Главная страница
Навигация по странице:

  • Закон бездекрементного проведения

  • Регуляция постоянства ионного состава и объема межклеточной жидкости организма

  • физиология. 1. Предмет физиологии


    Скачать 263.23 Kb.
    Название1. Предмет физиологии
    Дата18.01.2019
    Размер263.23 Kb.
    Формат файлаdocx
    Имя файлафизиология.docx
    ТипЗадача
    #64248
    страница7 из 12
    1   2   3   4   5   6   7   8   9   ...   12

    Закон изолированного проведения. Возбуждение не передается с одного нервного волокна на другое, входящее в состав этого же нервного ствола.Закон бездекрементного проведения. Возбуждение проводится по нервам без затухания.

    Скорость проведения прямо пропорциональна диаметру нерва

    2. Распространение возбуждения по нервным волокнам осуществляется на основе ионных механизмов генерации потенциала действия. При распространении возбуждения по безмиелиновому нервному волокну

    местные электрические токи, которые возникают между его возбужденным участком, заряженным отрицательно, и невозбужденным, заряженным положительно, вызывают деполяризацию мембраны до критического уровня с последующей генерацией ПД в ближайшей точке невозбужденного участка мембраны. Этот процесс повторяется многократно. На всем протяжении нервного волокна происходит процесс репродукции нового ПД в каждой точке мембраны волокна. Такое проведение возбуждения называется непрерывным.У миелиновых волокон местные электрические токи возникают между соседними перехватами Ранвье, т. к. мембрана возбужденного перехвата становится заряженной отрицательно по отношению к поверхности соседнего невозбужденного перехвата. Эти местные токи деполяризуют мембрану невозбужденного перехвата до критического уровня и в нем возникает ПД. Такой механизм распространения возбуждения называется сальтаторным или скачкообразным. Скорость такого способа проведения возбуждения значительно выше и дальше.

    "Перепрыгивание" потенциала действия через участок между перехватами возможно потому, что амплитуда ПД в 5-6 раз превышает пороговую величину, необходимую для возбуждения соседнего перехвата. ПД может "перепрыгивать" и через два межперехватных промежутка. Это явление может наблюдаться при снижении возбудимости соседнего перехвата под действием какого-либо фармакологического вещества, например, новокаина, кокаина и др.

    2)Собственные и сопряженные рефлексы 
    Рефлекторная регуляция системного артериального давления осуществляется за счет 2 основных групп рефлексов: собственных и сопряженных. 
    Собственные сосудистые рефлексы 
    Вызываются сигналами от рецепторов самих сосудов. 
    Собственные рефлексы, вся дуга которых от рецептора до эффектора находится в пределах сердечно-сосудистой системы (кроме центрального звена в ЦНС). 
    а) Барорефлекс - начинается с барорецепторов, расположеных в дуге аорты и в синокаротидной зоне. Расширяются сосуды, деятельность сердца становится меньше и падает АД. 
    б) Хеморефлекс - начинается с хеморецепторов, расположенных там же, где и барорецепторы. Хеморецепторы возбуждаются при избытке в крови CO2 и снижении pHкрови. Происходит сужение переферических сосудов и усиление деятельности сердца (централизация кровообращения). 
    в) Волюморефлекс - начинается с рецепторов растяжения предсердий (волюморецепторы), расположенных в предсердиях и возбуждающихся при перерастяжении. В этом случае наблюдается расслабление сосудистой стенки и урежение деятельности сердца. 
    Сопряженные сосудистые рефлексы 
    Это рефлексы, возникающие в других системах и органах, проявляются преимущественно повышением АД. Их можно вызвать, например, раздражением поверхности тела. Так, при болевых раздражениях рефлекторно суживаются сосуды, особенно органов брюшной полости, и АД повышается. Раздражение кожи холодом также вызывает рефлекторное сужение сосудов, главным образом кожных артериол.

    3) Канальцевая реабсорбция. Вся образующаяся первичная моча поступает в каналь-цы и петлю Генле, где подвергается реабсорбции 178 л воды и растворенных в ней веществ. Вместе с водой в кровь возвращаются не все они.

    Реабсорбция глюкозы и аминокислот происходит в проксимальном извитом канальце и осуществляется с помощью транспортной системы сопряженной с натрием. Реабсорбция других пороговых и непороговых веществ происходит путем диффузии.

    Облигатная реабсорбция основных ионов и воды происходит в проксимальном канальце, петле Генле. Факультативная в дистальном канальце. В проксимальном канальце и нисходящем колене петли Генле происходит активный транспорт большого количества ионов натрия. Он осуществляется натрий-калиевой АТФазой. За натрием в межклеточное пространство происходит пассивная реабсорбция большого количества воды. Одновременно с ними реабсорбируются и гидрокарбонат анионы. В нисходящем колене петли и дистальном канальце реабсорбируется относительно небольшое количество натрия, а вслед за ним и вода. В этом отделе нефрона ионы натрия реабсорбируются с помощью сопряженного натрий-протонного и натрий-калиевого обмена. Ионы хлора переносятся здесь из мочи в тканевую жидкость с помощью активного хлорного транспорта. Низкомолекулярные белки реабсорбируются в проксимальном извитом канальце. Канальцевая секреция и экскреция. Они происходят в проксимальном участке канальцев. Это транспорт в мочу из крови и клеток эпителия канальцев веществ, которые не могут фильтроваться. Активная секреция осуществляется тремя транспортными системами. Первая транспортирует органические кислоты. Вторая органические основания. Третья этилендиаминтетраацетат (ЭДТА). Экскреция слабых кислот и оснований происходит с помощью не ионной диффузии. Для осуществления экскреции слабых кислот необходимо, чтобы реакция канальцевой мочи была щелочной, а для выведения щелочей кислой. Таким путем также секретируются протоны и катионы аммония.Суточный диурез составляет 1,5-2 л. Конечная моча имеет слабокислую реакцию с рН=5,0 - 7,0. Удельный вес не менее 1,018. Белка не более 0,033 г/л. Сахар, кетоновые тела, уробилин, билирубин отсутствуют. Эритроциты, лейкоциты, эпителий единичные клетки в поле зрения. Бактерий не более 50.000 в 1 мл
    Билет 19

    1) Синапсом называется место контакта нервной клетки с другим нейроном или исполнительным органом. Все синапсы делятся на а. Электрические. В них возбуждение передается посредством электрического поля. Поэтому оно может передаваться в обе стороны. Их в ЦНС мало. б. Химические. Возбуждение через них передается с помощью ФАВ - нейромедиатора. Их в ЦНС большинство.в. Смешанные.а. Центральные, расположенные в Ц.Н.С. б. Периферические, находящиеся вне ее. Это нервно-мышечные синапсы и синапсы периферических отделов вегетативной нервной системы.а. Возбуждающиеб. Тормозные а. Холинергические - медиатор ацетилхолин (АХ).б. Адренергические - норадреналин (НА).в. Серотонинергические - серотонин (СТ).

    г. Глицинергические - аминокислота глицин (ГЛИ).

    д. ГАМКергические - гамма-аминомасляная кислота (ГАМК).

    е. Дофаминергические - дофамин (ДА).ж. Пептидергические - медиаторами являются нейропептиды. а. Аксо-дендритные (между аксоном одного и дендритом второго нейрона).б. Аксо-аксональные в. Аксо-соматические г. Дендро-соматические д. Дендро-дендритные. Строение всех химических синапсов имеет принципиальное сходство: 1.Пресинаптическое окончание (конец аксона).2.Синаптическая бляшка, утолщение окончания.3.Пресинаптическая мембрана, покрывающая пресинаптическое окончание. Синаптические пузырьки в бляшке, которые содержат нейромедиатор. 5.Постсинаптическая мембрана, покрывающая участок дендрита прилегающий к бляшке. 6.Синаптическая щель, разделяющая пре- и постсинаптическую мембраны. 7.Хеморецепторы, белки встроенные в постсинаптическую мембрану и специфичные для нейромедиатора. Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза. Его выделение происходит небольшими порциями - квантами. Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция входят в синаптическую бляшку. Начинается выделение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с ее хеморецепторами. В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников. Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми . В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.

    В ЦНС возбуждающими являются холин-, адрен-, дофамин-, серотонинергические синапсы. Открывают хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП).

    Тормозными являются глицин- и ГАМКергические синапсы. Активируют калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану. Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны. Она называется тормозным постсинаптическим потенциалом (ТПСП).

    После прекращения поступления нервных импульсов, выделившийся медиатор удаляется из синаптической щели тремя путями: 1.Разрушается специальными ферментами, фиксированными на поверхности субсинаптической мембраны. 2.Часть медиатора возвращается в пресинаптическое окончание с помощью процесса обратного захвата (значение в том, что синтез нового нейромедиатора длительный процесс).3.Небольшое количество уносится межклеточной жидкостью. Особенности передачи возбуждения через химические синапсы: 1.Возбуждение передается только в одном направлении, что способствует его точному распространению в ЦНС.2.Они обладают синаптической задержкой. Это время необходимое на выделения медиатора, его диффузию и процессы в субсинаптической мембране.

    3.В синапсах происходит трансформация, т.е. изменение частоты нервных импульсов.4.Для них характерно явление суммации. Т.е. чем больше частота импульсов, тем выше амплитуда ВПСП и ТПСП.

    5.Синапсы обладают низкой лабильностью.

    3.Нервно-мышечные синапсы образуются окончаниями аксонов двигательных нейронов и мышечными волокнами. Благодаря своеобразной форме они называются нервно-мышечными концевыми пластинками. Их общий план строения такой же, как у всех химических синапсов, но субсинаптическая мембрана толще и образует многочисленные субсинаптические складки. Они увеличивают площадь синаптического контакта. Медиатором этих синапсов является ацетилхолин. В субсинаптическую мембрану встроены Н-холинорецепторы, т.е. холинорецепторы, которые помимо АХ могут связываться и с никотином. Взаимодействие ацетилхолина с холинорецепторами приводит к открыванию хемозависимых натриевых каналов и развитию деполяризации. При поступлении нервного импульса, выделяется большое количество АХ и развивается выраженная деполяризация, называемая потенциалом концевой пластинки (ПКП). Разрушение АХ осуществляется ферментом ацетилхолинестеразой. Некоторые фосфороорганические вещества (хлорофос, зарин) инактивируют холинэстеразу. Поэтому АХ накапливается в синапсах и возникают мышечные судороги.

    2) Человек имеет 2 пары околощитовидных желез, расположенных на задней поверхности или погруженных внутри щитовидной железы. Главные, или оксифильные, клетки этих желез вырабатывают паратгормон, или паратирин, или паратиреоидный гормон (ПТГ). Паратгормон регулирует обмен кальция в организме и поддерживает его уровень в крови. В костной ткани паратгормон усиливает функцию остеокластов, что приводит к деминерализации кости и повышению содержания кальция в плазме крови (гиперкальциемия). В почках паратгормон усиливает реабсорбцию кальция. В кишечнике повышение реабсорбции кальция происходит благодаря стимулирующему действию паратгормона на синтез кальцитриола - активного метаболита витамина D3. Под влиянием паратгормона происходит его активация в печени и почках. Кальцитриол повышает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция. Влияя на обмен кальция, паратгормон одновременно воздействует и на обмен фосфора в организме: он угнетает обратное всасывание фосфатов и усиливает их выведение с мочой (фосфатурия).Активность околощитовидных желез определяется содержанием кальция в плазме крови. Если в крови концентрация кальция возрастает, то это приводит к снижению секреции паратгормона. Уменьшение уровня кальция в крови вызывает усиление выработки паратгормона. Удаление околощитовидных желез у животных или их гипофункция у человека приводит к усилению нервно-мышечной возбудимости, что проявляется фибриллярными подергиваниями одиночных мышц, переходящих в спастические сокращения групп мышц, преимущественно конечностей, лица и затылка. Животное погибает от тетанических судорог.Гиперфункция околощитовидных желез приводит к деминерализации костной ткани и развитию остеопороза. Гиперкальциемия усиливает склонность к камнеобразованию в почках, способствует развитию нарушений электрической активности сердца, возникновению язв в желудочно-кишечном тракте.

    3) Почки имеют высокую способность к саморегуляции. Чем ↓ осмотическое давление крови, тем выраженнее процессы фильтрации и слабее реабсорбция и наоборот. Нервная регуляция осуществляется посредством симпатических нервов, иннервирующих почечные артериолы. При их возбуждении суживаются выносящие артериолы, Кровяное давление в капиллярах клубочков, а как следствие эффективное фильтрационное давление, ↑, клубочковая фильтрация ускоряется. Также симпатические нервы усиливают реабсорбцию глюкозы, натрия и воды. Гуморальная регуляция осуществляется группой факторов.1.Антидиуретический гормон (АДГ). Он начинает выделяться из задней доли гипофиза при ↑ осмотического давления крови и возбуждения осморецепторных нейронов гипоталамуса АДГ взаимодействует с рецепторами эпителия собирательных трубочек, которые ↑ содержание цАМФ в них. цАМФ активирует протеинкиназы, которые увеличивают проницаемость эпителия дистальных канальцев и собирательных трубочек для воды. В результате реабсорбция воды ↑.2.Альдостерон стимулирует активность Na-K АТФазы поэтому ↑ реабсорбцию Na, но одновременно выведения K и протонов в канальцах. В результате ↑ содержание K и протонов в моче.3.Натрийуретический гормон или атриопептид. Образуется в основном в левом предсердии при его растяжении, а также в передней доле-Гипофиза и хромаффинных клетках надпочечников. Он усиливает фильтрацию, снижает реабсорбцию Na. В результате возрастают выведение натрия и хлора почками, повышает суточный диурез.4.Паратгормон и кальцитонин. Паратгормон ↑ реабсорбцию Ca, Mg и ↓ обратное всасывание фосфора. Кальцитонин ↓ реабсорбцию этих ионов.5.Ренин-ангиотензин-альдостероновая система. Под влиянием ренина от белка плазмы крови а2-глобулина-ангиотензина отщепляется ангиотензин. Затем ангиотензин I превращается ренином в ангиотензин 2 Это самое сильное сосудосуживающее вещество.6.Калликреин-кининовая система. Является антагонистом ренин-ангиотензиновой. При снижении почечного кровотока в эпителии дистальных канальцев начинает вырабатываться калликреин. Он переводит неактивные белки плазмы кининогены в активные кинины (брадикинин). Кинины расширяют почечные сосуды, ↑ скорость клубочковой ультрафильтрации и уменьшают интенсивность процессов реабсорбции. Диурез возрастает. 7.Простагландины. Они синтезируются в мозговом веществе почек. простагландинсинтетазами и стимулируют выведение натрия и воды.
    Билет 20

    1) ЦНС- это комплекс различных образований спинного и головного мозга, которые обеспечивают восприятие, переработку, хранение и воспроизведение информации, а также формирование адекватных реакций организма на изменения внешней и внутренней среды. Структурным и функциональным элементом ЦНС являются нейроны. Это высокоспециализированные клетки организма, чрезвычайно различающиеся по своему строению и функциям. В общем плане, все нейроны имеют тело - сому и отростки - дендриты и аксоны. Их условно разделяют по структуре и функциям на следующие группы: а. Многоугольные б. Пирамидные

    в. Круглые г. Овальные а. Униполярные - имеющие один отросток. б. Псевдоуниполярные - от тела отходит один отросток, который затем делится на 2 ветви.

    в. Биполярные - 2 отростка, один дендритоподобный, другой аксон. г. Мультиполярные - имеют 1 аксон и много дендритов. а. Холинергические. б. Адренергические

    в. Серотонинергические г. Пептидергические и т.д.

    а. Афферентные или чувствительные. Служат для восприятия сигналов из внешней и внутренней среды и передачи их в ЦНС. б. Вставочные или интернейроны, промежуточные. Обеспечивают переработку, хранение и передачу информации к эфферентным нейронам. Их в ЦНС большинство. в. Эфферентные или двигательные. Формируют управляющие сигналы, и передают их к периферическим нейронам и исполнительным органам.

    а. Возбуждающие б. Тормозные. Сома нейронов покрыта многослойной мембраной, обеспечивающей проведение ПД к начальному сегменту аксона - аксонному холмику. В соме расположено ядро, аппарат Гольджи, митохондрии, рибосомы. В рибосомах синтезируют тигроид, содержащий РНК и необходимый для синтеза белков. Особую роль играют микротрубочки и тонкие нити - нейрофиламенты. На дендритах имеются выступы для синапсов - шипики, через которые в нейрон поступает информация. По аксонам сигнал идет к другим нейронам или исполнительным органам. общими функциями нейронов ЦНС являются прием, кодирование, хранение информации и выработка нейромедиатора и интегративная функция. Кроме нейронов в ЦНС имеются клетки нейроглии. Размеры глиальных клеток меньше чем нейронов. В зависимости от размеров и количества отростков выделяют астроциты, лигодендроциты, микроглиоциты. Нейроны и глиальные клетки разделены узкой межклеточной щелью. Эти щели соединяются между собой и образуют внеклеточное пространство мозга, заполненное интерстициальной жидкостью. За счет этого пространства нейроны и глионы обеспечиваются кислородом, питательными веществами. Таким образом глионы служат опорным аппаратом ЦНС, обеспечивают обменные процессы в нейронах, поглощают избыток нейромедиаторов и продукты их распада.

    2) Деятельность сердца сопровождается механическими, акустическими и биоэлектрическими явлениями. К механическим проявлениям активности сердца относят верхушечный толчок. Это ритмическое выбухание кожи грудной клетки в пятом межреберье на 1 см кнутри: от среднеключичной линии. Верхушечная или апекскардиограмма регистрируется с помощью механоэлектрического датчика, расположенного в точке верхушки сердца. Динамокардиография и Баллистокардиография в настоящее время клинического значения не имеют. Звуковые проявления нормальной сердечной деятельности называют тонами сердца. Это клинический термин, отличающий их от патологических звуков - шумов. Простейшим методом исследования звуковых проявлений является аускультация - выслушивание с помощью фонендоскопа. Обычно можно выслушать 2 тона: 1-й и 2-ой. Первый тон лухой,продолжительный. Он совпадает с систолой желудочков и называется систолическим. Лучше всего I тон прослушивается на верхушке сердца. Возникает I тон в момент захлопывания атриовентрикулярных клапанов и обусловлен колебаниями их створок, сухожильных нитей и стенок желудочков. Основную роль в его происхождении играет митральный клапан. Второй тон более высокий, громкий и короткий. Он совпадает с диастолой желудочков и называется диастолическим. Его возникновение обусловлено колебаниями аортального и пульмонального клапанов в моментах закрывания, т.е. начале диастолы. Выслушивание сердца начинается со второго межреберья слева от грудины, там его громкость наибольшая. После этого его прослушивают во втором межреберье справа от грудины, где находится проекция аортального клапана. Пульмональный клапан выслушивают в точке Боткина, т.е. 3 межреберье слева от грудины или справа от основания мечевидного отростка грудины. Митральный клапан прослушивается на верхушке, т.е. в 5 межреберье на 1-1,5 см. справа от среднеключичной линии.

    3) 1.Регуляция постоянства ионного состава и объема межклеточной жидкости организма. Базисным механизмом регуляции объема крови и межклеточной жидкости является изменение содержания натрия. При ↑ его количества в крови ↑ прием воды и происходит ее задержка в организме. При ↓ содержании хлорида натрия- в рационе выведение натрия из организма преобладает. Но благодаря почкам устанавливается и отрицательный водный баланс и выведение воды начинает превышать ее потребление. Но выведение Na и воды почками будет или больше или меньше исходного; При ↑ объема циркулирующей крови (ОЦК) или гиперволемии ↑ артериальное и эффективное фильтрационное давление. Одновременно начинает в предсердиях начинает выделяться натрийуретический гормон. ↓ эффективное фильтрационное давление и включается ряд дополнительных механизмов, обеспечивающих сохранение Na и воды в организме. В сосудах печени, почек, сердца и каротидных синусах имеются периферические осморецепторы, а в гипоталамусе осморецепторные нейроны. Они реагируют на изменение осмотического давления крови. Импульсы от них идут в центр осморегуляции. Активируется симпатическая нервная система Сосуды суживаются. Одновременно начинается образование и выделение гипофизом АДГ. Выделяющиеся надпочечниками адреналин и норадреналин также суживают приносящие артериолы. В результате фильтрация в почках уменьшается, ареабсорбция усиливается. Одновременно активируется ренин-ангиотензиновая система. В этот же период развивается чувство жажды. Соотношение содержания ионов Na и K регулируется минералокортикоидами, Ca и фосфора паратгормоном и кальцитонином.
    Билет 21

    1) Нервным центром (НЦ) называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма. Для проведения возбуждения через нервные центры характерны следующие особенности:

    Одностороннее проведение. Оно идет от афферентного, через вставочный к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.Центральная задержка проведение возбуждения. Т.е. по НЦ возбуждение идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой.Пространственная и временная суммация. Временная суммация возникает, как и в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда возбуждающим постсинаптическим потенциалом ВПСП. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторов нейронов.

    Трансформация ритма возбуждения - изменение частоты нервных импульсов при прохождении через нервный центр. Частота может понижаться или повышаться. Понижающая трансформация объясняется суммацией нескольких ВПСП и возникновением одного ПД в нейроне.Посттетаническая потенциация, это усиление рефлекторной реакции в результате длительного возбуждения нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы,. выделяется большое количество нейромедиатора в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.Последействие, это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.Тонус нервных центров - состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к НЦ нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов.

    Автоматия или спонтанная активность нервных центров. Периодическая или постоянная генерация нейронами нервных импульсов, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.

    Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности Н.Ц. лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

    Низкая физиологическая лабильность и быстрая утомляемость. Н.Ц. могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов.

    2) ЭКГ это регистрация электрической активности мышцы сердца, возникающей в результате ее возбуждения. При ЭКГ регистрируется разность потенциалов, возникающая между различными точками тела в результате возбуждения сердца.Регистрация ЭКГ осуществляется с помощью биполярных и униполярных отведений. При биполярных оба электрода являются активными, т.е. регистрируется разность потенциалов между ними. При униполярных отведениях регистрируется разность потенциалов между активным электродом и индифферентным, имеющим нулевой потенциал. Стандартных отведений три: 1-е отведение -правая и левая рука, 2-е правая рука и левая нога, 3-е - левая рука и левая нога. Вильсоном предложена регистрация шести грудных отведений. Для отведения потенциалов от грудной клетки рекомендуют прикладывать первый электрод к одной из шести точек на передней поверхности грудной клетки. Вторым электродом служат три соединенных вместе электрода, наложенных на обе руки и левую ногу. В этом случае форма ЭКГ отражает электрические изменения только на участке приложения грудного элект¬рода. Объединенный электрод, приложенный к трем конечностям, являет¬ся индифферентным, или «нулевым», так как его потенциал не изменяется на протяжении всего сердечного цикла. Такие электрокардиографические отведения называются униполярными, или однополюсными. Эти отведения обозначают латинской буквой V (V1, V2 и др.).

    Ритмичность сердечных сокращении определяют по интервалам R-R. Если расстояние между всеми зубцами R одинаково ритм правильный.

    3) Кожа выполняет следующие функции:

    1.Защитная. Она защищает ткани, сосуды, нервные волокна, находящиеся под ней.

    2.Терморегуляторная. Обеспечивается посредством теплоизлучения, конвекции «теплопроводности и испарения воды с ее поверхности.

    3.Сенсорная. В коже находятся температурные, тактильные, болевые рецепторы.

    4.Выделительная. С помощью потовых желез выделяется около 1/3 воды. избыток минеральных солей, особенно кальция, мочевина, мочевая кислота, креатинин. Посредством сальных желез выводятся холестерин, продукты метаболизма половых и других гормонов. Однако их роль в процессах выделения небольшая.

    В коже имеется 2-3 млн. потовых желез. Существует 2 типа потовых желез: апокриновые эккринные. Апокриновые расположены в подмышечных впадинах и промежности. Они определяют запах тела. Эти железы активируются при стрессовых воздействиях. Они начинают функционировать в период полового созревания. Эккринные обеспечивают терморегуляцию и выделение. В сутки, в состоянии покоя, образуется от 500 до 1000мл пота. В составе пота 99% воды и 1% сухого остатка. При нарушении функций почек, роль кожи, как органа выделения значительно возрастает. Поэтому в составе пота появляются желчные пигменты, кетоновые тела, повышается содержание азотсодержащих соединений. Регуляция потоотделения осуществляется нервным центром, расположенным в гипоталамусе. Его активность контролируется центром терморегуляции гипоталамуса. Однако к нему также идут пути от коры и ретикулярной формации. Поэтому потоотделение зависит и от эмоционального состояния. От спинальных потоотделительных центров к потовым железам направляются симпатические нервные волокна. Влияют на потоотделение тиреоидные, половые гормоны и альдостерон. Секреция сальных желез регулируется половыми гормонами и кортикостероидами.

    Билет 22

    1) Явление центрального торможения обнаружено Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового рефлекса на раздражение лапки серной кислотой. Затем на таламус, т.е. зрительные бугры накладывал кристаллик поваренной соли и обнаружил, что время рефлекса значительно увеличивалось. Это свидетельствовало о торможении рефлекса. Сеченов сделал вывод, что вышележащие Н.Ц. при своем возбуждении тормозят нижележащие. Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение.Первоначально была предложена унитарно-химическая теория торможения. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней, торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр. В ЦНС выделяют следующие механизмы торможения:
    1   2   3   4   5   6   7   8   9   ...   12


    написать администратору сайта