ЖБК. 1. виды и особенности конструкций, и расчета стыков жб колонн стыки многоэтажных сборных рам
Скачать 5.41 Mb.
|
1. ВИДЫ И ОСОБЕННОСТИ КОНСТРУКЦИЙ, И РАСЧЕТА СТЫКОВ Ж/Б КОЛОНН Стыки многоэтажных сборных рам, как правило, выполняют жесткими. При шарнирных стыках уменьшается общая жесткость здания и снижается сопротивление деформированию при горизонтальных нагрузках. Жесткие стыки колонн многоэтажных рам воспринимают продольную силу N, изгибающий момент М и поперечную силу Q. Арматурные выпуски стержней диаметром до 40 мм стыкуют ванной сваркой (рис. XV. 10). При четырех арматурных выпусках для удобства сварки устраивают специальные угловые подрезки бетона длиной 150 мм, при арматурных же выпусках по периметру сечения подрезку бетона делают по всему периметру. Концы колонн, а также места подрезки бетона усиливают поперечными сетками и заканчивают стальной центрирующей прокладкой (для удобства рихтовки на монтаже). После установки и выверки стыкуемых элементов колонны и сварки арматурных выпусков устанавливают дополнительные монтажные хомуты диаметром 10—12 мм. Полости стыка — подрезки бетона и узкий шов между торцами элементов замоноличивают в инвентарной форме под давлением. Исследования показали достаточную прочность и надежность стыка. В сравнении с другими стыками, устраиваемыми на сварке стальных закладных деталей, описанный стык экономичнее по расходу стали и трудоемкости. Уменьшение изгибающего момента в стыках колонн многоэтажного каркасного здания в большинстве случаев достигается выбором места расположения стыка ближе к середине высоты этажа, где изгибающие моменты от действия вертикальных и горизонтальных нагрузок приближаются к нулю и где улучшаются условия для монтажа колонн. Стыки считают для 2х стадий работы: А) до замоноличивания стыка- на нагрузки действующие на данном этапе возведения здания. При определении усилий такие стыки условно принимают шарнирными. Б) после зомоноличивания стыка – на нагрузки, действующие на данном этапе возведения здания и при эксплуатации, при определении усилий такие стыки принимают жёсткими. Расчёт не замоноличенных стыков производят на местное сжатие бетона колонны центрирующей прокладки. Расчёт замоноличенных стыков производит как для сечения колонны на участке с подрезками с учётом следующих указаний: А) при наличии косвенного армирования сетками как в бетоне колонны так и в бетоне замоноличивания расчёт ведут в соответствии с рекомендациями по расчёту сжатых ж.б. элементов усиленных косвенным армированием, при этом рассматривается цельное сечение Б) При наличии косвенного армирования только в бетоне колонны расчёт производят только с учетом косвенного армирования но без учета бетона замоноличивания либо наоборот. 2. ВИДЫ И ОСОБЕННОСТИ КОНСТРУКЦИЙ, И РАСЧЕТА РИГЕЛЕЙ, БАЛОК, ФЕРМ Сборные конструкции зданий, смонтированные из отдельных элементов, совместно работают под нагрузкой благодаря стыкам и соединениям, обеспечивающим их надежную связь. Стыки и соединения сборных конструкций можно классифицировать по функциональному признаку (в зависимости от назначения соединяемых элементов) и по расчетно-конструктивному (в зависимости от вида усилий, действующих на них). По функциональному признаку различают стыки колонн с фундаментами, колонн друг с другом, ригелей с колоннами, узлы опирания подкрановых балок, ферм, балок покрытий на колонны, узлы опирания панелей на ригели и т. п. По расчетно-конструктивному признаку различают стыки, испытывающие сжатие, например стыки колонны (рис. Х.8,а); стыки, испытывающие растяжение, например стыки растянутого пояса фермы (рис. Х.8,б); стыки, работающие на изгиб с поперечной силой, например в соединении ригеля с колонной (рис. Х.8,в), и т. п. В стыках усилия от одного элемента к другому передаются через соединяемую сваркой рабочую арматуру металлические закладные детали, бетон замоноличивания. Размеры зазоров между соединяемыми элементами назначают возможно меньшими. Их величину обычно определяют доступностью сварки выпусков арматуры, удобством укладки в полости стыка бетонной смеси из условия погашения допусков на изготовление и монтаж; она может составлять 50—100 мм и более. При заливке швов раствором, особенно под давлением, зазор может быть минимальным, но не менее 20 мм. Стальные закладные детали для предотвращения коррозии и обеспечения необходимой огнестойкости элементов покрывают защитным слоем цементного раствора по металлической сетке. Концевые участки сжатых соединяемых элементов (например, концы сборных колонн) усиливают поперечными сетками косвенного армирования. При соединении с обрывом продольной рабочей арматуры в зоне стыка усиление поперечными сетками производят по расчету. Сетки устанавливают у торца элемента (не менее 4 шт.) на длине не менее 10d стержней периодического профиля, при этом шаг сеток s должен быть не менее 60 мм, не более 7з размера меньшей стороны сечения и не более 150 мм (рис. Х.9). Размер ячеек сетки должен быть не менее 45 мм, не более 1/4 меньшей стороны сечения и не более 100 мм. В стыках и соединениях сборных железобетонных элементов стальные закладные детали часто проектируют в виде пластинок и приваренных к ним анкеров, испытывающих действие усилий М, N, Q (рис. Х.11). Для расчета анкеров изгибающий момент заменяют парой сил с плечом г и усилия определяют с учетом опытных коэффициентов. Площадь поперечного сечения анкеров наиболее напряженного ряда: Стыки растянутых элементов выполняют сваркой выпусков арматуры или стальных закладных деталей, а в предварительно напряженных конструкциях — пропуском через каналы или пазы элементов пучков, канатов или стержневой арматуры с последующим натяжением. Сварные стыки растянутых элементов конструируют так, чтобы при передаче усилий не происходило разгибания закладных деталей, накладок или выколов бетона. Для передачи сдвигающих усилий на поверхности соединяемых элементов устраивают пазы, которые после замоноличивация образуют бетонные шпонки. Применение бетонных шпонок целесообразно в бесконсольных стыках ригелей с колоннами, где их располагают так, чтобы бетон шпонок работал в наклонном сечении на сжатие, в стыках плитных конструкций, для повышения жесткости панельных перекрытий в своей плоскости и др. (рис. X.13). 3. ОСОБЕННОСТЬ РАСЧЕТА И КОНСТРУИРОВАНИЯ БАЛОЧНЫХ СБОРНЫХ ПАНЕЛЬНЫХ ПЕРЕКРЫТИЙ 1. Компоновка конструктивной схемы перекрытия В состав конструкции балочного панельного сборного перекрытия входят плиты и поддерживающие их балки, называемые ригелями, или главными балками Ригели опираются на колонны и стены; направление ригелей может быть продольное (вдоль здания) или поперечное. Ригели вместе с колоннами образуют рамы. Компоновка конструктивной схемы перекрытия заключается в выборе направления ригелей, установлении размеров пролета и шага ригелей, типа и размеров плит перекрытий. 2. Проектирование плит перекрытий Общий принцип проектирования плит перекрытий любой формы поперечного сечения состоит в удалении возможно большего объема бетона из растянутой зоны с сохранением вертикальных ребер, обеспечивающих прочность элемента по наклонному сечению, в увязке с технологическими возможностями завода-изготовителя. По форме поперечного сечения плиты бывают с овальными, круглыми и вертикальными пустотами, ребристые с ребрами вверх (с устройством чистого пола по ребрам), ребристые с ребрами вниз, сплошные. В плитах с пустотами минимальная толщина полок 25-30 мм, ребер 30—35 мм; в ребристых плитах с ребрами вниз толщина полки (плиты) 50—60 мм. Для предварительно напряженных плит применяют бетон класса В15, В25, для плит без предварительного напряжения — бетон класса В15, В20. 3. Расчет панелей. Расчетный пролет плит L 0 принимают равным расстоянию между осями ее опор (рис. XI.5, а— в); при опирании по верху ригелей L0= L—b/2 (где b — ширина ригеля); при опирании на полки ригелей L0= L—а—Ь (а — размер полки). При опирании одним концом на ригель, другим на стенку расчетный пролёт равен расстоянию от оси опоры на стене, до оси опоры в ригеле. Высота сечения плиты h должна быть подобрана так, чтобы наряду с условиями прочности были удовлетворены требования жесткости (предельных прогибов). При пролетах 5—7 м высота сечения плиты определяется главным образом требованиями жесткости. При расчете прочности по изгибающему моменту ширина ребра равна суммарной ширине всех ребер плиты, а расчетная ширина сжатой полки принимается равной полной ширине панели. В ребристой панели ребрами вниз при толщине полки h'f/h<.0,l, но при наличии поперечных ребер, вводимая в расчет ширина полки принимается равной полной ширине панели. Таким образом, расчет прочности плит сводится к расчету таврового сечения с полкой в сжатой зоне. При расчете прогибов сечения панелей с пустотами приводят к эквивалентным двутавровым сечениям. Для панелей с круглыми пустотами эквивалентное двутавровое сечение находят из условия, что площадь круглого отверстия диаметром d равна площади квадратного отверстия со стороны. Полка панели работает на местный изгиб как частично защемленная на опорах плита пролетом l0, равным расстоянию свету между ребрами. В ребристых панелях с ребрами вниз защемление полки создается заливкой бетоном швов, препятствующей повороту ребра (рис. XI.7, а). Изгибающий момент М = ql02/11. В ребристой панели с поперечными промежуточными ребрами изгибающие моменты полки могут определяться как в плите, опертой по контуру и работающей в двух направлениях. 4. Конструирование плит. Применяют сварные сетки и каркасы из обыкновенной арматурной проволоки и горячекатаной арматуры периодического профиля (рис. XI.8). В качестве напрягаемой продольной арматуры применяют стержни классов A-IV, A-V, Ат-IVc, Ат-V, высокопрочную проволоку и канаты. Армировать можно без предварительного напряжения, если пролет панели меньше 6 м. Продольную рабочую арматуру располагают по всей ширине нижней полки сечения пустотных панелей и в ребрах ребристых панелей. Поперечные стержни объединяют с продольной монтажной или рабочей ненапрягаемой арматурой в плоские сварные каркасы, которые размещают в ребрах плит. К концам продольной ненапрягаемой арматуры ребристых плит приваривают анкеры из уголков или пластин для закрепления стержней на опоре. Монтажные петли закладывают по четырем углам плит. В местах установки петель сплошные панели армируют дополнительными верхними сетками. Пример армирования ребристой панели перекрытия промышленного здания приведен на рис. XI.9. Номинальная ширина этой панели считается равной 1,5 м. Применяют такие плиты также шириной 3 м. 4. ВИДЫ И ОСОБЕННОСТИ КОНСТРУКЦИЙ, И РАСЧЕТА РЕБРИСТЫХ МОНОЛИТНЫХ ПЕРЕКРЫТИЙ С БАЛОЧНЫМИ ПЛИТАМИ 1. Компоновка конструктивной схемы перекрытия Ребристое перекрытие с балочными плитами состоит из плиты, работающей по короткому направлению, второстепенных и главных балок. Все элементы перекрытия монолитно связаны и выполняются из бетона класса В15. Полка ребер — плита — работает на местный изгиб по пролету, равному расстоянию между второстепенными балками. Второстепенные балки опираются на монолитно связанные с ними главные балки, которые, в свою очередь, опираются на колонны и наружные стены. Главные балки можно располагать в продольном или поперечном направлении здания с пролетом 6—8 м. Второстепенные балки размещают так, чтобы ось одной из балок совпала с осью колонны (рис. XI.20, а). Пролет второстепенных балок может составлять 5—7 м, плиты 1,7—2,7м. Толщину плиты по экономическим соображениям принимают возможно меньшей. Минимальные ее значения составляют: для междуэтажных перекрытий промышленных зданий 6 см, для междуэтажных перекрытий жилых и гражданских зданий 5 см. При значительных временных нагрузках может потребоваться увеличение толщины плиты. Высота сечения второстепенных балок составляет обычно (1/12 — 1/20) l, главных балок— (1/8—1/15) l. Ширина сечения балок b= (0,4—0,5) h. 2. Расчет плиты, второстепенных и главных балок Расчетный пролет плиты принимают равным расстоянию в свету между второстепенными балками l0 и при опирании на наружные стены — расстоянию от оси опоры на стене до грани ребра: для расчета плиты в плане перекрытия условно выделяется полоса шириной 1 м (рис. Х1.20,б,в). Расчетный пролет второстепенных балок l0 принимают равным расстоянию в свету между главными балками, а при опирании на наружные стены — расстоянию от оси опоры на стене до грани главной балки (рис. XI. 20, г). В первом пролете максимальный изгибающий момент будет в сечении, расположенном на расстоянии а≈0,425l от свободной опоры; при этом Привлекая уравнение равновесия и учитывая, что МА=0, получим Если принять значение изгибающего момента на первой промежуточной опоре найдем изгибающий момент в первом пролете Если же принять равномоментную схему M=Ml =МВ, получим округляя знаменатель (с погрешностью менее 5 % в сторону увеличения изгибающего момента), получим на первой промежуточной опоре и в первом пролете изгибающий момент Для второстепенных балок огибающая эпюра моментов строится для двух схем загружения (рис. XI.22): 1)полная нагрузка g+v в нечетных пролетах и условная нагрузка g+1/4 v в четных пролетах; 2)полная нагрузка g+v в четных пролетах и условная постоянная нагрузка g+1/4v в нечетных пролетах. Поперечные силы второстепенной балки принимают: на крайней свободной опоре Q=0.4gl на первой промежуточной опоре слева Q = 0,6ql (XI.32) ; на первой промежуточной опоре справа и на всех остальных опорах Q = 0,5l (XI.33) . 3. Конструирование плиты, второстепенных и главных балок Многопролетные балочные плиты в соответствии с характером эпюры моментов армируют рулонными сетками с продольным расположением рабочей арматуры; рулон раскатывают по опалубке поперек второстепенных балок (рис. XI.23, а). Сетки перегибают на расстоянии 0,25 l от оси опоры (в местах нулевых моментов) и укладывают на верхнюю арматуру каркасов второстепенных балок. В первом пролете на основную сетку плиты укладывают дополнительную, которую заводят за опоры на 0,25l (рис. XI.23, б). Если нужна более сильная рабочая арматура — диаметром 6 мм и более — плиты армируют в пролете и на опоре раздельно рулонными сетками с поперечным расположением рабочей арматуры (рис. XI.23, в, г). Второстепенные балки армируют в пролете плоскими каркасами (обычно двумя), которые перед установкой в опалубку объединяют в пространственный каркас приваркой горизонтальных поперечных стержней. Главную балку армируют в пролете двумя или тремя плоскими каркасами, которые перед установкой в опалубку объединяют в пространственный каркас. Два плоских каркаса доводят до грани колонны, а третий (если он есть) обрывают в соответствии с эпюрой моментов. Возможен также обрыв в пролете части стержней каркасов. На опоре главную балку армируют самостоятельными каркасами, заводимыми сквозь арматурный каркас колонн (рис. XI.25). Места обрыва каркасов и отдельных стержней устанавливают на эпюре арматуры. |