целостная рефлекторная дуга и обратная связь.

УР образуются только при определённом сочетании свойств раздражителя и внешних условий. Для выработки условного рефлекса используется сочетание условного раздражителя и подкрепляющего безусловного. Для выработки УР необходимы следующие условия:

1.Действие условного раздражителя должно предшествовать воздействию безусловного.

2.Необходимо многократное сочетание условного и безусловного раздражителей.

3.Индифферентный и безусловный раздражители должны иметь сверхпороговую силу.

4.В момент выработки условного рефлекса должны отсутствовать посторонние внешние раздражения.

5.Ц.Н.С. должна быть в нормальном функциональном состоянии.
Билет 33

1) Сейчас установлено, что кора не является высшим распределителем всех функций. Многие ее нейроны входят в состав сенсорных и двигательных систем среднего уровня. Субстратом высших психических функций являются распределительные системы ЦНС, в состав которых входит и подкорковые структуры и нейроны коры. Роль любой области коры зависит от внутренней организации ее синаптических связей, а также ее связей с другими образованиями ЦНС. Вместе с тем, у человека в процессе эволюции произошла кортиколизация всех, в том числе и жизненно важных висцеральных функций. Т.е. их подчинение коре. Она стала главной интегрирующей системой всей ЦНС. Кора головного мозга состоит из шести слоев:

Молекулярный слой, самый верхний. Образован множеством восходящих дендритов пирамидных нейронов. Тел нейронов в нем мало. Наружный зернистый слой. Формируется плотно расположенными мелкими нейронами, имеющими многочисленные синаптические контакты между собой.

Наружный пирамидный слой. Состоит из мелких пирамидных клеток. Внутренний зернистый слой. Содержит звездчатые клетки.

Внутренний пирамидный слой. Образован крупными пирамидными нейронами. Слой полиморфных клеток. Аксоны его нейронов идут к таламусу. Корковые нейроны образуют нейронные сети, включающие три основных компонента:

1.афферентные или входные волокна.

2.интернейроны 3.эфферентные - выходные нейроны.

Эти компоненты образуют несколько уровней нейронных сетей.

Микросети. Самый нижний уровень. Это отдельные межнейронные синапсы с их пре- и постсинаптическими структурами. Синапс является сложным функциональным элементом, имеющим внутренние саморегуляторные механизмы. Нейроны коры имеют сильно разветвленные дендриты. На них находится огромное количество шипиков в виде барабанных палочек. Эти шипики служат для образования входных синапсов. Корковые синапсы чрезвычайно чувствительны к внешним воздействиям. Каждый шипик образующий синапс, выполняет роль преобразователя сигналов, идущих к нейрону.Локальные сети. Новая кора слоистая структура, слои которой образованы локальными нейронными сетями. Входные волокна проходят через все слои, образуя синапсы с их нейронами. В свою очередь, коллатерали входных волокон и интернейроны этих слоев образуют локальные сети на каждом уровне коры. Такая структура коры обеспечивает возможность обработки, хранения и взаимодействия различной информации. Практически каждый ее слой дает выходные волокна, направляющиеся к другим слоям или отдаленным участкам коры.

Корковые колонки. Входные и выходные элементы с интернейронами образуют вертикальные корковые колонки. Они проходят через все слои коры. В колонках имеются многочисленные межнейронные связи. Нейроны 1-5 слоев колонок обеспечивают восприятие и переработку поступающей информации. Нейроны 5-6 слоя образуют эфферентные пути коры. Соседние колонки также связаны между собой. При этом возбуждение одной сопровождается торможением соседних.

В определенных областях коры сосредоточены колонки, выполняющие однотипную функцию. Эти участки называются цитоархитектоническими полями. Поля делят на первичные, вторичные и третичные. Первичные обеспечивают обработку определенной сенсорной информации, а вторичные и третичные взаимодействие сигналов разных сенсорных систем. В частности, первичное соматосенсорное поле, к которому идут импульсы от всех кожных рецепторов (тактильных, температурных, болевых) находится в области задней центральной извилины.

Представительство проприорецепторов мышц и сухожилий, т.е. моторная кора занимает переднюю центральную извилину. Импульсы от рецепторов глаза поступают в затылочные области коры около шпорной борозды. Слуховая область коры расположена в верхней височной извилине и поперечной извилине Гешля. В задней трети верхней височной извилины левого полушария находится сенсорный центр речи - центр Вернике. Двигательный центр речи - центр Брока, располагается в нижней лобной извилине левого полушария. Нарушения в этой части коры приводят к потере способности произносить слова.

Пластичность.Некоторые ткани сохраняют способность к образованию новых клеток из клеток-предшественников в течение всей жизни. Это клетки печени, кожи, энтероциты. Нервные клетки не обладают такой способностью. Однако у них сохраняется способность к образованию новых отростков и синапсов. Восстановление отростков может происходить двумя путями: путем формирования нового конуса роста и образования коллатералей. Обычно росту нового аксона препятствует возникновение глиального рубца. Но несмотря на это новые синаптические контакты образуются коллатералями поврежденного аксона. Наиболее высока пластичность нейронов коры. Любой ее нейрон запрограммирован на то, что при его повреждении он активно пытается восстановить утраченные связи. Это служит основой пластичности нейронных корковых сетей.Пластичность коры проявляется как в нормальных условиях, например при образовании новых межкортикальных связей в процессе обучения, так и при патологии. В частности, утраченные при поражении участка коры функции берут на себя ее соседние поля или другое полушарие. Даже при поражении обширных областей коры вследствие кровоизлияния, их функции начинают выполнять соответствующие области противоположного полушария.

Электроэнцефалография (ЭЭГ)-это регистрация электрической активности мозга с поверхности кожи головы. Впервые ЭЭГ человека зарегистрировал в 1929 г. немецкий психиатр Г.Бергер. При снятии ЭЭГ на кожу накладывают электроды, сигналы от которых усиливаются и подаются на осциллограф и пишущее устройство. В норме регистрируются следующие типы спонтанных колебаний: 1. α-ритм. Это волны с частотой 8-13 Гц. Наблюдается в состоянии бодрствования, полного покоя и при закрытых глазах.2. -ритм. Его частота от 14 до 30 Гц. Наблюдается при деятельном состоянии мозга и учащается по мере повышения интенсивности умственной работы. 3. -ритм. Колебания с частотой 4-8 Гц. Регистрируется во время засыпания, поверхностного сна и неглубоком наркозе.

4. δ-ритм. Частота 0,5-3,5 Гц. Наблюдается при глубоком сне и наркозе. Чем ниже частота ритмов ЭЭГ, тем больше их амплитуда. В эксперименте ЭЭГ используют для определения уровня активности мозга, а в клинике для диагностики эпилепсии (особенно скрытых форм), а также для выявление смерти мозга (кора живет 3-5 мин., стволовые нейроны 7-10, сердце 90, почки 150).

2) В состав атмосферного воздуха входит 20,93% кислорода, 0,03% углекислого газа, 79,03% азота. В альвеолярном воздухе содержится 14% кислорода, 5,5% углекислого газа и около 80% азота. При выдохе альвеолярный воздух смешивается с воздухом мертвого пространства, состав которого соответствует атмосферному. Поэтому в выдыхаемом воздухе 16% кислорода, 4,5% углекислого газа и 79,4% азота. Дыхательные газы обмениваются в легких через альвеоло - капиллярную мембрану. Переход газов через мембрану происходит по законам диффузии. Скорость диффузии прямо пропорциональна разнице парциального давления газов. Согласно закону Дальтона, парциальное давление каждого газа в их смеси, прямо пропорционально его содержанию в ней. Поэтому парциальное давление кислорода в альвеолярном воздухе 100 мм.рт.ст., а углекислого газа 40 мм.рт.ст. Напряжение (термин применяемый для газов растворенных в жидкостях) кислорода в венозной крови капилляров легких 40 мм.рт.ст., а углекислого газа - 46 мм.рт.ст. Поэтому градиент давления по кислороду направлен из альвеол в капилляры, а для углекислого газа в обратную сторону. Кроме того скорость диффузии зависит от площади газообмена, толщины мембраны и коэффициента растворимости газа в тканях. Общая поверхность альвеол составляет 50-80 м2, а толщина альвеоло –капиллярной мембраны всего 1 мкм. Это обеспечивает высокую эффективность газообмена. Показателем проницаемости мембраны является коэффициент диффузии Крога. Для углекислого газа он в 25 раз больше, чем для кислорода. Т.е. он диффундирует в 25 раз быстрее. Высокая скорость диффузии компенсирует более низкий градиент давления углекислого газа. Диффузионная способность легких для газа (л) характеризуется его количеством, которое обменивается за 1 минуту на 1 мм.рт.ст. градиента давления. Для кислорода в норме она равна 30 мл*мин-1*мм.рт.ст.-1 При нарушениях газообмена в альвеолах в крови повышается напряжение углекислого газа и снижается кислорода (пневмония, туберкулез, пневмосклероз).

3) Условные рефлексы - это индивидуально приобретённые в процессе жизнедеятельности реакции организма на раздражение.

Значение условных рефлексов

более совершенное взаимодействие организма с окружающей средой;

условные рефлексы уточняют, усложняют, утончают взаимодействие организма с окружающей средой;

лежат в основе поведения, воспитания, обучения.

Свойства условных рефлексов:

1.Формируются в течение всей жизни в результате взаимодействия индивида с внешней средой.

2.Непостоянны, и без подкрепления могут исчезать.

3.Не имеют постоянного рецептивного поля

4.Не имеют постоянной рефлекторной дуги

5.Для возникновения реакции не требуется действие специфического раздражителя.

УР образуются только при определённом сочетании свойств раздражителя и внешних условий. Для выработки условного рефлекса используется сочетание условного раздражителя и подкрепляющего безусловного. Для выработки УР необходимы следующие условия:

1.Действие условного раздражителя должно предшествовать воздействию безусловного.

2.Необходимо многократное сочетание условного и безусловного раздражителей.

3.Индифферентный и безусловный раздражители должны иметь сверхпороговую силу.

4.В момент выработки условного рефлекса должны отсутствовать посторонние внешние раздражения.

5.Ц.Н.С. должна быть в нормальном функциональном состоянии.

Все условные рефлексы в зависимости от возникающего поведения делятся на классические и инструментальные.

1.Классические это такие, которые вырабатываемые в соответствии с вышеприведёнными условиями. Пример - слюноотделение, выработанное на звонок.

2.Инструментальные - это рефлексы, способствующие достижению или избеганию раздражителя.. При звонке, предшествующем пище, собака виляет хвостом, облизывается, тянется к чашке и т.д.

Отдельно выделяются условные рефлексы высших порядков. Это УР, которые вырабатываются не путём подкрепления условного раздражителя безусловным, а при подкреплении одного условного раздражителя другим. У млекопитающих и человека основная роль в формировании условных рефлексов принадлежит коре.
Билеты 34

1) Вегетативной нервной системой (ВНС) называют совокупность нервных клеток спинного, головного мозга и вегетативных ганглиев, которые иннервируют внутренние органы и сосуды. Дуга вегетативного рефлекса отличается тем, что ее эфферентное звено имеет двухнейронное строение. Т.е. от тела первого эфферентного нейрона, расположенного в ЦНС, идет преганглионарное волокно, которое заканчивается на нейронах вегетативного ганглия, расположенного вне ЦНС. От этого второго эфферентного нейрона идет постганглионарное волокно к исполнительному органу. Нервные импульсы по вегетативным рефлекторным дугам распространяются значительно медленнее, чем по соматическим. Все вегетативные нервы имеют значительно меньшую избирательность (вагус), чем соматические.Высшие центры регуляции вегетативных функций находятся в гипоталамусе. Однако, на вегетативные центры влияет КБП. Это влияние опосредуется лимбической системой и центрами гипоталамуса.

Вегетативная нервная система делится на 2 отдела: симпатический и парасимпатический. Многие внутренние органы имеют двойную, т.е. симпатическую и парасимпатическую иннервацию. Это сердце, органы ЖКТ, малого таза и др. В этом случае, влияние отделов ВНС носит антагонистический характер. Поэтому в физиологических условиях функциональное состояние этих органов определяется преобладанием влияния того или иного отдела ВНС. Однако для организма их воздействие является синергичным. Во многих органах постоянно преобладают регуляторные влияния парасимпатической нервной системы. Это железистые клетки ЖКТ, мочевой пузырь и др. Есть органы, имеющие только одну иннервацию (сосуды). Наличие афферентного и эфферентного отделов вегетативной нервной системы, а также ассоциативных (вставочных) образований между ними обеспечивает формирование вегетативных рефлексов, дуги которых замыкаются на спинномозговом либо церебральном уровне. Их афферентное звено представлено рецепторами (главным образом, хеморецепторами), расположенными практически во всех органах и тканях, а также отходящими от них вегетативными волокнами — дендритами первых чувствительных вегетативных нейронов, которые обеспечивают проведение вегетативных импульсов в центростремительном направлении к телам этих нейронов, расположенных в спинномозговых узлах или в их аналогах, находящихся в составе черепных нервов. Далее вегетативные импульсы, следуя по аксонам первых чувствительных нейронов через задние спинномозговые корешки, входят в спинной или головной мозг и заканчиваются у вставочных (ассоциативных) нейронов, входящих в состав сегментарных вегетативных центров спинного мозга или ствола мозга. Ассоциативные нейроны, в свою очередь, имеют многочисленные вертикальные и горизонтальные межсегментарные связи и находятся под контролем надсег-ментарных вегетативных структур.Эфферентный отдел дуги вегетативных рефлексов состоит из преганглио-нарных волокон, являющихся аксонами клеток вегетативных центров (ядер) сегментарного отдела центральной нервной системы (ствола мозга, спинного мозга), которые выходят из мозга в составе передних спинномозговых корешков и достигают определенных периферических вегетативных ганглиев. Здесь вегетативные импульсы переключаются на нейроны, тела которых находятся в ганглиях и далее по постганглиональным волокнам, являющимся аксонами этих нейронов, следуют к иннервируемым органам и тканям.

2) Напряжение O2 в артериальной крови 95 мм.рт.ст. В растворенном состоянии кровью переносится всего 0,3 об.% О2. Основная его часть транспортируется в виде HbO2. Максимальное количество O2, которое может связать гемоглобин при его полном насыщении, называется кислородной емкостью крови: В норме она составляет 18-24 об.% Образование HbO2 в легких и его распад в капиллярах тканей в основном обусловлены изменениями напряжения O2. В капиллярах легких, где напряжение его велико, происходит его образование. В тканях напряжение O2 падает. Поэтому там HbO2 диссоциирует на восстановленный гемоглобин и O2. В норме связывание Hb с O2 определяется его парциальным давлением в альвеолярном воздухе, а следовательно напряжением в крови легочных капилляров. Зависимость концентраций HbO2 от напряжения O2 в крови называется кривой диссоциации HbO2а. Она не является прямо пропорциональной. При низком напряжении O2 рост концентрации HbO2 замедлен. При напряжении от 10 до 40 мм.рт.ст. он практически прямо пропорционален. А выше снова замедляется. Поэтому кривая имеет S-образную форму. Напряжение CO2 газа в венозной крови 46 мм. рт. ст. Его перенос от тканей к легким также происходит несколькими путями. Всего в крови находится около 50 об% CO2. В плазме растворяется 2,5 об.%. В виде карбгемоглобина, в соединении с глобином, переносится около 5 об%. Остальное количество транспортируется в виде гидрокарбонатов, находящихся в плазме и эритроцитах. В капиллярах тканей СО2 поступает в эритроциты. Там под влиянием фермента карбоангидразы он соединяется с катионами водорода и превращается в угольную кислоту. Она диссоциирует и большая часть гидрокарбонат анионов выходит в плазму. Там они образуют с катионами натрия гидрокарбонат натрия. Меньшая их часть соединяется в эритроцитах с катионами калия, образуя гидрокарбонат калия. В капиллярах легких напряжение СО2 ↓, а напряжение O2а ↑. Образ. в эритроцитах HbO2 является более сильной кислотой, чем .угольная. Поэтому он вытесняет из гидрокарбоната калия анионы угольной кислоты и образует с калием калиевую соль HbO2. Освобождающиеся анионы угольной кислоты соединяются с катионами водорода Синтезируется свободная угольная кислота. При низком напряжении углекислого газа, карбоангидраза действует противоположным образом, т.е. расщепляет ее на СО2 и Н2О, которые выдыхаются. Одновременно из плазмы в эритроциты поступают анионы угольной кислоты, образующиеся в ходе диссоциации гидрокарбоната натрия. Они также образуют с катионами водорода угольную кислоту, которая расщепляется карбоангидразой на углекислый газ и воду. При дыхании из организма выводится около 200 мл углекислого газа в минуту. Это важный механизм поддержания кислотно-щелочного равновесия крови.
1   ...   4   5   6   7   8   9   10   11   12


написать администратору сайта