Билет 1 1 физиология рецепторов
Скачать 426.86 Kb.
|
Билез 32 1)регуляция скелетных мышц Нейромоторная единица (двигательная) ДЕ - сов-ть мышечных волокон иннервируемых одним альфа-мотонейроном. Мотонейронный пул - группа мотонейронов с.м. иннервирующих мышцу в целом. а) принцип регуляции силы сокращения скелетной мышцы сила сокращения целой мышцы зависит от количества одновременно активированных ДЕ. Каждая ДЕ обладает своим порогом раздражения - с увеличением силы раздражения возрастает сила сокращения. б) принцип регуляции длины и скорости сокращения скелетной мышцы при расслаблении мышцы: интрафузальное волокно растянуто - по афферентным волокнам информация поступаетв нервные центры - активируются альфа-мотонейроны, находящиеся в передних рогах с.м., что приводит к сокращению мышц. при сокращении мышцы: интрафузальное волокно не растянуто - гамма-эфференты посылают сигналы к дистальным отделам интрафузального волокна - сокращение дист. отделов - растяжение ядерной сумки. скорость сокращения: регуляция зависит от количества синапсов - чем больше синапсов, тем больше скорость. в) принцип регуляции напряжения скелетной мышцы мышца сокращается - укорачивается - растягивается сухожилие - активируется рецептор Гольджи - через вставочные нейроны Реншоу вызывается торможение альфа-мотонейронов своей мышцы и возбуждение альфа-мотонейронов мышцы-антагониста. г) принцип сопряженной регуляции тонуса мышц-антагонистов. (рис 28) Сгибание или разгибание конечностей осуществляется благодаря согласованной работе двух функционально антагонистических мышц: сгибателей и разгибателей. Координация обеспечивается организацией антагонистических отношений между мотонейронами сгибателей и разгибателей, иннервирующих соответствующие мышцы. Реципрокные функциональные отношения складываются в сегментах с.м. благодаря включению в дугу спинномозгового рефлекса дополнительного элемента — специального тормозного нейрона (клетка Реншоу). Сигнал от афферентного звена через обычную вставочную нервную клетку вызывает возбуждение мотонейрона, иннервирующего мышцу-сгибатель, а через клетку Реншоу тормозит мотонейрон, иннервирующий мышцу-разгибатель. Так происходит координированное сгибание конечности; напротив, при выполнении разгибания конечности возбуждается мотонейрон мышцы-разгибателя, а через вставочную клетку Реншоу тормозится, угнетается мотонейрон мышцы-сгибателя. 2)физиология крови а)характеристика групп крови по системе АВ0: Группа крови Эритроциты Плазма, или сыворотка агглютиногены агглютинины I (0) 0 a, b II(A) A b III(B) B a IV(AB) AB 0 б)характеристика резус-фактора крови, физиологические основые резус-конфликтной беременности: Приблизительно у 85% людей белой расы имеется АГ. Таких людей называют резус-положительными (Rh+). Около 15% людей этот АГ не имеют и носят название резус-отрицательных (Rh). Известно, что резус-фактор — это сложная система, включающая более 40 антигенов, обозначаемых цифрами, буквами и символами. Чаще всего встречаются резус-антигены типа D (85%), С (70%), Е (30%), е (80%) — они же и обладают наиболее выраженной антигенностью. Система резус не имеет в норме одноименных агглютининов, но они могут появиться, если резус-отрицательному человеку перелить резус-положительную кровь. Резус-фактор передается по наследству. Если женщина Rh, a мужчина Rh+, то плод в 50—100% случаев унаследует резус-фактор от отца, и тогда мать и плод будут несовместимы по резус-фактору. при такой беременности плацента обладает повышенной проницаемостью по отношению к эритроцитам плода. Последние, проникая в кровь матери, приводят к образованию антител. Проникая в кровь плода, антитела вызывают агглютинацию и гемолиз его эритроцитов. в)методы определения группы крови и резус-фактора крови: предметное стекло помещают на белую бумагу и наносят по капле стандартной сывортки I, II и III групп. потом в сыворотки капают каплю крови, в два раза меньшую чем какпля сыворотки, и размешиваем стеклянной палочкой (каждый раз чистым концом). реакция агглютинации наступает через 1-5 мин. При реакции агглютинации капля становится прозрачной, эритроциты склеиваются в виде комочков. группа крови устанавливается в зависимости от наличия или отсутствия агглютинации. Если агглютинация отсутствует, то группа крови I. Если агглютинация присутствует в I и III сыворотке, то группа II. Если агглютинация присутствует в I и II, то группа III. Если агглютинация присутствует в II и III, то группа IV. На тарелку наносят по одной капле конрольной сыворотки(справа) и стандартной антирезус сыворотки(слева). Рядом с каждой сывороткой размещают по одной капле исследуемой крови(размер должен быть в два раза меньше). затем стеклянной палочкой перемешивают каплю крови с контрольной сывороткой, после пермешивают кровь с антирезус сывороткой. покачивая тарелку, наблюдают за реакцией. Если исследуемая кровь резус-положительна, то в пробе со стандартной сывороткой будет агглютинация эритроцитов. Если кровь резус-отрицательна, агглютинация отсутствует. г)характеристика правил проведения гемотрансфузии: Гемотрансфузия-лечебный метод, заключающийся во введении в кровеносное русло больного человека (реципиента) цельной крови или её компонентов, заготовленных от донора или самого реципиента. При проведении гемотрансфузии врач обязан: иметь гарантию того, что донорская кровь и её компоненты получены у человека, не болеющего СПИДом, ВИЧ-инфекцией, сифилисом и гепатитом. Соблюдать правила асептики и антисептики. Определить группу крови реципиента по системе АВ0, определить резус-принадлежность и сверить полученные результаты с историей болезни. Определить группу крови и резус-принадлежность донора, а если донорская кровь консервированная сверить полученный результат с данными об этом на этикетке флакона или контейнера.Если имеются расхождения между полученными врачом результатами, исследование следует повторить. Провести пробы на индивидуальную совместимостбь крови донора и реципиента по системе АВ0 и резус-фактору. Провести биологическую пробу. Биологическую пробу проводят следующим образом: струйно переливают 10-15 мл крови. Затем в течении 3 минут наблюдают за состоянием больного. При отсутствии клинический проявлений реакции или осложнений (учащение пульса, дыхания, гиперимии лица) вводят вновь 10-15 мл крови и в течении 3 мин наблюдают за больным. эту процедуру проводят 3 раза. Билет 33 1)физиология нервных синапсов а) класс-я и принцип строения синапсов в нервной системе. Синапсы - контакты, которые устанавливают нейроны как самостоятельные образования. Синапс представляет собой сложную структуру и состоит из пресинаптической части (окончание аксона, передающее сигнал), синаптической щели и постсинаптической части (структура воспринимающей клетки). Классификация синапсов. - По местоположению: нервно-мышечные синапсы и нейронейрональные (аксосоматические, аксоаксональные, аксодендритические, дендросоматические). - По характеру действия на воспринимающую структуру: возбуждающие и тормозящие. - По способу передачи сигнала: электрические, химические, смешанные. - По природе медиатора: АХ-, дофамин-, серотонин-, НА-ергические. б) механизм проведения возбуждения в электрических и химических синапсах. Электрические синапсы. эл. способ передачи возбуждения осуществляющийся благодаря тесным контактам передающей и воспринимающей структур. Локальные токи деполяризуют мембрану нейрона до критического уровня, после чего возникает спонтанный процесс деполяризации. Электрические синапсы обладают односторонним проведением возбуждения. Электрический синапс сравнительно мало утомляем. Химические синапсы - пресинаптическая часть, синаптическая щель и постсинаптическая часть. ПД - активация Са2+-каналов - вход Са2+ в клетки - экзоцитоз медиатора в синаптическую щель - диффузия медиатора к постсинаптической мембране - связь медиатора с хеморецептором: 1) если активация Nа-каналов постсинапт. мембраны - местная деполяризация (ВПСП) - суммация ВПСП - возбуждение кл. - активация аденилатциклазы - активация цАМФ, ИТФ - эффект. 2) если активация Cl-каналов постсинапт. мембраны - гиперполяризация мембраны (ТПСП) - торможение клетки. в) хар-ка хеморецепторов пре- и постсинаптических мембран. - холинорецепторы (никотиновые, мускариновые) - адренорецепторы (а1,а2,в1,в2) г) хар-ка возбуждающих (ВПСП) и тормозящих (ТПСП) постсинаптических потенциалов. ВПСП вызваны возрастанием проводимости мембраны для Na+. Они деполяризуют постсинаптическую мембрану, повышают возбудимость клетки, а при достижении критического уровня деполяризации приводят к возникновению ПД. Так, активация н-холинорецепторов и глутаматных рецепторов приводит к возникновению ВПСП. ТПСП вызваны повышением проводимости мембраны для K+ и Cl–. Они гиперполяризуют постсинаптическую мембрану, понижают возбудимость клетки и препятствуют генерации ПД. Этот процесс получил название постсинаптического торможения. Так, активация глициновых рецепторов и рецепторов ГАМК типа А приводит к возникновению тормозных ПСП. Эти рецепторы пропускают внутрь клетки ионы Cl–. 2)методы исследования сердца а)метод электрокардиографии, принципы анализа ЭКГ: методика исследования электрической активности сердца, получила название электрокардиографии, а регистрируемая с ее помощью кривая называется электрокардиограммой (ЭКГ). Электрокардиография широко применяется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ. Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три стандартных отведения от конечностей: I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука — левая нога. Кроме того, регистрируют три униполярных усиленных отведения: aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один и регистрируется разность потенциалов между объединенными и активными электродами. Так, при aVR активным является электрод, наложенный на правую руку, при aVL — на левую руку, при aVF — на левую ногу.так же была предложена регистрация шести грудных отведений. Анализ ЭКГ: 1.определение ритмичности сердечной деятельности. 2.определение продолжительности интервала R-R.(в норме 0,1) 3.определение ЧСС = 60сек/ R-R в сек 4.измерение продолжительности и амплитуды элемертов ЭКГ б)метод аускультации сердца и фонокардография, происхождение тонов сердца, их характеристики: Во время аускультации больной должен задержать дыхание на выдохе. При аускультации сердца необходимо знать точки выслушивания сердца: Первая точка: место выслушивания митрального клапана-область верхушечного толчка( в пятом межреберье на 1-2см кнутри от среднеключичной линии) Вторая точка: место выслушивания клапанов аорты-второе межреберье непосредственно у правого края грудины третья точка: место выслушивания клапанов легочной артерии-второе межреберье непосредственно у левого края грудины Четвёртая точка: место выслушивания трикуспидального клапана-прикрепление основания мечевидного отростка к грудине. ближе к её правому краю Пятая точка (точка Боткина-Эрба): место выслушивания клапанов аорты-прикрепление 3-4 ребёр к левому краю грудины(третье межреберье у левого края грудины). У здоровых людей выслушиваются только первый и второй тоны.первый тон возникает во время систолы желудочков, продолжительный, низкочастотный, лучше слышен в 1 и 5 точках. Второй тон возникает во время диастолы желудочков, короткий, высокочастотный, лучше выслушивается в 2 и3 точках. Микрофон фонокардиографа ставят в точки выслушивания. используемые при аускультации сердца. Микрофон воспринимает звуковые колебания и преобразует их в электрические сигналы, которые усиливаются и передаются на систему частотных фильтров. позволяющих выделить звуковые колебания определённой частоты. при анализе ФКГ определяют частоту, длительность и амплитуду тонов сердца, а также длительность ситолической и диастолической пауз сердца. Генез тонов сердца: Первый тон-образуется в результате суммирования всех звукрвых явлений, возникающих в сердце в начале систолы. Второй тон-возникает в результате закрытия клапанов аорты и легочной артерии. Третий тон-обусловлен колебаниями стенки желудочка в период его быстрого кровенаполнения. Четвёртый тон-обусловлен сокращением миокарда предсердий, в частности, левого ушка. в)метод поликардиографии, его клиническое значение: метод поликардиографии, основанный на синхронной регистрации ЭКГ, фонокардиограммы (ФКГ) и сфигмограммы. Необходим для фазового анализа цикла сердечной деятельности у человека. г)принципы эхокардиографии, магнитно-резонансной томографии и радионуклеидных методов исследования: Эхокардиография — метод исследования механической деятельности и структуры сердца, основанный на регистрации отраженных сигналов импульсного ультразвука. При этом ультразвук в форме высокочастотных посылок (до 2,25—3 мГц) проникает в тело человека, отражается на границе раздела сред с различным ультразвуковым сопротивлением и воспринимается прибором. Изображение эхосигналов от структур сердца воспроизводится на экране осциллографа и регистрируется на фотопленке. ЭхоКГ всегда регистрируется синхронно с ЭКГ, что позволяет производить оценку механической активности сердца в определенные фазы сердечного цикла. Билет 34
а) морфофункц. хар-ка периферического, проводникового и коркового отдела вестибулярного анализатора. Периферический отдел: вестибулярный аппарат (в лабиринте пирамиды височной кости): преддверие, 3 полукружных канала, два мешочка (сферический и эллиптический, или маточка), в которых находится отолитовый аппарат: скопления рецепторных клеток на возвышениях, или пятнах,оканчивающихся одним более длинным подвижным волоском и 60—80 склеенными неподвижными волосками, которые пронизывают желеобразную мембрану, содержащую кристаллики карбоната кальция — отолиты. В перепончатых полукружных каналах, заполненных, как и весь лабиринт, эндолимфой, рецепторные волосковые клетки сконцентрированы в ампулах в виде крист. Они также снабжены волосками. Волокна вестибулярного нерва направляются в продолговатый мозг (ядра: преддверное верхнее, или Бехтерева, преддверное латеральное, или Дейтерса, Швальбе и др). Отсюда сигналы направляются во многие отделы ЦНС: с.м., мозжечок, глазодвигательные ядра, кору большого мозга, ретикулярную формацию и ганглии автономной нервной системы.В коре полушарий большого мозга основные афферентные проекции вестибулярного аппарата локализованы в задней части постцентральной извилины. б) механизм возбуждения вестибулорецепторов. При движении эндолимфы (во время угловых ускорений), когда волоски сгибаются в одну сторону, волосковые клетки возбуждаются, а при противоположно направленном движении — тормозятся. Отклонение в одну сторону приводит к открыванию каналов и деполяризации волосковой клетки, а отклонение в противоположном направлении вызывает закрытие каналов и гиперполяризацию рецептора. В волосковых клетках преддверия и ампулы при их сгибании генерируется рецепторный потенциал, который усиливает выделение АХ и через синапсы активирует окончания волокон вестибулярного нерва. в) хар-ка вестибулоспинальных, вестибуловегетативных и вестибулоглазодвигательных рефлексов. Вестибулоспинальные влияния через вестибуло-, ретикуло- и руброспинальные тракты изменяют импульсацию нейронов сегментарных уровней с.м. Так осуществляется динамическое перераспределение тонуса скелетной мускулатуры и включаются рефлекторные реакции, необходимые для сохранения равновесия. В вестибуловегетативные реакции вовлекаются сердечно-сосудистая система, пищеварительный тракт и др. внутренние органы. При сильных и длительных нагрузках на вестибулярный аппарат возникает патологический симптомокомплекс, названный болезнью движения, например морская болезнь. Она проявляется изменением сердечного ритма (учащение, а затем замедление), сужением, а затем расширением сосудов, усилением сокращений желудка, головокружением, тошнотой и рвотой. Вестибулоглазодвигательные рефлексы (глазной нистагм) состоят в медленном движении глаз в противоположную вращению сторону, сменяющемся скачком глаз обратно. Само возникновение и хар-ка вращательного глазного нистагма — важные показатели состояния вестибулярной системы, они широко используются в морской, авиационной и космической медицине, а также в эксперименте и клинике. г) методы исследования вестибулярной СС. 1)вращательная проба. (измерение продолжительности нистагма после 10 оборотов испытуемого в кресле) 2)определение порога ощущения противовращения. (определение угловой скорости, в тот момент вращения когда испытуемому покажется что кресло остановили и когда появится ощущение противовращения) 3)указательная проба в модификации Барани. (определение расстояния от указательного пальца до верхнего конца карандаша (в-на ошибки) после 10 оборотов испытуемого на кресле) 4)отолитовая проба.(определение степень изменения ЧСС и срока этого отклонения после вращения испытуемого на кресле.)
а) функциональная сис-ма поддержания постоянства температуры организма человека. Температура тела человека поддерживается на относительно постоянном уровне, несмотря на колебания температуры окружающей среды - изотермия. Изотермия свойственна теплокровным (гомойотермным) животным. Температура органов и тканей, как и всего организма в целом, зависит от интенсивности образования тепла и величины теплопотерь.Теплообразование происходит вследствие экзотермических реакций. Потеря тепла органами и тканями зависит от их месторасположения: поверхностно расположенные органы, например кожа, скелетные мышцы, отдают больше тепла и охлаждаются сильнее, чем внутренние органы, более защищенные от охлаждения. Постоянство температуры тела у человека может сохраняться при условии равенства теплообразования и теплопотери всего организма. Это достигается с помощью физиологических механизмов терморегуляции. Терморегуляция проявляется в форме взаимосочетания процессов теплообразования и теплоотдачи, регулируемых нейроэндокринными механизмами б) хар-ка физической и химической терморегуляции Химическая терморегуляция осуществляется путем изменения уровня теплообразования, т. е. усиления или ослабления интенсивности обмена веществ в клетках организма.(термогенез): базальный и регуляторный: сократительный (мышечная дрожь, мыш.тонус, произв. сокращения), несократительный (активация окисления, разобщение окисления и фосфорилирования. Физическая терморегуляция осуществляется путем изменения интенсивности отдачи тепла.Теплоотдача: влажная (испарение): ощутимая, неощутимая; сухая: теплоизлучение, теплопроведение, конвекция (естественная, форсириванная). в) виды теплоотдачи, физиологические основы потоотделения - теплоизлучение - радиационная теплоотдача (66 %), - конвекция - движения и перемещения нагреваемого теплом воздуха (15 %), - теплопроведение - отдачи тепла веществам, непосредственно соприкасающимся с поверхностью тела (имеет небольшое значение, так как воздух и одежда являются плохими проводниками тепла), - испарение воды с поверхности кожи (потоотделение) и легких. (19 %). Испарение воды зависит от относительной влажности воздуха. В насыщенном водяными парами воздухе вода испаряться не может. Поэтому при высокой влажности атм. воздуха высокая температура переносится тяжелее. В насыщенном водяными парами воздухе пот выделяется в большом количества, но не испаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла: только та часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота составляет эффективное потоотделение). г) гипер- и гипотермия, клиническое применение гипотермии. переохлаждение тела — гипотермия, перегревание — гипертермия. Гипотермия — состояние, при котором температура тела ниже 35 °С. Быстрее всего гипотермия возникает при погружении в холодную воду. Вначале наблюдается возбуждение симп. части АНС и рефлекторно ограничивается теплоотдача и усиливается теплопродукция. Через некоторое время температура тела все же начинает снижаться, исчезновение чувствительности, понижается интенсивность обмена веществ, замедляется дыхание, урежаются сердечные сокращения. Искусственно создаваемая гипотермия с охлаждением тела до 24—28°С применяется на практике в хирургических клиниках, осуществляющих операции на сердце и ЦНС. Гипотермия значительно снижает обмен веществ г.м., а следовательно, потребность в кислороде. Гипотермию прекращают путем быстрого согревания тела. Гипертермия — состояние, при котором температура тела поднимается выше 37 °С, возникает при продолжительном действии высокой температуры окружающей среды, особенно при влажном воздухе, под влиянием некоторых эндогенных факторов, усиливающих в организме теплообразование (тироксин, ж.к. и др.). Резкая гипертермия, при которой температура тела достигает 40—41 °С, сопровождается тяжелым общим состоянием организма и носит название теплового удара. |