физиология. 1. Предмет физиологии
Скачать 263.23 Kb.
|
Функции вестибулярной системы. Вестибулярная система помогает организму ориентироваться в пространстве при активном и пассивном движении. В нормальных условиях пространственная ориентировка обеспечивается совместной деятельностью зрительной и вестибулярной систем. Билет 28 1) Функционально в нем выделяют 2 отдела: таламус и гипоталамус. В таламусе происходит обработка почти всей информации, идущей от рецепторов к коре. Через него проходят сигналы от зрительных, слуховых, вкусовых, кожных, мышечных, висцеральных рецепторов, а также ядер ствола мозга, мозжечка, подкорковых. Сам он содержит около 120 ядер. Они делятся на неспецифические и специфические. Неспецифические относятся к переднему отделу ретикулярной формации ствола мозга. К этим ядрам подходят нервные волокна от нижележащих отделов Р.Ф., гипоталамуса, лимбической системы, базальных ядер. При возбуждении неспецифических ядер в коре мозга развивается периодическая электрическая активность в виде веретен, т.е. они обеспечивают определенный уровень функционального активности коры. Специфические ядра делятся на переключающие или релейные и ассоциативные. Переключающие ядра состоят из нейронов, у которых мало дендритов и длинный аксон. С помощью них происходит переключение сигналов идущих от нижележащих отделов ЦНС на соответствующие соматосенсорные зоны коры, в которых находится представительство определенных рецепторов. В переключающих ядрах выделяется наиболее важная информация. При нарушении функции этих ядер выключается восприятие соответствующих сигналов. Ассоциативные нейроны имеют большее количество отростков и синапсов. Это позволяет им воспринимать различные по характеру сигналы. Они их получают эти сигналы от переключающих и осуществляют их первичный синтез. От них пути идут к ассоциативным зонам коры, в которых происходит высший синтез и формируются сложные ощущения. Кроме того, ядра таламуса участвуют в формировании безусловных двигательных рефлексов сосания, жевания, глотания. В таламусе находится подкорковый центр болевой чувствительности, в котором формируется общее ощущение боли, не имеющее определенной локализации и окраски. 2) Сердце снабжается кровью через коронарные артерии, отходящие от аорты. В сердце имеется небольшое количество межартериальных анастомозов. Миокард пронизывает большое количество капилляров. В состоянии покоя у человека через коронарные сосуды проходит 4-5% всего минутного объема крови. При интенсивной физической работе коронарный кровоток возрастает в 5-7 раз. В период систолы коронарные сосуды частично сжимаются и кровоток в них снижается. Во время диастолы он восстанавливается. Регуляция коронарного кровотока осуществляется миогенными, гуморальными и нервными механизмами. Первый обусловлен автоматией гладких мышц сосудов и обеспечивает поддержание постоянства коронарного кровотока при колебаниях артериального давления от 75 до 140 мм.рт.ст. Гуморальный механизм. Наиболее мощным стимулятором расширения коронарных сосудов является недостаток О2(всего 5%). Расширяют сердечные сосуды гистамин, ацетилхолин, простагландины Е. Симпатические нервы обладают слабым сосудосуживающим влиянием. Слабое вазодилататорное действие оказывают парасимпатические нервы. Кровоснабжение мозга осуществляется двумя внутренними сонными и двумя позвоночными артериями, а отток крови происходит по двум яремным венам. Магистральные артерии соединяются в виллизиев круг. Вены образуют систему синусов. Отходящие от него крупные артерии образуют сеть пиальных сосудов. Эта сеть вместе с пиальными венами формирует мягкую мозговую оболочку. От пиальных сосудов вглубь мозга идут мелкие радиальные артерии, которые переходят в капиллярную сеть. В основном сосуды иннервируются симпатическими нервами, хотя имеется и холинэргическая иннервация. Через сосуды мозга в покое проходят 15% минутного объема крови. Мозг потребляет до 20% всего кислорода и 17% глюкозы. Он очень чувствителен к гипоксии и гипогликемии, а следовательно ухудшению кровотока. Тонус сосудов мозга регулируется миогенными, гуморальными и нейрогенными механизмами. Миогенный проявляется сокращением гладких мышц сосудов при ↑ кровяного давления и наоборот расслаблением при его ↓. Он стабилизирует быстрые колебания кровотока. Нервная регуляция осуществляется симпатическими нервами, которые кратковременно и незначительно суживают сосуды. Основная роль принадлежит гуморальным факторам. Увеличение концентрации CO2 крови сопровождается выраженным расширением сосудов мозга. При гипервентиляции содержание СО2 падает, сосуды мозга суживаются, мозговой кровоток уменьшается. Аденозин, брадикинин, гистамин расширяют сосуды. Вазопрессин, ссротонин, ангиотензин суживают. Существенной особенностью сосудистой системы легких является то, что она включает сосуды малого круга и бронхиальные артерии большого. Первые служат для газообмена, вторые обеспечивают кровоснабжение ткани легких. У человека между ними имеются анастомозы, роль которых в гемодинамике малого круга значительно возрастает при застойных явлениях в нем. Легочная артерия разветвляется на более мелкие артерии, а затем артериолы. Артериолы окружены паренхимой легких, поэтому кровоток в них тесно связан с режимом вентиляции легких. Стенка легочного капилляра и альвеолы образуют альвеолокапиллярную мембрану. Через нее осуществляется газообмен. Нервная регуляция тонуса легочных сосудов осуществляется симпатическими нервами. Они оказывают слабое сосудосуживающее влияние. Из факторов гуморальной регуляции легочного кровотока главную роль играют серотонин, гистамин, ангиотензин, которые суживают сосуды. Через почки в состоянии покоя проходит 20% минутного объема крови. Давление в капиллярах сосудистых клубочков нефронов значительно составляет 50-70 мм.рт.ст. Это связано с тем, что диаметр приносящих артериол больше, чем выносящих. Основное значение в регуляции почечного кровотока принадлежит миогенным механизмам. Они поддерживают постоянство капиллярного давления и кровотока при колебаниях артериального от 80 до 180 мм.рт.ст. Вторым по значению является гуморальный механизм. Особую роль играют ренин-ангиотензиновая и калликреин-кининовая системы. Брадикинин расширяет сосуды почек. Значение нервно-рефлекторных механизмов в регуляции их тонуса невелико. Сосуды иннервируются симпатическими вазоконстрикторами 3) Рецепторный отдел. Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. Улитка представляет собой костный спиральный канал, образующий 2,5 витка. По всей длине, почти до самого конца улитки, костный канал разделен двумя перепонками: более тонкой — преддверной (вестибулярной) мембраной (мембрана Рейсснера) и более плотной и упругой — основной мембраной. Верхний и нижний каналы улитки заполнены перилимфой, напоминающей по составу цереброспинальную жидкость. Между верхним и нижним каналами проходит средний — перепончатый канал. Полость этого канала не сообщается с полостью других каналов и заполнена эндолимфой. Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат — спиральный (кортиев) орган, содержащий рецепторные волосковые клетки (вторично-Чувствующие механорецепторы). На основной мембране расположены два вида рецепторных волосковых клеток: внутренние и наружные, отделенные друг от друга кортиевыми дугами. Эти клетки трансформируют механические колебания в электрические потенциалы. Колебания мембраны овального окна преддверия вызывают колебания перилимфы в верхнем и нижнем каналах улитки, которые доходят до круглого окна улитки. Преддверная мембрана очень тонкая, поэтому жидкость в верхнем и среднем каналах колеблется так, как будто оба канала едины. Упругим элементом, отделяющим этот как бы общий верхний канал от нижнего, является основная мембрана. Звуковые колебания, распространяющиеся по перилимфе и эндолимфе верхнего и среднего каналов как бегущая волна, приводят в движение эту мембрану и через нее передаются на перилимфу нижнего канала. Пространственная (резонансная) теория была предложена Гельм-гольцем в 1863 году. Теория допускает, что базилярная мембрана состоит из серии сегментов, каждый из которых резонирует в ответ на воздействие определенной частоты звукового сигнала. По аналогии со струнными инструментами звуки высокой частоты приводят в колебательное движение участок базилярной мембраны с короткими волокнами у основания улитки, а звуки низкой частоты - участок мембраны с длинными волокнами у верхушки улитки. При подаче и восприятии сложных звуков одновременно начинают колебаться несколько участков мембраны. Чувствительные клетки спирального органа воспринимают эти колебания и передают но нерву слуховым центрам. Развивают теорию Гельмгольца такие авторы, как Бекеши, Флетчер, Уи-вер и др. В последние годы считают, что в ответ на звуковое раздражение реагирует не вся система внутреннего уха, а происходит продольное сокращение отдельных чувствительных клеток. Механизм этого процесса - биохимические процессы (активация белка миозина. Билет 29 1) Гипоталамус является высшим подкорковым центром вегетативной регуляции. На висцеральные функции организма он влияет двумя путями. Во-первых через вегетативную нервную систему. Его передние ядра являются высшими парасимпатическими центрами. Поэтому при их возбуждении урежаются сердцебиения, снижается АД, понижается энергетический обмен, температура тела, суживаются зрачки и т.д. При возбуждении задних ядер возникает обратная картина, т.к. они являются высшими симпатическими центрами. Во-вторых, ГТ влияет на многие функции через гипофиз. Посредством нервных и сосудистых связей он образует с ним единую гипоталамо-гипофизарную систему. Такое взаимодействие связано с тем, что некоторым нейронам ГТ свойственно явление нейросекреции. В частности, в супраоптическом ядре вырабатываются вазопрессин и окситоцин. По аксонам секретирующих нейронов они поступают в заднюю долю гипофиза, а оттуда выделяются в кровь. В медиальных ядрах синтезируются либерины и статины. По венозной гипоталамо-гипофизарной сети они транспортируются к передней доле гипофиза. Первые стимулируют синтез и выделение его гормонов, вторые тормозят. В свою очередь тропные гормоны влияют на функции других желез внутренней секреции. В ГТ находятся центры терморегуляции, регуляции водно-солевого обмена, обмена белков, жиров, углеводов и др. За счет них регулируется гомеостаз. Гипоталамус участвует в формировании некоторых мотиваций и поведенческих реакций. Например, мотиваций и поведения голода, жажды. Т.е. здесь находятся центры голода и насыщения. В гипоталамусе расположены центры бодрствования и сна. В опытах с самораздражением (Олдс), когда в определенные ядра ГТ вживляются электроды, установлено, что здесь находятся центры двух базисных эмоций - удовольствия и неудовольствия. ГТ принадлежит важная роль в развитии стресса, т.е. реакций напряжения на угрожающую ситуацию. При воздействии физиологических или психологических стрессоров (холод, недостаток кислорода, эмоциональном напряжении) кора посылает сигналы к симпатическим центрам ГТ, которые активируют симпатический отдел вегетативной нервной системы, выделение кортикотропинрелизинг гормона, а как следствие АКТГ. В результате происходит симпатическая активация внутренних органов, выделяются адреналин из мозгового слоя и кортикостероиды. При патологии ГТ возникают расстройства терморегуляции (гипер- и гипотермия), аппетита (афагия-, гиперфагия), сна. Эндокринные нарушения, связанные с гипоталамусом, могут проявляться преждевременным половым созреванием, нарушениями менструального цикла, полового влечения, несахарным диабетом. 2) Лимфа образуется путем фильтрации тканевой жидкости через стенку лимфа капилляров. В лимфосистеме циркулирует около 2 литров лимфы. Из капилляров она движется по лимфа сосудам, проходит лимфа узлы и по крупным протокам поступает в венозное русло. Удельный вес лимфы 1,012-1023 г/мм3. Вязкость около 9,0. Электролитный состав лимфы сходен с плазмой крови. Содержание белков в лимфе меньше, чем плазме: 2,5-5,6% или 25-65 г/л. Из форменных элементов лимфа в основном содержит лимфоциты. Их количество в ней 2.000-20.000 мкл 2-20 * 109 Л. Имеется и небольшое количество других лейкоцитов. Эритроцитов в норме нет. Лимфа способна образовывать тромб. Лимфа система человека состоит из следующих образований:1)лимфокапилляров; 2)внутриорганных сплетений посткапилляров и мелких; 3)экстраорганных отводящих лимфатических сосудов,; 4)главных лимфопротоков — грудного и правого лимфатического. Лимфа выполняет следующие функции:
Движение лимфы начинается с момента ее образования в лимфа капиллярах, поэтому факторы, которые ↑ скорость филь¬трации жидкости из кровеносных капилляров, также ↑ ско¬рость образования и движения лимфы. Факторами, повышающими лим¬фообразование, являются увеличение гидростатического давления в ка¬пиллярах, ↑ общей поверхности функционирующих капилляров (при повышении функциональной активности органов), ↑ про¬ницаемости капилляров, введение гипертонических растворов. В лимфатических сосудах основной силой, обеспечивающей перемеще¬ние лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов. Лимфангионы имеют в своем составе все необходимые элементы для активного транспорта лимфы: развитую мышечную «манжетку» и клапаны. Растяжение их стенок приводит к возбуждению и сокращению гладких мышечных клеток мы¬шечной «манжетки». Так же движению лимфы способствует оттока из грудного протока во время вдоха, массаж скелетных мышц, сокращение скелетной мускулатуры конечностей. 3) Обонятельная рецепторная клетка — биполярная клетка, на апикальном полюсе которой находятся реснички, а от ее базальной части отходит немиелинизированный аксон. Аксоны рецепторов образуют обонятельный нерв, который пронизывает основание черепа и вступает в обонятельную луковицу. Механизм. Молекулы пахучих веществ попадают в слизь, вырабатываемую обонятельными железами, с постоянным током воздуха или из ротовой полости во время еды. Принюхивание ускоряет приток пахучих веществ к слизи. В слизи молекулы пахучих веществ на короткое время связываются с обонятельными нерецепторными белками. Некоторые молекулы достигают ресничек обонятельного рецептора и взаимодействуют с находящимся в них обонятельным рецепторным белком. В свою очередь обонятельный белок активирует ГТФ-связывающий белок (G-белок), а тот в свою очередь — фермент аденилатциклазу, синтезирующую цАМФ. Повышение в цитоплазме концентрации цАМФ вызывает открывание в плазматической мембране рецепторной клетки натриевых каналов и как следствие — генерацию деполяризационного рецепторного потенциала. Это приводит к импульсному разряду в аксоне рецептора (волокне обонятельного нерва).Классификация первичных запахов (по Эймуру)Камфарный-эвкалипт, Едкий-уксус, Эфирный- эфир, груши, Цветочный- розы Мятный-мята, ментол Мускусный – железы ондатры Гнилостный-тухлые яйца. Эмоциональная природа запаха. Запах имеет эмоциональный компонент влияния на организм, вызывая ощущение приятного или неприятного, поэтому запах даже в большей степени, чем вкус, важен для выбора пищи. Действительно, у человека, однажды съевшего неподходящую пищу, часто запах этой пищи вызывает тошноту при повторной встрече с ней. Наоборот, запах хороших духов может дать выход буре положительных человеческих эмоций. Известно также, что у некоторых животных запах является главным возбудителем половой мотивации.Чувствительность обонятельной системы человека чрезвычайно велика: один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения. Билет 30 1) Мозжечок состоит из 2-х полушарий и червя между ними. Серое вещество образует кору и ядра. Белое образовано отростками нейронов. Мозжечок получает афферентные нервные импульсы от тактильных рецепторов, рецепторов вестибулярного аппарата, проприорецепторов мышц и сухожилий, а также двигательных зон коры. Эфферентные импульсы от мозжечка идут к красному ядру среднего, ядру Дейтерса продолговатого мозга, к таламусу, а затем моторным зонам КБП и подкорковым ядрам. Общей функцией мозжечка является регуляция позы и движений. Эту функцию он осуществляет путем координации активности других двигательных центров: вестибулярных ядер, красного ядра, пирамидных нейронов коры. Поэтому он выполняет следующие двигательные функции: Регуляцию мышечного тонуса и позы. Коррекцию медленных целенаправленных движений в ходе их выполнения, а также координацию этих движений с рефлексами положения тела.Контроль за правильным выполнением быстрых движений, осуществляемых корой. При удалении мозжечка у животного развивается комплекс двигательных нарушений, называемый триадой Лючиани. Он включает: Атония и дистония - снижение и неправильное распределение тонуса скелетных мышц. Астазия - невозможность слитного сокращения мышц. Астения - быстрая утомляемость мышц. Атаксия - плохая координация движений при ходьбе. Неустойчивая "пьяная" походка. Адиадохокинез - нарушение правильной последовательности быстрых целенаправленных движений. В клинике умеренные поражения мозжечка проявляются триадой Шарко:Нистагм глаз в состоянии покоя. Тремор конечностей, возникающий при их движениях. Дизартрия - нарушения речи. Л.А.Орбели установил, что мозжечок влияет и на различные вегетативные функции. Эти влияния могут быть возбуждающими и тормозящими. При раздражении мозжечка увеличивается или снижается кровяное давление, изменяется частота сердцебиений, дыхание, пищеварение. Мозжечок влияет на обмен веществ. На эти функции он воздействует через вегетативные нервные центры, координируя их активность с движением. Функции внутренних органов изменяются в связи с изменением обменных процессов в них. Поэтому мозжечок оказывает на них адаптационно-трофическое влияние. 2) Дыханием называется комплекс физиологических процессов, обеспечивающих обмен О2 и СО2 газа между клетками организма и внешней средой. Оно включает следующие этапы:1.Внешнее дыхание или вентиляция.2.Диффузия газов в легких. 3.Транспорт газов кровью.4.Диффузия газов в тканях. Обмен газов между кровью капилляров и внутриклеточной жидкостью.5.Клеточное дыхание. Поглощение О2 и образование СО2 в клетках. Внешнее дыхание осущ. в результате ритмических движений грудной клетки. Дыхательный цикл состоит из фаз вдоха (inspiratio) и выдоха (exspiratio), между которыми отсутствует пауза. В покое у взрослого человека ЧДД 16-20 в минуту. Вдох это активный процесс. При спокойном вдохе сокращаются наружные межреберные и межхрящевые мышцы. Они приподнимают ребра, а грудина отодвигается вперед. Сокращаются мышцы диафрагмы. Ее купол опускается, и органы брюшной полости сдвигаются вниз, в стороны и вперед. За счет этого грудная полость увеличивается и в вертикальном направлении. После окончания вдоха дыхательные мышцы расслабляются. Начинается выдох. Спокойный выдох пассивный процесс. Во время него происходит возвращение грудной клетки в исходное состояние. Это происходит под действием ее собственного веса, натянутого связочного аппарата и давления на диафрагму органов брюшной полости. При физической нагрузке, патологических состояниях, сопровожд. одышкой (туберкулез легких.) возникает форсированное дыхание. В акт вдоха и выдоха вовлекаются вспомогательные мышцы. Они способствуют дополнит. поднятию ребер. Различают грудной и брюшной тип дыхания. При грудном, дыхание в основном осуществляется за счет межреберных мышц, при брюшном за счет мышц диафрагмы. Грудной или реберный тип дыхания характерен для женщин. Брюшной для мужчин. Физиологически более выгоден брюшной тип, так как он осуществляется с меньшей затратой энергии. Иногда встречается смешанный тип дыхания. 3) В процессе эволюции вкус формировался как механизм выбора или отвергания пищи. В естественных условиях вкусовые ощущения комбинируются с обонятельными, тактильными и термическими, также создаваемыми пищей.. |