Главная страница
Навигация по странице:

  • 165. В основу физиологических норм питания

  • 166. Терморегуляция. Механизмы теплопродукции и теплоотдачи.

  • «установочную точку»

  • ответы на физиологию. 1. Современные представления о строении и функции мембран


    Скачать 0.69 Mb.
    Название1. Современные представления о строении и функции мембран
    Анкорответы на физиологию
    Дата03.02.2023
    Размер0.69 Mb.
    Формат файлаdocx
    Имя файлаOtvety_na_ekzamenatsionnye_voprosy.docx
    ТипДокументы
    #919168
    страница33 из 35
    1   ...   27   28   29   30   31   32   33   34   35

    164.Водно-солевой обмен. Поддержание водно- солевого баланса в организме.

    Водно-солевой обмен - совокупность процессов поступления воды и электролитов в организм, распределение их во внутренней среде и выделение из организма. Жизнедеятельность биологических систем требует равновесия( баланса), общего поступления веществ и энергии с общим их выведением из системы. Наличие у большинства живых систем основного циркадного ритма обуславливает баланс основных веществ и энергии во временном промежутке, равном 24 часа. Отсутствие в системе равенства суточного поступления и выведения веществ позволяет говорить о нарушении баланса или дисбалансе – основном признаке нарушения гомеостазиса. При этом обычно выделяют два полярных состояния- положительный баланс( когда поступление веществ вместе с его эндогенным образование превышает выведение из системы) и отрицательный баланс( выведение превышает сумму поступления и образования).

    Выделяют:

    1.Водный баланс – равенство объемов выделяющейся из организма ипоступающей за сутки воды.

    2. Электролитный баланс – (Na,K,Ca и т.д.)

    Возмущающее воздействия ( колебание температуры среды; изменение физической активности; изменение характера питания)- приводят к изменению отдельных показателей.

    Водный баланс

    Таблица 14.2. Средние величины параметров внешнего водного баланса организма человека

    H2O- важнейший неорганический компонент организма, обеспечивающий связь внешней и внутренней среды, транспорт веществ между клетками и органами.

    Общее колличество воды в организме -44-70% массы тела, примерно 38-42 литра. В тканях – от 10 %( жировая ткани) до 83-90% в почках и крови.

    Вода в организме образует водные пространства:

    1 внутриклеточные пространства(2/3 общей воды)

    2. Внеклеточное пространство(1/3)

    3.Вода полостей тела ( при патологии – в брюшной, плевральной)

    Внеклеточное пространство:

    А) внутрисосудистый сектор - плазма крови- 4-5% от массы тела

    Б) Интерстициальный сектор -15% от массы тела( максимально подвижный объем при избытке или недостатке воды).

    Вода вся обновляется за месяц. Внеклеточная- за неделю. Увеличение поступления воды- гипергидратация – накапливается в интерстициальном секторе. При водной интоксикации( понижается осмотическое давление в интерстиции, происходит набухание клеток, их осмотическое давление понижается, начинается возбуждение нервных центров и как следствие- судороги). Понижение воды в интерстиции, как следствие сгущение крови и нарушение гемодинамики. Потеря 20% воды от массы тела приводит к смерти.

    Регуляция водного баланса происходит:

    1 за счет процессов и механизмов поддерживающих постоянтво объема жидкости в организме.

    2 за счет оптимального распределения воды между водными пространствами и секторами организма.

    Водный баланс тесно связан с обменом электролитов.

    Электролитный баланс

    Суммарная концентрация ионов формирует осмотическое давление, определяет функциональное состояние возбудимых тканей: проницаемость биомембран и др. так как синтез минеральных веществ ворганизме не идет, в организм они попадают только с пищей.

    165. В основу физиологических норм питания положены дифференцированные подходы в зависимости от профессиональной деятельности, т. е. энергетических трат, возраста, пола, физиологического состояния и климатических условий проживания. Физиологические нормы питания строятся исходя из энергетических трат населения.

    По энергетическим тратам все трудоспособное население делится на 5 групп.

    5 групп интенсивности труда

    К первой группе относятся преимущественно работники умственного труда, руководители предприятий, инженерно-технические работники, медицинские работники, кроме врачей-хирургов, медицинских сестер и санитарок. К этой группе относятся также воспитатели и педагоги. Энергетические траты этой группы находятся в пределах от 2550 до 2800 ккал. Эта группа подразделяется на три возрастных подгруппы. Выделяются группы 18—29 лет, 30—39 лет и 40—59 лет.

    Вторая группа населения по интенсивности труда представлена работниками, занятыми легким физическим трудом. Это инженерно-технические работники, труд которых связан с некоторыми физическими усилиями, работники радиоэлектронной, часовой промышленности, связи и телеграфа, сферы обслуживания, обслуживающие автоматизированные процессы, агрономы, зоотехники, медсестры и санитарки. Энергетические затраты второй группы составляют 2750—3000 ккал. Эта группа, как первая, делится на 3 возрастные категории.

    Третья группа населения по интенсивности труда представлена работниками, занятыми средним по тяжести трудом. Это слесари, токари, наладчики, химики, водители средств транспорта, водники, текстильщики, железнодорожники, врачи-хирурги, полиграфисты, бригадиры тракторных и полеводческих бригад, продавцы продовольственных магазинов и др. Энергетические траты этой группы составляют 2950—3200 ккал.

    К четвертой группе относятся работники тяжелого физического труда – работники-механизаторы, сельскохозяйственные работники, работники газодобывающей и нефтяной промышленности, металлурги и литейщики, работники деревообрабатывающей промышленности, плотники и другие. Для них энергозатраты составляют 3350—3700 ккал.

    Пятая группа – работники, занятые особо тяжелым физическим трудом: работники подземных шахт, отбойщики, каменщики, вальщики леса, сталевары, землекопы, грузчики, бетонщики, труд которых немеханизирован, и др. В эту группу входят представители только мужского пола, так как законодательством запрещается женская работа с такой интенсивностью труда. Это особо тяжелый физический труд, потому энергозатраты здесь находятся в пределах от 3900 до 4300 ккал.

    Существуют физиологические нормы питания детей.

    В целом для взрослого трудоспособного населения потребности в белках составляют в среднем 100—120 г ± 10 %. Такие же потребности взрослого организма в жирах – от 80 до 150 г и потребности в углеводах – 350—600 г в сутки.

    В зависимости от энергетических трат и условий труда физиологические нормы питания предусматривают необходимый уровень обеспечения организма витаминами, минеральными солями, макро– и микроэлементами.

    Принципы составления пищевых рационов 

    Питание должно соответствовать потребностям организма в пластических веществах и энергии, минеральных солях, витаминах и воде, обеспечивать нормальную жизнедеятельность, хорошее самочувствие, высокую работоспособность, сопротивляемость инфекциям, рост и развитие организма.
    Исходя из концепции рационального сбалансированного питания, разработанной А.А. Покровским и другими учеными при составлении пищевого рациона (т.е. количества и состава продуктов питания, необходимых человеку в сутки) следует соблюдать ряд принципов:

    1. Калорийность пищевого рациона должна соответствовать энергетическим затратам организма на все виды жизнедеятельности.

    2. Необходимо учитывать питательную ценность пищевых веществ. В пищевом рационе должно содержаться оптимальное для данного индивидуума или профессиональной группы количество белков, жиров и углеводов, минеральных веществ, витаминов и воды.

    3. Требуется соблюдать сбалансированность в пищевом рационе количества белков, жиров, углеводов и минеральных веществ.

    4. Важно правильное распределение калорийности рациона по отдельным приемам пищи в течение суток в соответствии с биоритмами, режимом и характером труда и иных видов деятельности.

    5. Применение методов технологической обработки, обеспечивающей удаление вредных веществ, не вызывающих уменьшение биологической ценности пищи, а также не допускающей образования токсических продуктов.

    6. Обеспечение органолептических достоинств пищи, способствующих её перевариванию и усвоению.

    7. Наличие в пищевом рационе пищевых волокон, способствующих выведению токсических продуктов распада из организма.

    Несоблюдение принципов рационального питания приводит к различным нарушениям обмена веществ организма, его устойчивости к повреждающим воздействиям.

    Принимаемая пища должна с учетом ее усвояемости восполнять энергетические затраты человека на основной обмен, на специфическое динамическое действие пищи и расхода на выполняемую работу.
    Калорийность пищевого рациона = Общим энерготратам за сутки + 10% ОО на неполное усвоение пищевых веществ.

    При составлении пищевого рациона нормы питания являются рекомендациями величины потребления основных пищевых веществ и энергии для различных контингентов населения нашей страны. Они дают научную базу для оценки фактического питания, являются основой построения рационального питания.

    У женщин всех профессиональных и возрастных групп потребность в пищевых веществах (кроме железа) и энергии в среднем на 15% ниже, чем у мужчин.
    Важнейшим принципом сбалансированного питания является определение правильного и обоснованного соотношения основных пищевых и биологически активных веществ – белков, жиров, углеводов, витаминов и минеральных элементов в зависимости от пола, возраста, характера трудовой деятельности и общего жизненного уклада. Баланс нутриентов в питании детей существенно отличается от такового у взрослых.

    Желательно принимать пищу четырехкратно и в одно и то же время суток в зависимости от режима дня. Это позволяет выработать условные рефлексы на время, что в свою очередь, обеспечивает готовность организма к приему пищи. Интервал между завтраком и обедом, обедом и ужином должен составлять не более 5-6 часов, а между ужином и временем отхода ко сну – не менее 1,5 - 2 часов.
    Первый завтрак должен содержать около 15-20% всего суточного рациона, быть преимущественно углеводным, легко усвояемым;
    через 3-3,5 часа второй – 25-30%, белково-углеводный, примерно половина суточных жиров;
    через 4-4,5 часа: обед – 35-40%, белково-углеводный и оставшаяся часть жиров;
    через 2-3 часа, ужин – 15-20%, наиболее усвояемые источники белков и углеводов (кисломолочные продукты, злаковые).

    166. Терморегуляция. Механизмы теплопродукции и теплоотдачи.

    Суммарная теплопродукция (теплообразование) в организме состоит из первичной и вторичной теплоты. Первичная теплота выделяется в ходе постоянно протекающих во всех органах и тканях реакций обмена веществ. Вторичная теплота образуется при расходовании энергии макроэргических соединений на выполнение человеком определенной мышечной работы. Уровень теплообразования в организме зависит от величины основного обмена, «специфически динамического действия» принимаемой пищи, мышечной активности и интенсивности метаболизма в тканях. 

    Метаболические процессы осуществляются с неодинаковой интенсивностью в различных органах и тканях, поэтому вклад в общую теплопродукцию организма отдельных органов и тканей неравнозначен. Наибольшее количество тепла образуется в скелетных мышцах при их тоническом напряжении или сокращении. Образование тепла, наблюдающееся в мышцах при этих условиях, получило название сократительного термогенеза (сократительной теплопродукции), который является наиболее значимым механизмом теплообразования у взрослого человека. 
    У новорожденных, а также у мелких млекопитающих животных имеется механизм ускоренного теплообразования за счет возрастания метаболической активности в других тканях и, прежде всего, в буром жире. Бурую окраску этой ткани придаст большое количество окончаний симпатических нейронов, содержащих медиатор норадреналин. В условиях холодового воздействия на организм под влиянием выделяющегося из симпатических нервных окончаний норадреналина происходит интенсивное окисление жирных кислот. Бурый жир характеризуется избытком митохондрий, которые окружают мелкие капельки жира в цитоплазме. Окисление жирных кислот в митохондриях бурой жировой ткани осуществляется без значимого синтеза макроэргов и, таким образом, с максимально возможным образованием теплоты. Этот механизм получил название несократителъного термогенеза (несократительной теплопродукции). Посредством механизмов несократителъного термогенеза уровень теплопродукции у человека может быть увеличен примерно в три раза по сравнению с уровнем основного обмена. 

    Теплоотдача 
    Существуют следующие пути отдачи тепла организмом в окружающую среду: излучение, теплопроведение, конвекция и испарение.  Излучение — это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5—20 мкм). Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения и разности средних значений температур кожи и окружающей среды. Площадь поверхности излучения — это суммарная площадь поверхности тех частей тела, которые соприкасаются с воздухом. При температуре окружающей среды 20 °С и относительной влажности воздуха 40—60 % организм взрослого человека рассеивает путем излучения около 40—50 % всего отдаваемого тепла. Теплоотдача путем излучения возрастает при понижении температуры окружающей среды и уменьшается при ее повышении. В условиях постоянной температуры окружающей среды излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при ее понижении. Если средние температуры поверхности кожи и окружающей среды выравниваются (разность температур становится равной нулю), отдача тепла излучением становится невозможной. Снизить теплоотдачу организма излучением можно за счет уменьшения площади поверхности излучения («сворачивания тела в клубок»). Если температура окружающей среды превышает среднюю температуру кожи, тело человека, поглощая инфракрасные лучи, излучаемые окружающими предметами, согревается. 

    Теплопроведение — способ отдачи тепла, имеющий место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами. Использование одежды из тканей, содержащих большое число маленьких неподвижных «пузырьков» воздуха между волокнами (например, шерстяные ткани), дает возможность организму человека уменьшить рассеяние тепла путем теплопроводности. Влажный, насыщенный водяными парами воздух, вода характеризуются высокой теплопроводностью. Если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло излучением, конвекцией и теплопроведением. Организм в этих условиях начинает поглощать тепло извне, и единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остается меньше 100 %.

    Конвекция — способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность — 40—60 %, тело взрослого человека рассеивает в окружающую среду путем теплопроведения и конвекции около 25—30 % тепла (базисная конвекция). При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция). Отдача тепла организмом путем теплопроведения, конвекции и излучения, называемых вместе «сухой» теплоотдачей, становится неэффективной при выравнивании средних температур поверхности тела и окружающей среды. 

    Теплоотдача путем испарения — это способ рассеяния организмом тепла в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и влаги со слизистых оболочек дыхательных путей
    («влажная» теплоотдача). У человека постоянно осуществляется выделение пота потовыми железами кожи.

    167. Функциональная характеристика системы, поддерживающеё постоянство темпертуры тела: афферентное, центральное и эфферентное звено системы терморегуляции. Понятие об установочной точке температуры тела

    Восприятие организмом температурных воздействий (терморецепция)

    Изменение температуры внутренней среды («ядра») и поверхностных отделов («оболочки») тела человека воспринимается организмом с помощью терморецепторов. Температурная рецепция осуществляется окончаниями тонких чувствительных нервных волокон типа С и А, которые представлены в коже, слизистых оболочках, мышцах, сосудах, во внутренних органах (периферические терморецепторы). Холодо- и теплочувствительные нейроны располагаются в медиальной преоптической области переднего гипоталамуса (центральные терморецепторы).Из внешней среды - с помощью терморецепторов кожи и слизистых оболочек, среди которых имеются холодовые рецепторы (повышают частоту передачи нервных импульсов по афферентным нервным волокнам к терморегуляторному центру при их охлаждении и снижают эту частоту при их нагревании) и тепловые рецепторы (реагируют на изменение температуры тела противоположным образом). В коже и на слизистых оболочках человека больше Холодовых рецепторов (около 250 000), чем тепловых (около 30 000). Кроме того, холодовые рецепторы кожи расположены более поверхностно, на глубине 0,17 мм, а тепловые — более глубоко, на глубине 0,3 мм. Эта особенность расположения терморецепторов обусловливает более раннее восприятие организмом человека холода, чем тепла. Другая особенность терморецепторов — их неравномерное распределение в коже по площади, что определяет различный уровень чувствительности к холоду и теплу разных участков тела. Наибольшей чувствительностью обладает кожа лица, наименьшей — кожа нижних конечностей. Афферентный поток нервных импульсов от периферических терморецепторов поступает через задние корешки спинного мозга к вставочным нейронам задних рогов. Затем по спиноталамическому тракту этот поток импульсов достигает передних ядер таламуса и далее проводится в соматосенсорную кору больших полушарий головного мозга. Поступление нервных импульсов от периферических терморецепторов в соматосенсорную кору обеспечивает возникновение и топическую локализацию субъективных температурных ощущений. На их основе формируются поведенческие терморегуляторные реакции. Значительная часть афферентных импульсов от периферических рецепторов кожи и внутренних органов поступает из спинного мозга по волокнам спиноталамического тракта к нейронам гипоталамического центра терморегуляции.

    Центральное звено системы терморегуляции

    Регуляция теплообмена, а, следовательно, и температуры тела человека осуществляется центром терморегуляции, который расположен в медиальной преоптической области переднего отдела гипоталамуса и в заднем отделе гипоталамуса. В терморегуляторном центре гипоталамуса обнаружены различные по функциям группы нервных клеток: 1) термочувствительные нейроны преоптической области; 2) клетки, «задающие» уровень поддерживаемой в организме температуры тела («установочная точка» терморегуляции) в переднем гипоталамусе; 3) вставочные нейроны (интернейроны) гипоталамуса; 4) эффекторные нейроны, управляющие процессами теплопродукции и теплоотдачи, в заднем гипоталамусе.

    Термочувствительные нервные клетки преоптической области гипоталамуса непосредственно «измеряют» температуру артериальной крови, протекающей через мозг, и обладают высокой чувствительностью к температурным изменениям. Отношение холодо- и теплочувствительных нейронов в гипоталамусе составляет 1:6, поэтому центральные терморецепторы преимущественно активируются при повышении температуры «ядра» тела человека. На основе анализа и интеграции информации о значении температуры крови и периферических тканей, в преоптической области гипоталамуса непрерывно определяется среднее (интегральное) значение температуры тела. Эти данные передаются через вставочные нейроны в группу нейронов переднего отдела гипоталамуса, задающих в организме определенный уровень температуры тела — «установочную точку» терморегуляции. На основе анализа и сравнений значений средней температуры тела и заданной величины температуры, подлежащей регулированию, механизмы «установочной точки» через эффекторные нейроны заднего гипоталамуса воздействуют на процессы теплоотдачи или теплопродукции, чтобы привести в соответствие фактическую и заданную температуру. Таким образом, за счет функции центра терморегуляции устанавливается равновесие между теплопродукцией и теплоотдачей, позволяющее поддерживать температуру тела в оптимальных для жизнедеятельности организма пределах. В механизме формирования «установочной точки» имеет значение уровень спонтанной активности вставочных нейронов гипоталамуса, зависит от соотношения концентрации ионов натрия и кальция в гипоталамусе и некоторых других нетемпературных факторов.

    Эффекторное (исполнительное) звено системы терморегуляции

    Система терморегуляции не имеет собственных специфических эффекторных органов, она использует эффекторные пути других физиологических систем (сердечно-сосудистой, дыхательной, скелетной мускулатуры, выделительной и др.). Эти эффекторные механизмы усиливают либо ослабляют процессы теплопродукции и теплоотдачи в организме в зависимости от температурных условий окружающей среды. В термонейтральных условиях внешней среды баланс теплопродукции и теплоотдачи в организме человека для поддержания оптимальной температуры тела достигается преимущественно за счет изменения просвета сосудов поверхности тела под влиянием симпатического отдела вегетативной нервной системы. Увеличение симпатического тонуса вызывает сужение кровеносных сосудов, а его снижение — расширение сосудов. Это приводит соответственно к уменьшению или увеличению переноса тепла кровью от «ядра» тела к «оболочке» и его рассеивания во внешнюю среду физическими способами. В условиях высокой внешней температуры для поддержания оптимального температурного баланса в организме человека включения механизма сосудодвигательных реакций может быть недостаточно. Если уровень средней интегральной температуры тела, несмотря на расширение поверхностных сосудов, превышает величину установочной температуры, происходит резкое усиление потоотделения. Эта реакция также контролируется симпатической нервной системой через выделение из окончаний нервных волокон ацетилхолина. Испарение влаги с поверхности тела и поведенческие реакции (например, обмахивание веером, включение вентилятора или кон¬диционера) приобретают в усилении теплоотдачи ведущее значение. В условиях низкой внешней температуры основную роль для поддержания оптимальной температуры тела играет активизация процессов теплопродукции, особенно когда, несмотря на сужение поверхностных сосудов и минимальное потоотделение, уровень средней интегральной температуры тела человека становится ниже, чем величина «установочной точки». Уровень теплопродукции в организме контролируется нейронами заднего отдела гипоталамуса и осуществляется посредством соматических и симпатических нервных волокон, а также при участии ряда гормонов и биологически активных веществ. Так, при увеличении притока афферентных нервных импульсов от холодовых рецепторов кожи в гипоталамус первоначально усиливается сократительный термогенез. Для этого от нейронов дорсомедиальной области гипоталамуса через ядра двигательной системы среднего и продолговатого мозга поток эфферентных нервных импульсов поступает к мотонейронам спинного мозга. Последние осуществляют ритмическую посылку эффекторных нервных импульсов к скелетным мышцам шеи, туловища, проксимальных отделов конечностей. Первоначально это проявляется в увеличении амплитуды и частоты электромиографической активности этих мышц, росте их тонического напряжения, однако видимых сокращений данные мышцы при этом не совершает. При этом в терморегуляционный тонус последовательно вовлекаются мышцы подбородка, шеи, верхнего плечевого пояса, туловища, сгибатели конечностей. Повышенный тонус мышц придает телу характерную позу «сворачивание в клубок», которая уменьшает площадь поверхности тела, контактирующей с внешней средой, и снижает интенсивность теплоотдачи. При продолжающемся охлаждении организма, когда начинается снижение его внутренней температуры (температуры «ядра»), повышение тонуса скелетных мышц переходит в качественно новое состояние — возникают непроизвольные периодические сокращения скелетной мускулатуры, получившие название холодовой дрожи. В этом случае совершается сравнительно небольшая механическая работа скелетных мышц, и почти вся их метаболическая энергия освобождается в виде тепла. Скорость метаболизма и теплообразования в мышцах при холодовой дрожи может возрастать в 5 раз по сравнению с метаболизмом и теплообразованием в них в условиях относительного покоя. В условиях холода благодаря активизации симпатической нервной системы через ее медиатор норадреналин стимулируется липолиз в жировой ткани. В кровоток выделяются и в последующем окисляются с образованием большого количества тепла свободные жирные кислоты. Под влиянием норадреналина и адреналина происходит быстрое, но непродолжительное повышение теплопродукции в организме человека. Более продолжительное усиление обменных процессов достигается под влиянием гормонов щитовидной железы — тироксина и трийодтиронина.

    Если, несмотря на активацию обмена веществ, величина теплопродукции организма становится меньше величины теплоотдачи, возникает понижение температуры тела, получившее название гипотермии. Противоположное состояние организма, сопровождающееся повышением температуры тела,— гипертермия, имеет место в том случае, когда интенсивность теплопродукции превышает способность организма отдавать тепло в окружающую среду посредством имеющихся у него способов теплоотдачи.

    1   ...   27   28   29   30   31   32   33   34   35


    написать администратору сайта