Главная страница
Навигация по странице:

  • СТРОЕНИЕ И РАЗМНОЖЕНИЕ БАКТЕРИЙ

  • СТРОЕНИЕ И РАЗМНОЖЕНИЕ ВИРУСОВ

  • ВЗАИМОДЕЙСТВИЕ ФАГА С БАКТЕРИАЛЬНОЙ КЛЕТКОЙ

  • Шпоры по ветеринарной генетике. 1. Предмет и методы генетики


    Скачать 1.02 Mb.
    Название1. Предмет и методы генетики
    АнкорШпоры по ветеринарной генетике.doc
    Дата27.04.2017
    Размер1.02 Mb.
    Формат файлаdoc
    Имя файлаШпоры по ветеринарной генетике.doc
    ТипДокументы
    #5991
    КатегорияМедицина
    страница20 из 27
    1   ...   16   17   18   19   20   21   22   23   ...   27

    65. Лизогения и лизогенное состояние клеток


    ВЗАИМОДЕЙСТВИЕ ФАГА С БАКТЕРИАЛЬНОЙ КЛЕТКОЙ

    К клеточной стенке бактерий фаги прикрепляются концевы­ми нитями отростков. Затем оболочка бактерии растворяется с помощью фермента лизоцима, белковый чехол хвостового от­ростка сокращается и через канал хвостового отростка нуклеино­вая кислота вводится (впрыскивается) в цитоплазму клетки. После проникновения нуклеиновой кислоты внутрь клетки бак­терии следует Си-фаза, или фаза смены информации. В этот период фаговые частицы не обнаруживаются, однако в клетке развиваются процессы, обусловленные фаговым геномом. Начи­нается синтез иРНК и ранних белков, необходимых для синтеза ДНК фага и других структурных компонентов зрелого фага. Син­тез ДНК фага осуществляется с помощью клеточной ДНК-поли-меразы и сопровождается полным распадом ДНК бактерии и ее утилизацией. Если ДНК бактерии не хватает, фаговая ДНК син­тезируется из компонентов среды. ДНК фага можно обнаружить в клетке через 8—9 мин после заражения. С 9-й минуты начина­ют синтезироваться специфичные фаговые белки. На последнем

    этапе взаимодействия фага с бактерией происходит самосборка фаговых частиц, которая состоит в необратимом объединении фаговой ДНК и сформировавшейся белковой оболочки. После этого происходит лизис бактерии и зрелые фаги выходят в окру­жающую среду. Полный цикл развития фага составляет 30— 90 мин. За этот период образуется 200 и более фаговых частиц, которые способны заражать новые клетки.

    По характеру взаимодействия с клеткой бактерии бактериофа­ги делятся на вирулентные и умеренные. Вирулентные фаги всег­да лизируют клетку бактерии. Умеренные фаги могут вызвать лизис клетки бактерии, но могут перейти и в неинфекционную форму. В этом случае молекула ДНК фага прикрепляется к ДНК бактерии и передается с нею дочерним клеткам. Фаг, существую­щий в такой форме, называется профагом. Сравнительно недавно стало известно, что включение вирусной ДНК в бактериальную происходит путем кроссинговера между хромосомами бактерии и вируса. Хромосома вируса принимает кольцевую форму и при­крепляется к определенному локусу хромосомы бактерии. Затем хромосомы бактерии и вируса разрываются, концы их соединя­ются крест-накрест и профаг оказывается включенным в хромо­сому клетки хозяина. В этом случае профаг является как бы частью ДНК бактерии и вместе с ней реплицируется. Клетки бактерии, имеющие в своей хромосоме профаг, называются лизо-генными, а явление совместного существования ДНК бактерии и профага называется лизогенией.

    Профаг может сосуществовать с бактериальной клеткой дли­тельное время, но при определенных условиях может отделиться от ДНК бактерии, перейти в вирулентную форму и вызвать лизис бактериальной клетки с помощью фермента лизоцима. Освобождение хромосомы вируса происходит один раз прибли­зительно на 10 000 делений лизогенной бактерии. РНК-вирусы, так же как и ДНК-вирусы, могут вызывать лизогенное состояние клеток бактерий. Установлено, что на РНК вируса может синте­зироваться комплементарная ей ДНК. На ней синтезируется вто­рая цепь ДНК. Таким образом, образуется полноценная молеку­ла ДНК, способная соединиться с ДНК клетки хозяина. В каче­стве провируса эта ДНК может передаваться потомству, и вызываемая данным вирусом болезнь может стать как бы наслед­ственной. Наличие профага в составе бактериальной хромосомы не мешает репликации ДНК бактерии. Однако гены профага, встроенные в ДНК клетки, не транскрибируются. Это связано с образованием в клетке бактерии репрессора — низкомолекулярно­го белка, блокирующего считывание наследственной информа­ции, записанной в фаговой ДНК. Умеренные фаги могут быть дефектными, т. е. не способными к образованию зрелых фаго­вых частиц. Такие фаги осуществляют трансдукцию и использу­ются в генной инженерии.

    61. Обмен генетической информацией у прокариот

    67. Строение бактерий и вирусов

    68.Понятие о профаге и лизогении у бактерий


    СТРОЕНИЕ И РАЗМНОЖЕНИЕ БАКТЕРИЙ

    Химический состав клеток бактерий в основном такой же, как и клеток высокоорганизованных организмов. Клетки бактерий окружены оболочкой, внутри которой находятся цитоплазма, ядерный аппарат, рибосомы, ферменты и другие включения. В отличие от клеток эукариот у них отсутствуют митохондрии, аппарат Гольджи и эндоплазматическая сеть. В центральной части цитоплазмы бактерий расположены ядерный аппарат — нуклеоид и плазмиды. Ядро прокариот называется нуклеоидом потому, что оно в отличие от эукариот не изолировано от цито-плазмы мембраной и представлено одной очень длинной молеку­лой ДНК (хромосомой). Хромосома бактерии Е. coli включает около 5-Ю6 пар оснований, имеет относительную молекулярную массу 3-Ю9 Д. В хромосоме кишечной палочки ДНК замкнута в кольцо и состоит из дискретно расположенных генов. Длина вытянутой молекулы ДНК в расправленном состоянии достигает 1 мм, что значительно превышает среднюю длину самой бакте­рии. ДНК бактерий по своему строению не отличается от ДНК высших организмов.

    Кроме нуклеоида в цитоплазме большинства бактерий содер­жатся так называемые внехромосомные факторы, получившие название плазмид. Плазмиды представляют собой кольцевые моле­кулы ДНК, обладают свойствами репликона — могут реплициро­ваться с помощью ферментов клетки бактерии независимо от основной хромосомы. Плазмида включает последовательность из одного или нескольких генов. У некоторых видов бактерий обна­ружены факторы резистентности к лекарственным веществам — R-факторы. К другому типу плазмид относятся колициногенные факторы. Колициногены включают гены, которые обусловлива­ют синтез особых белковых веществ — колицинов. Колицины даже в низких концентрациях способны убивать бактерий того же вида, не имеющих соответствующего колициногена. Клетки, включающие колициноген, иммунны к соответствующему коли-цину. Плазмиды реплицируются в цитоплазме автономно и пере­даются при делении дочерним клеткам.

    При размножении клетки бактерии наиболее ответственным является процесс воспроизведения нуклеоида. В нуклеоиде ДНК суперспирализована и плотно уложена. Электронно-микроскопи-' ческое исследование показало, что один конец ДНК прикреплен к клеточной мембране. Связь с клеточной мембраной, по-види­мому, необходима как для процесса репликации ДНК, так и для четкого разделения вновь образовавшихся дочерних молекул ДНК. Репликация ДНК у микроорганизмов происходит так же, как и у высших организмов, — полуконсервативным способом. В репликации участвуют ферменты гДНК-полимеразы. Непрерыв­ная репликация в направлении 5->3' идет только на одной из комплементарных цепей. Она называется лидирующей. На вто­рой цепи г(запаздывающей) синтез ДНК идет также в направле­нии 5'-»3', но на коротких фрагментах Оказаки. Каждый фраг­мент инициируется коротким полирибонуклеотидом. Эти РНК служат затравкой для дальнейшего роста цепи ДНК. Затем РНК удаляется, брешь заполняется при помощи ДНК-полймеразы и фрагменты Оказаки соединяются при помощи ферментов лигаз.

    К моменту завершения цикла репликации ДНК точки при­крепления дочерних ДНК отодвигаются благодаря активному росту участка бактериальной мембраны между ними. В результа-

    те сложного комплекса процессов образуется межклеточная перегородка. В период репликации ДНК и образования перего­родки клетка непрерывно растет, идет формирование рибосом и других соединений. На определенной стадии дочерние клетки отделяются друг от друга. Каждая дочерняя клетка имеет такой же набор генетической информации, какой был в исходной бак­териальной клетке.

    СТРОЕНИЕ И РАЗМНОЖЕНИЕ ВИРУСОВ

    Вирусы относятся к микроорганизмам, хотя резко отличаются от всех известных клеточных форм жизни. Частицы вирусов очень малы (от 20 до 450 нм). С помощью электронного микро­скопа обнаружено, что они имеют палочковидную, шарообраз­ную, а в большинстве случаев многогранную форму. Строение частицы вируса намного проще, чем клетки любого организма. Вирусная частица содержит одну из нуклеиновых кислот (ДНК или РНК), которая окружена белковой оболочкой (капсидом). Геном вирусов представлен одной из возможных форм нуклеи­новых кислот: двухцепочной или одноцепочной ДНК, одноце-почной или двухцепочной РНК. Молекулярная масса вирусных нуклеиновых кислот колеблется в широких пределах: у ДНК-со-держащих вирусов от 1,5-106 до 1,6-10*, у РНК-содержащих виру­сов от 1,6-106 до 9,0-106. Молекулы нуклеиновых кислот могут быть линейными и кольцевыми.

    Вирусы репродуцируются только внутри клетки какого-то орга­низма и используют для этого ее ферментные системы и другие необходимые компоненты. Круг хозяев для определенного вируса может быть ограничен. Вирусы могут инфицировать одноклеточ­ные микроорганизмы — микоплазмы, бактерии и водоросли, а также клетки высших растений и животных.

    К настоящему времени с генетической точки зрения лучше всего изучены вирусы, паразитирующие в бактериях. Их называ­ют бактериофагами. Всюду, где размножаются бактерии, обнару­живаются и паразитирующие в них фаги. Они находятся в ки­шечнике человека и животных, в сточных водах, почве. Разные фаги имеют различную форму частиц. Наиболее изучены фаги, паразитирующие на штамме В Е. coli (колифаги). Колифаги ну­меруются от Т1 до Т7. Фаги Т-четной группы состоят из головки гексагональной формы и хвостового отростка (рис. 22). В голов­ке плотно упакована ДНК, окруженная белковой оболочкой. Хвостовой отросток состоит из полого стержня диаметром около 2,5 нм, окруженного чехлом, способным к сокращению. Один конец стержня прикреплен к головке, другой — к шестиугольной базальной пластинке, от которой отходят короткие зубцы с длинными нитями на концах. У Т-четных фагов ДНК включает примерно 200 тыс. пар нуклеотидов, образующих около 100 генов. Ее Длина 34 мкм, что в сотни раз превышает длину головки. Размер фага с конца хвостового отростка до вершины головки равен около 200 нм, ширина головки 50—60 нм.

    ВЗАИМОДЕЙСТВИЕ ФАГА С БАКТЕРИАЛЬНОЙ КЛЕТКОЙ

    К клеточной стенке бактерий фаги прикрепляются концевы­ми нитями отростков. Затем оболочка бактерии растворяется с помощью фермента лизоцима, белковый чехол хвостового от­ростка сокращается и через канал хвостового отростка нуклеино­вая кислота вводится (впрыскивается) в цитоплазму клетки. После проникновения нуклеиновой кислоты внутрь клетки бак­терии следует Си-фаза, или фаза смены информации. В этот период фаговые частицы не обнаруживаются, однако в клетке развиваются процессы, обусловленные фаговым геномом. Начи­нается синтез иРНК и ранних белков, необходимых для синтеза ДНК фага и других структурных компонентов зрелого фага. Син­тез ДНК фага осуществляется с помощью клеточной ДНК-поли-меразы и сопровождается полным распадом ДНК бактерии и ее утилизацией. Если ДНК бактерии не хватает, фаговая ДНК син­тезируется из компонентов среды. ДНК фага можно обнаружить в клетке через 8—9 мин после заражения. С 9-й минуты начина­ют синтезироваться специфичные фаговые белки. На последнем этапе взаимодействия фага с бактерией происходит самосборка фаговых частиц, которая состоит в необратимом объединении фаговой ДНК и сформировавшейся белковой оболочки. После этого происходит лизис бактерии и зрелые фаги выходят в окру­жающую среду. Полный цикл развития фага составляет 30— 90 мин. За этот период образуется 200 и более фаговых частиц, которые способны заражать новые клетки.

    По характеру взаимодействия с клеткой бактерии бактериофа­ги делятся на вирулентные и умеренные. Вирулентные фаги всег­да лизируют клетку бактерии. Умеренные фаги могут вызвать лизис клетки бактерии, но могут перейти и в неинфекционную форму. В этом случае молекула ДНК фага прикрепляется к ДНК бактерии и передается с нею дочерним клеткам. Фаг, существую­щий в такой форме, называется профагом. Сравнительно недавно стало известно, что включение вирусной ДНК в бактериальную происходит путем кроссинговера между хромосомами бактерии и вируса. Хромосома вируса принимает кольцевую форму и при­крепляется к определенному локусу хромосомы бактерии. Затем хромосомы бактерии и вируса разрываются, концы их соединя­ются крест-накрест и профаг оказывается включенным в хромо­сому клетки хозяина. В этом случае профаг является как бы частью ДНК бактерии и вместе с ней реплицируется. Клетки бактерий, имеющие в своей хромосоме профаг, называются лизо-генными, а явление совместного существования ДНК бактерии и профага называется лизогенией.

    Профаг может сосуществовать с бактериальной клеткой дли­тельное время, но при определенных условиях может отделиться от ДНК бактерии, перейти в вирулентную форму и вызвать лизис бактериальной клетки с помощью фермента лизоцима. Освобождение хромосомы вируса происходит один раз прибли­зительно на 10 000 делений лизогенной бактерии. РНК-вирусы, так же как и ДНК-вирусы, могут вызывать лизогенное состояние клеток бактерий. Установлено, что на РНК вируса может синте­зироваться комплементарная ей ДНК. На ней синтезируется вто­рая цепь ДНК. Таким образом, образуется полноценная молеку­ла ДНК, способная соединиться с ДНК клетки хозяина. В каче­стве провируса эта ДНК может передаваться потомству, и вызываемая данным вирусом болезнь может стать как бы наслед­ственной. Наличие профага в составе бактериальной хромосомы не мешает репликации ДНК бактерии. Однако гены профага, встроенные в ДНК клетки, не транскрибируются. Это связано с образованием в клетке бактерии репрессора — низкомолекулярно­го белка, блокирующего считывание наследственной информа­ции, записанной в фаговой ДНК. Умеренные фаги могут быть дефектными, т. е. не способными к образованию зрелых фаго­вых частиц. Такие фаги осуществляют трансдукцию и использу­ются в генной инженерии.
    1   ...   16   17   18   19   20   21   22   23   ...   27


    написать администратору сайта