ответы на физиологию. 1. Современные представления о строении и функции мембран
Скачать 0.69 Mb.
|
135. Легочные объемы и емкости, методы их измерения (спирометрия, спирография, пневмотахография, пикфлуометрия, интегральная плетизмография) В физиологии дыхания принятая единая номенклатура легочных объемов у человека, которые заполняют легкие при спокойном и глубоком дыхании в фазу вдоха и выдоха дыхательного цикла. Легочный объем, который вдыхается или выдыхается человеком при спокойном дыхании, называется дыхательным объемом. Его величина при спокойном дыхании составляет в среднем 500 мл. Максимальное количество воздуха, которое может вдохнуть человек сверх дыхательного объема, называется резервным объемом вдоха (в среднем 3000мл). Максимальное количество, воздуха которое может выдохнуть человек после спокойного выдоха, называется резервным объемом выдоха (в среднем 1100 мл). Наконец, количество воздуха, которое остается в легких после максимального выдоха, называется остаточным объемом, его величина равна 1200 мл. Сумма величин двух легочных объемов и более называется легочной емкостью. Объем воздуха в легких человека характеризуется инспираторной емкостью легких, жизненной емкостью легких и функциональной остаточной емкостью легких. Инспираторная емкость легких (3500мл) представляет собой сумму дыхательного объема и резервного объема вдоха. Жизненная емкость легких (4600 мл) включает в себя дыхательный объем и резервные объемы вдоха и выдоха. Функциональная остаточная емкость легких (1600мл) представляет собой сумму резервного объема выдоха и остаточного объема легких. Сумма жизненной емкости легких и остаточного объема называется общей емкостью легких, величина которой у человека в среднем равна 5700мл. При вдохе легкие человека за счет сокращения диафрагмы и наружных межреберных мышц начинают увеличивать свой объем с уровня функциональной остаточной емкости, и его величина при спокойном дыхании составляет дыхательный объем, а при глубоком дыхании – достигает различных величин резервного объема вдоха. При выдохе объем легких вновь возвращается к исходному уровню функциональной остаточной емкости, что имеет место при глубоком дыхании, а также при кашле и чиханье, то выдох осуществляется за счет сокращения мышц брюшной стенки. В этом случае величина внутриплеврального давления, как правило, становится выше атмосферного давления, что обуславливает наибольшую скорость потока воздуха в дыхательных путях. Спирометрия - измерение объемов и емкостей легких без графической регистрации результатов. Приборы закрытого типа, работа которых основана на прямом определении объема выдыхаемого воздуха (например, спирометр Гетчинсона), позволяют измерить жизненную емкость легких (ЖЕЛ) и форсированную жизненную емкость легких (ФЖЕЛ). Спирография - метод исследования функции легких путем графической регистрации во времени изменений их объема при дыхании. С помощью спирографии определяют число дыханий в 1 мин (частота дыхания, ЧД); объем воздуха, поступающего в легкие в течение одного вдоха (дыхательный объем, ДО); объем воздуха, поступающего в легкие за 1 мин (минутный объем дыхания, МОД); объем кислорода, потребляемого организмом в течение 1 мин; объем кислорода, потребляемого организмом из 1 л поступающего в легкие воздуха (коэффициент использования кислорода, КИО2); максимальный объем воздуха, выдыхаемого из легких при спокойном выдохе после максимального глубокого вдоха (жизненная емкость легких, ЖЕЛ), максимальный объем воздуха, выдыхаемого из легких при форсированном выдохе после максимально глубокого вдоха (форсированная жизненная емкость легких, ФЖЕЛ); максимальный объем воздуха, поступающего в легкие при спокойном вдохе после максимально глубокого выдоха (жизненная емкость легких на вдохе, ЖЕЛвд Пневмотахография — непрерывная регистрация объемной скорости потока вдыхаемого и выдыхаемого воздуха при спокойном и форсированном дыхании. Применяется в сочетании с определением объема вдоха и выдоха, альвеолярного и транспульмонального давления. При правильном выполнении обследуемым форсированного выдоха кривая «поток — объем» позволяет объективно оценить состояние бронхиальной проходимости, диагностировать бронхиальную обструкцию, в т.ч. ее начальные проявления, что дает возможность выявить бронхолегочные заболевания на доклинической стадии развития. Пикфлоуметрия - метод определения, с какой скоростью может выдохнуть человек, другими словами это способ оценки степени сужения воздухоносных путей (бронхов). Данный метод обследования важен людям, страдающими затрудненным выдохом, в первую очередь людям с диагнозом бронхиальная астма, и позволяет оценивать эффективность проводимого лечения. Интегральная плетизмография – это регистрации изменений объема всего тела человека, части тела или отдельного органа. 136. Факторы, влияющие на растяжимость легочнй ткани. Благодаря наличию большого количества колагеновых и эластических волокон и силе поверхностного натяжения жидкости в альвеолах легкие обладают большой упругой силой, так называемой эластической тягой.Под действием этой силы они стремятся спасться. Три фактора эластической тяги: 1.Упругость ткани стенок альвеол вследствие наличия в них эластических волокон.2.тонус бронхиальных мышц. 3. Поверхностное натяжение пленки жидкости, покрывающей внутреннюю поверхность альвеол. Отрицательное давление в плевральной щели обусловлено эластической тягой, т.е постоянным стремлением легких уменьшиться в объеме. Внутриплевральное давление возникает в результате взаимодействия грудной клетки с тканью легких за счет их эластической тяги. Эластическая тяга легких развивает усилие, которое всегда стремится уменьшить объем грудной клетки. Сурфактант - вещества липопротеиновой природы, выстилающего изнутри альвеолы в виде пленки. Основная функция сурфактанта - поддержание поверхностного натяжения альвеолы, ее способности к раздуванию при вдохе и противодействие спадению при выдохе. Особенно важна роль сурфактанта при первом вдохе у новорожденного ребенка. Сурфактант препятствует пропотеванию жидкости в просвет альвеол и обладает бактерицидностью. Сурфактант - поверхностно-активное вещество, выстилающее изнутри альвеолы и препятствующее их спадению. Это поверхностно-активное вещество легких представляет собой секрет, обладающий высокими поверхностно-активными свойствами, который препятствует спадению легочных альвеол. Эти свойства сурфактанта объясняются главным образом присутствием в нем фосфолипида дипальмитоилфосфатидилхолина , который образуется в легких доношенного плода непосредственно перед родами . Недостаток этого соединения в легких недоношенных детей является причиной расстройства у них дыхания. Он вырабатывается альвеолоцитами второго типа. 137. Газообмен в легких. Обмен газов между кровью и воздухом относится к основной функции легких. Воздух, поступающий в легкие при вдохе, нагревается и насыщается водяными парами при движении в дыхательных путях и достигает альвеолярного пространства, имея температуру 37 °С. Парциальное давление водяных паров в альвеолярном воздухе при этой температуре составляет 47 мм рт. ст. Поэтому согласно закону парциальных давлений Дальтона вдыхаемый воздух находится в разведенном водяными парами состоянии и парциальное давление кислорода в нем меньше, чем в атмосферном воздухе. Обмен кислорода и углекислого газа в легких происходит в результате разницы парциального давления этих газов в воздухе альвеолярного пространства и их напряжения в крови легочных капилляров. Процесс движения газа из области высокой концентрации в область с низкой его концентрацией обусловлен диффузией. Кровь легочных капилляров отделена от воздуха, заполняющего альвеолы, альвеолярной мембраной, через которую газообмен происходит путем пассивной диффузии. Процесс перехода газов между альвеолярным пространством и кровью легких объясняется диффузионной теорией. Газовый состав альвеолярного воздуха обусловлен альвеолярной вентиляцией и скоростью диффузии 02 и С02 через альвеолярную мембрану. В обычных условиях у человека количество 02, поступающего в единицу времени в альвеолы из атмосферного воздуха, равно количеству 02, диффундирующего из альвеол в кровь легочных капилляров. Равным образом количество С02, поступающего в альвеолы из венозной крови, равно количеству С02, которое выводится из альвеол в атмосферу. Поэтому в норме парциальное давление 02 и С02 в альвеолярном воздухе остается практически постоянным, что поддерживает процесс газообмена между альвеолярным воздухом и кровью капилляров легких. Газовый состав альвеолярного воздуха отличается от атмосферного воздуха тем, что в нем меньше процентное содержание кислорода и выше процент углекислого газа. Состав альвеолярного воздуха отличается от выдыхаемого воздуха большим содержанием углекислого газа и меньшим содержанием кислорода Диффузия газов через альвеолярную мембрану происходит между альвеолярным воздухом и венозной, а также артериальной кровью легочных капилляров. Градиенты парциального давления кислорода и углекислого газа обусловливают процесс пассивной диффузии через альвеолярную мембрану кислорода из альвеол в венозную кровь (градиент 60 мм рт. ст.), а углекислого газа — из венозной крови в альвеолы (градиент 6 мм рт. ст.). Парциальное давление азота по обе стороны альвеолярной мембраны остается постоянным, поскольку этот газ не потребляется и не продуцируется тканями организма. При этом сумма парциального давления всех газов, растворенных в тканях организма, меньше, чем величина атмосферного давления, благодаря чему газы в тканях не находятся в газообразной форме. Если величина атмосферного давления будет меньше, чем парциальное давление газов в тканях и в крови, то газы начинают выделяться из крови в виде пузырьков, вызывая тяжелые нарушения в кровоснабжении тканей организма (кессонная болезнь). Скорость диффузии 02 и С02 в легких Скорость диффузии (M/t) кислорода и углекислого газа через альвеолярную мембрану количественно характеризуется законом диффузии Фика. Согласно этому закону газообмен (M/t) в легких прямо пропорционален градиенту (ДР) концентрации 02 и С02 по обе стороны от альвеолярной мембраны, площади ее поверхности (S), коэффициентам (к) растворимости 02 и С02 в биологических средах альвеолярной мембраны и обратно пропорционален толщине альвеолярной мембраны (L), а также молекулярной массе газов (М). Формула этой зависимости имеет следующий вид: Структура легких образует максимальное по величине поле для диффузии газов через альвеолярную стенку, которая имеет минимальную толщину. Так, количество альвеол в одном легком человека приблизительно равно 300 млн. Суммарная площадь альвеолярной мембраны, через которую происходит обмен газов между альвеолярным воздухом и венозной кровью, имеет огромные размеры (порядка 100 м2), а толщина альвеолярной мембраны составляет лишь — 0,3—2,0 мкм. В обычных условиях диффузия газов через альвеолярную мембрану происходит в течение очень короткого отрезка времени (не более 3/4 с), пока кровь проходит через капилляры легких. Даже при физической работе, когда эритроциты проходят капилляры легкого в среднем за 1/4 с, указанные выше структурные особенности альвеолярной мембраны создают оптимальные условия для формирования равновесия парциальных давлений 02 и С02 между альвеолярным воздухом и кровью капилляров легких. В уравнении Фика константы диффузии (k) пропорциональны растворимости газа в альвеолярной мембране. Углекислый газ имеет примерно в 20 раз большую растворимость в альвеолярной мембране, чем кислород. Поэтому, несмотря на существенное различие в градиентах парциальных давлений 02 и С02 по обе стороны от альвеолярной мембраны, диффузия этих газов совершается за очень короткий отрезок времени движения эритроцитов крови через легочные капилляры. Газообмен через альвеолярную мембрану количественно оценивается диффузионной способностью легких, которая измеряется количеством газа (мл), проходящего через эту мембрану за 1 мин при разнице давления газа по обе стороны мембраны в 1 мм рт. ст. Наибольшее сопротивление диффузии 02 в легких создают альвеолярная мембрана и мембрана эритроцитов, в меньшей степени — плазма крови в капиллярах. У взрослого человека в покое диффузионная способность легких 02 равна 20—25 мл • мин-1 • мм рт. ст.-1. С02, как полярная молекула (0=С=0), диффундирует через указанные мембраны чрезвычайно быстро, благодаря высокой растворимости этого газа в альвеолярной мембране Диффузионная способность легких С02 равна 400—450 мл•мин-1• мм рт. ст.-1. 138. Соотношене вентиляции и перфузии. Вентиляцией легких обозначают процесс обмена воздуха между легкими и атмосферой. Количественным показателем вентиляции легких служит минутный объем дыхания, определяемый как количество воздуха, которое проходит (или вентилируется) через легкие в 1 мин. В покое у человека минутный объем дыхания составляет 6—8 л/мин. Только часть воздуха, которым вентилируются легкие, достигает альвеолярного пространства и непосредственно участвует в газообмене с кровью. Эта часть вентиляции легких называется альвеолярной вентиляцией. В покое альвеолярная вентиляция равна в среднем 3,5—4,5 л/мин. Основная функция альвеолярной вентиляции заключается в поддержании необходимой для газообмена концентрации 02 и С02 в воздухе альвеол. Перфузия легких кровью. Эффективность выполнения основной функции дыхательной системы зависит от соответствия перфузии (кровотока) в регионах легких с их вентиляцией. Так, хороший кровоток будет недостаточным для газообмена в регионах легких, если они слабо вентилируются воздухом с низким содержанием кислорода, при этом незначительный объем вентиляции легких не позволит удалить из крови углекислый газ. Соответственно, при слабом кровотоке в регионах легких возрастает объем функционального мертвого пространства, и перфузия легких кровью будет недостаточной для транспорта в ней нормального количества газов. В нормальных физиологических условиях фактор гравитации оказывает наиболее выраженный эффект на вентиляцию и перфузию регионов легких кровью. Эффект гравитации на вентиляцию и перфузию легких кровью Легкие окружены плевральным пространством, отрицательное давление в котором изменяется от —5 до —10 см водн. ст. в различные фазы дыхательного цикла. Этот фактор взаимодействует с эффектом гравитации на жидкие среды, прежде всего кровь, содержащуюся в артериальных и венозных сосудах тканей легких. В результате под действием силы тяжести на ткань легких величина внутриплеврального давления на уровне основания легких у человека в положении стоя менее отрицательная относительно атмосферного, чем в области верхушек легкого. Поэтому альвеолы верхушек легких имеют большие размеры, а стенка их растянута и более напряжена, чем у альвеол нижних участков легких. Альвеолы на уровне основания легких растянуты в незначительной степени и имеют значительно больше потенциальные возможности для растягивания и вентиляции, чем в области верхушек. Поэтому растянутые альвеолы верхушки легких вентилируются меньше, чем альвеолы основания. Эти различия в вентиляции отделов легких приводят к тому, что вдыхаемый воздух неравномерно распределяется в отделах альвеолярного пространства. Особенности распределения воздуха, вдыхаемого в легкие, дополняется разницей в величине кровотока на уровне верхушек и основания легких. Относительно положения тела в пространстве кровоток в верхних и нижних отделах легкого различается под влиянием фактора гравитации. У человека в вертикальном положении тела величина легочного кровотока на единицу объема ткани легкого линейно убывает в направлении снизу вверх, и меньше всего снабжаются кровью верхушки легких. Соответственно в положении тела человека на спине кровоток в нижних (дорсальных) отделах легких становится выше, чем в верхних (вентральных). Это обусловлено тем, что артериальная кровь, поступающая в легкие из правого желудочка, проходит по сосудам легких из областей низкого внутриплеврального давления в области тонкостенных капилляров, которые окружены альвеолами, содержащими воздух под давлением, близким к атмосферному. Поэтому в зависимости от соотношения давления в альвеолах (РА), мелких артериях (Ра) и мелких легочных венах (Pv) легкие разделены на функциональные зоны Веста. В верхушках легких (зона 1) могут возникнуть области с давлением в легочных капиллярах (особенно в фазу диастолы) ниже альвеолярного (Ра > Ра > Pv)- Капилляры в таких зонах могут спадаться, и кровоток через них становится невозможным. Такие участки легких вентилируются, но не участвуют в газообмене и формируют альвеолярное мертвое пространство. В средних отделах легких (зона 2) под действием гравитации давление в альвеолах, как правило, превышает венозное (Ра > РА > Pv). Поэтому величину кровотока в зоне 2 по Весту определяет разность между артериальным и альвеолярным давлениями. В зоне 2 практически не возникает альвеолярное мертвое пространство. В нижних отделах легких (зона 3) давление в легочных венах выше альвеолярного (Ра > Pv > Ра) и величина кровотока, как и в обычных сосудах, определяется разницей между артериальным и венозным давлениями. Величина зон Веста динамично изменяется в зависимости от положения тела в пространстве или глубины дыхания. При выдохе на уровне функциональной остаточной емкости примерно 2/з объема легких может занимать зона 2. После глубокой экспирации (на уровне остаточного объема) большая часть легких по соотношению перфузии кровью и вентиляции соответствует зоне 3 Веста. Относительная однонаправленность изменения градиента внутриплеврального давления и влияния гравитации на кровоток в легких от верхних отделов легких к нижним теме не менее не сопряжены в каждом отдельном регионе легких. Альвеолярное мертвое пространство. В здоровом легком неко¬торое количество апикальных альвеол вентилируется нормально, но в некоторых не происходит газообмена между кровью и альвеолами. Подобное фи¬зиологическое состояние обозначают как «альвеолярное мертвое про¬странство». В физиологических условиях альвеолярное мертвое про¬странство может появляться в случае снижения минутного объема крови, уменьшения давления в артериальных сосудах легких, а в патологических состояниях — при анемии, легочной эмболии или эмфиземе. |