Билет 1 Физиология как наука, ее место в системе наук, предмет, значение физиологии для медицины. Понятие о функциях. Условия, необходимые для жизнедеятельности.
Скачать 1.69 Mb.
|
Часть из них перфорирует фасции и соединяет глубокие вены и поверхностные. Такие вены называют перфорантными. Они представляют собой тонкостенные венозные сосуды различного диаметра от долей миллиметра до 2 миллиметров. Чаще такие вены имеют косой ход и достигают длины до 15 см. Большинсиво перфорантных вен имеют клапаны( от 2 до 5 и более клапонов). Клапаны открываются в стороны глубоких вен и этим обеспечивают продвижение крови в норме в одном направлении- из поверхностных вен в глубокие вены. Различают прямые и непрямые перфоранты. Прямые перфоранты – соединяют стволы крупных глубоких и поверхностных вен. Прямых перфорантов немного, они более крупные / сафено - подколенный, сафено – бедренный/ Непрямые перфоранты- соединяют более мелкие поверхностные и глубокие вены, которые в свою очередь впадают в магистральные вены/поверхностные и глубокие/. Кровоток в нижних конечностях определяется факторами, определяющими венозный кровоток в целом/vis a tegro, vis a fronte/. Следует выделить фактор гидростатического давления, создаваемого силами гравитации, в вена нижних конечностей. В вертикальном положении давления в венах стопы возрастает под силой тяжести столба крови в 8-14 раз, гидростатическое давление столба крови/силы гравитации/ препятствует венозному кровотоку/возврату крови к сердцу/. Против этого противодействия серьезно работает «мышечная помпа нижних конечностей». Сокращение скелетных мышц выдавливает кровь из глубоких вен в вышележащий участок сосуда/ обратно не пускают клапаны, хорошо развитые в глубоких венах и закрывающиеся при повышении давления/. Не может кровь в норме пойти из глубоких вен через перфоранты в поверхностные вены, так как перфоранты имеют клапаны, которые закрываются при повышении давления в глубоких венах и препятствуют переходу крови из них в поверхностные вены. При расслаблении скелетных мышц в глубоких венах понижается давление, это оказывает присасывающие влияние на нижележащие отделы венозного русла, что способствует поступлению из них новых порций крови, кроме того снижение давления в глубоких венах приводит к открытию клапанов в перфорантах и поступлению крови из поверхностных вен в глубокие. Такие особенности присущи процессу венозного кровообращению в нижних конечностях в норме. Нарушение клапанного аппарата в перфорантах является одной из главных причин возникновения варикозной болезни/певерхностные вены слабо приспособлены к резкому повышению давления. Билет 15 1. Функциональная система поведенческого акта. Центральная архитектоника функциональной системы поведенческого акта, основные ее элементы, их взаимодействие и значение в формировании целостной поведенческой реакции. Функциональная система — понятие, разработанное П.К. Анохиным и выступающее в его теории построения движения в качестве единицы динамической морфофизиологической организации, функционирование которой направлено на приспособление организма. Это достигается за счет таких механизмов, как: Афферентный синтез поступающей информации; Принятие решения с одновременным построением афферентной модели ожидаемого результата — акцептора результатов действия; Реальное осуществление решения в действии; Организация обратной афферентации, за счет которой оказывается возможным сличение прогноза и полученных результатов действия. Стадия афферентного синтеза завершается переходом в стадию принятия решения, которая определяет тип и направление поведения. При этом формируется так называемый акцептор результата действия, представляющий собой образ будущих событий, результата, программы действия и представление о средствах достижения необходимого результата. На стадии эфферентного синтеза формируется конкретная программа поведенческого акта, которая переходит в действие — то есть с какой стороны забежать, какой лапой толкнуться и с какой силой. Полученный животным результат действия по своим параметрам сравнивается с акцептором результата действия. Если происходит совпадение, удовлетворяющее животное,поведение в данном направлении заканчивается; если нет — поведение возобновляется с изменениями необходимыми, для достижения цели. Например, если скотч-терьер не может дотянуться до колбасы, лежащей на столе, — цель не достигнута, необходимо менять стратегию, он пытается подпрыгнуть, если и это не получается, то вспрыгивает на табурет, оттуда на стол и, удовлетворенный, с колбасой в пасти отправляется в укромное место расправляться с добычей. Большую роль в целенаправленном поведении играют эмоции — как связанные с появлением и усилением потребностей, так и возникающие в процессе деятельности, (отражающие вероятность достижения цели или результаты сравнения реальных результатов с ожидаемыми). В отличие от рефлекторной теории, теория функциональных систем выдвигает следующие принципы: Поведение живых существ детерминировано не только внешнимистимулами, но и внутренними потребностями, генетическим и индивидуальным опытом, действием обстановочных раздражителей, которые создают так называемую предпусковую интеграцию возбуждений, вскрываемую пусковыми стимулами. Поведенческий акт разворачивается с опережением реальных результатов поведения, что позволяет сравнивать реально достигнутое с запланированным, на основе прошлого опыта и корректировать свое поведение. Целенаправленный поведенческий акт заканчивается не действием, а полезным приспособительным результатом, удовлетворяющим доминирующую потребность. http://www.braintools.ru/article/9053 Блин в ньюсе не нашла про это 2. Электрогенез нейронов, виды электрогенеза, характеристика. Кодирование информации, виды кодирования. Электрогенез нейронов… Вторым, по значению, свойством нейрона является электрогенез - т.е. формирование электрической активности нейрона. Два вида активности : Спонтанная активность и вызванная активность Спонтанная активность- это самопроизвольная активность. Вызванная активность возникает под действием раздражителей Исходно все нейроны могут быть разделены на: спонтанно-активные (фоноактивные нейроны), молчащие нейроны (нефоноактивные нейроны). Фоноактивные нейроны - это такие нейроны, которые продуцируют потенциалы действия спонтанно, без внешних раздражителей, вследствие особенностей своего обмена веществ. Кроме того, спонтанная активность нейрона нередко обусловлена спонтанной активностью его рецепторного аппарата. Молчащие нейроны - это такие нейроны, которые без внешнего стимула не отвечают потенциалом действия. Спонтанно-активные нейроны тоже меняют свою активную деятельность под действием раздражителя. По своей исходной активности могут быть разделены на три группы: 1. Группы нейронов, которые обладают спонтанной одиночной активностью (в состоянии покоя). 2. Нейроны с более организованной спонтанной активностью. Они обладают "пачковой" спонтанной активностью. Обычно в "пачке" электрической активности насчитывается 5-6 пиков потенциала действия. Обычно межимпульсовый интервал, т.е. временной интервал между импульсами в "пачке", составляет от 1 до 3 миллисекунд. Между "пачками" интервал варьирует в пределах 15-120 миллисекунд. 3. Спонтанные нейроны обладают групповой активностью. Обычно в группе нейронов насчитывают от 6 до 20 импульсов. Группой они кодируют информацию очень сложно и межинтервальное время колеблется внутри "пачки" от 3 до 30 миллисекунд, время формирования между группами колеблется от 50 до 200 миллисекунд. Электрическая активность клетки отражает кодировку информации, которую нейрон либо воспринимает и кодирует, либо производит и, кодируя ее на электрический язык, передает по аксону другой клетке. Т.е. электрическая активность - это кодировка информации. Существует несколько видов кодировки информации: 1. неимпульсная кодировка информации 2. импульсная кодировка информации Группа нейронов способна к пространственно-временной кодировке информации. Неимпульсная кодировка информации - это кодировка информации за счет изменения уровня потенциала мембраны и КУД. При действии постоянного тока на ткань нейрон использует оба приема неимпульсной кодировки информации. Кодировка проявляется функционально - изменением возбудимости. Импульсная кодировка информации осуществляется за счет изменения частотных характеристик и конфигурации импульсов при ответной реакции. При вызванной электрической активностьи информация кодируется межимпульсными интервалами, а так же продолжительностью латентного /скрытого/ периода (период от нанесения раздражения до появления активной реакции). Билет 16 1. Нервные проводники, классификация, физиологические свойства. Механизмы распространение возбуждения по безмиелиновым и миелиновым нервным волокнам. Законы проведения возбуждения по нервным волокнам. Классификация нервных волокон по скорости проведения возбуждения. Нервные проводники… Нервные проводники обладают 2-мя важнейшими физиологическими свойствами: возбудимостью и проводимостью. Прежде всего, они отличаются друг от друга проводимостью (способностью проводить возникшее возбуждение). Мерой проводимости является скорость проведения возбуждения. Скорость проведения возбуждения зависит от толщины проводника (чем толще проводник, тем больше скорость проведения возбуждения). Все волокна по толщине, а значит и по скорости проведения возбуждения, могут быть разделены на 3 группы: А, В, С. Волокна А и В относятся к миелинизированным волокнам, а волокна С - немиелинизированные. Волокна группы А делятся на 4 подгруппы: 1)А-альфа. Диаметр=13-22 мк; скорость проведения 70-120 м/с. К ним относятся эфферентные волокна скелетных мышц, кроме того афферентные волокна от рецепторов мыщц (мышечных веретён); 2)А-бета. Диаметр=8-13 мк; скорость- 40-70 м/с. К ним относятся афферентные волокна от рецепторов давления и тактильных рецепторов (воспринимающих прикосновение); 3)А-гамма. Диаметр=4-8 мкм; скорость проведения возбуждения 15-40 м/с. К ним относится большое число афферентных волокон; 4)А-дельта. Диаметр=1-4 мкм; скорость проведения возбуждения 5-15 м/с. К ним относятся афферентные волокна от рецепторов боли и температур Волокна В - это преганглионарные волокна вегетативной нервной системы. Волокна С - это постганглионарные волокна вегетативной нервной системы. Законы проведения возбуждения 1.Закон двухстороннего проведения. В изолированном нервном проводнике возбуждение распространяется в двух направлениях 2.Закон физиологической целостности /анодный блок, катодическая депрессия - анатомическая целостность сохранена, физиологическая нарушена/ 3.Закон изолированного проведения возбуждения/возбуждение не переходит с волокна на волокно, изоляция-швановские клетки/ Механизмы проведения возбуждения В безмякотных волокнах – последовательно за счет разности потенциалов между возбужденным и невозбужденным участком. В мякотных волокнах – скачкообразно /сальтоторно/, может через 2-3 перехвата Раньве. 2. Лимфатическая система, ее функции. Лимфообразование, его механизм. Факторы, обеспечивающие движение лимфы по лимфатическим сосудам. Регуляция лимфообразования и лимфотока. Сразу говорю у шатилло получила за это 0))) В организме наряду с системой кровеносных сосудов имеется система лимфатических сосудов. Она начинается с разветвленной сети замкнутых капилляров, стенки которых обладают высокой проницаемостью и способностью всасывать коллоидные растворы и взвеси. Лимфатические капилляры впадают в лимфатические сосуды, по которым находящаяся в них жидкость — лимфа — притекает к двум крупным лимфатическим протокам — шейному и грудному, впадающим в подключичные вены. В отличие от кровеносных сосудов, по которым происходит как приток крови к тканям тела, так и ее отток от них, лимфатические сосуды служат лишь для оттока лимфы, т. е. возвращают в кровь поступившую в ткани жидкость. Лимфатические сосуды являются как бы дренажной системой, удаляющей избыток находящейся в органах тканевой, или интерстициальной, жидкости. Важно, что оттекающая от тканей лимфа по пути к венам проходит через биологические фильтры — лимфатические узлы. Здесь задерживаются и не попадают в кровоток некоторые чужеродные частицы, например бактерии и т. п. Они поступают из тканей в лимфатические, а не в кровеносные капилляры вследствие более высокой проницаемости стенок первых по сравнению со вторыми. Состав и свойства лимфы Лимфа, собираемая из лимфатических протоков во время голодания или после приема нежирной пищи, представляет собой бесцветную, почти прозрачную жидкость, отличающуюся от плазмы крови в 3—4 раза меньшим содержанием белков. Лимфа грудного протока, а также лимфатических сосудов кишечника через 6—8 ч после приема жирной пищи непрозрачна, молочно-белого цвета, так как в ней содержатся эмульгированные жиры, всосавшиеся в кишечнике. Вследствие малого содержания белков вязкость лимфы меньше, а относительная плотность ниже, чем плазмы крови. Реакция лимфы щелочная. В лимфе содержится фибриноген, поэтому она способна свертываться, образуя рыхлый, слегка желтоватый сгусток. Лимфа, оттекающая от разных органов и тканей, имеет различный состав в зависимости от особенностей их обмена веществ и деятельности. Так, лимфа, оттекающая от печени, содержит больше белков, чем лимфа конечностей. Из лимфатических сосудов желез внутренней секреции оттекает лимфа, содержащая гормоны. В лимфе обычно нет эритроцитов, а есть очень небольшое количество зернистых лейкоцитов, которые выходят из кровеносных капилляров через их эндотелиальную стенку, а затем из тканевых щелей поступают в лимфатические капилляры. При повреждении кровеносных капилляров, в частности при действии ионизирующей радиации, проницаемость их стенок увеличивается и тогда в лимфе могут появляться эритроциты и зернистые лейкоциты в значительном количестве. В лимфе грудного протока имеется большое число лимфоцитов. Последнее обусловлено тем, что лимфоциты образуются в лимфатических узлах и из них с током лимфы переносятся в кровь. Образование лимфы Лимфообразование связано с переходом воды и ряда растворенных в плазме крови веществ из кровеносных капилляров в ткани, а из тканей в лимфатические капилляры. Стенка кровеносных капилляров представляет собой полупроницаемую мембрану. В ней имеются ультрамикроскопические поры, через которые происходит фильтрация. Величина пор в стенке капилляров разных органов, а, следовательно, и проницаемость капилляров неодинаковы. Так, стенка капилляров печени обладает более высокой проницаемостью, чем стенка капилляров скелетных мышц. Именно этим объясняется тот факт, что примерно больше половины лимфы, протекающей через грудной проток, образуется в печени. Проницаемость кровеносных капилляров может изменяться в различных физиологических условиях, например под влиянием поступления в кровь так называемых капиллярных ядов (гистамин и др.) Вода и растворенные в ней низкомолекулярные вещества: неорганические соли, глюкоза, а также кислород и другие газы, находящиеся в плазме крови, могут легко переходить из крови в ткани через стенку артериального колена капилляра. Давление крови в артериальном колене капилляра, равное примерно 30—35 мм рт. ст., способствует переходу воды из плазмы крови в тканевую жидкость. Растворенные в плазме высокомолекулярные вещества — белки плазмы крови — не проходят через эндотелиальные клетки капилляров и остаются в кровяном русле. Создавая онкотическое давление, белки тем самым способствуют задержке воды в кровяном русле. Величина онкотического давления белков плазмы крови в артериальном колене капилляра примерно 25 мм рт. ст. Таким образом, гидростатическое давление в капилляре способствует выходу воды из кровяного русла в тканевую жидкость, а онкотическое давление плазмы крови задерживает выход воды. Фильтрационное давление, обеспечивающее переход воды (и растворенных в ней низкомолекулярных веществ) из кровяного русла в тканевую жидкость, должно быть равным разности между указанными двумя давлениями, т. е. примерно 6—10 мм рт. ст. Долгое время считали, что именно это давление обеспечивает транспорт воды и растворенных в ней веществ из кровяного русла в ткани. Однако 5—10 мм рт. ст. является величиной незначительной, которая к тому же уменьшается при падении уровня общего артериального давления. Если бы фильтрация, т. е. переход воды и растворенных в ней нужных для тканей веществ, обеспечивалась только разностью между гидростатическим и онкотическим давлением, то этот процесс мог бы нарушаться даже при небольших колебаниях уровня артериального давления (например, при изменении положения частей тела в пространстве). Однако нарушения фильтрации не происходит вследствие того, что, помимо упомянутых факторов, транспорт воды из крови в тканевую жидкость, облегчается действием двух факторов: периодическим колебанием давления в тканях в результате пульсации проходящих через ткани артерий, а также вследствие периодического сокращения скелетных мышц и гладких мышц внутренних органов, вызывающих периодическое сдавливание лимфатических сосудов; наличия в лимфатических сосудах клапанов, вследствие чего периодическое сдавливание их вызывает активное нагнетание жидкости, заполняющей лимфатические сосуды, в центральном направлении, т. е. отсасывание ее из тканей. Последнее приводит к тому, что давление тканевой жидкости может стать ниже атмосферного примерно на 8 мм рт. ст. При этом фильтрационное давление, обеспечивающее переход жидкости из артериальной части капилляров в ткани, больше разности гидростатического и онкотического давлений на величину отрицательного давления, существующего в тканевой жидкости (на 8 мм рт. ст.), и составляет около 15—20 мм рт. ст. Присасывающая сила отрицательного давления в тканях действует независимо от изменения гидростатического давления в капиллярах, т. е. от уровня системного артериального давления, что увеличивает надежность процесса перехода воды из кровяного русла в ткани и образование лимфы. Фактором, содействующим лимфообразованию, может быть повышение осмотического давления тканевой жидкости и самой лимфы. Этот фактор приобретает большое значение, если в тканевую жидкость и лимфу переходит значительное количество продуктов диссимиляции. Большинство продуктов обмена имеет относительно низкую молекулярную массу и потому повышает осмотическое давление тканевой жидкости, что в свою очередь обусловливает поступление в ткани воды из крови и усиливает лимфообразование. Усиление лимфообразования происходит при введении в кровь некоторых так называемых лимфогонных веществ. Лимфогонным свойством обладают вещества, извлеченные из земляники, пептоны, гистамин и др. Механизм усиленного лимфообразования и лимфообращения при действии лимфогонных веществ состоит в том, что они увеличивают проницаемость стенки капилляров. Действие лимфогонных веществ аналогично действию факторов, вызывающих воспалительные реакции (бактерийные токсины, ожог и т. п.). Последние также увеличивают проницаемость капилляров, что ведет к образованию воспалительного экссудата. Эндотелиальная стенка капилляров не является пассивной перепонкой, через которую фильтруется плазма крови. В разных тканях через стенки капилляров в лимфу поступают из крови различные вещества. Стенка капилляров обладает избирательной проницаемостью. Особенно отчетливо эта избирательность проявляется в капиллярах мозга, которые не пропускают из крови ряд веществ, свободно проходящих через капиллярную стенку других органов. Механизмы передвижения лимфы В нормальных условиях в организме существует равновесие между скоростью лимфообразования и скоростью оттока лимфы от тканей. Отток лимфы из лимфатических капилляров совершается по лимфатическим сосудам, которые, сливаясь, образуют два крупных лимфатических протока, впадающих в вены. Таким образом, жидкость, вышедшая из крови в капиллярах, снова возвращается в кровяное русло, принося ряд продуктов клеточного обмена. В перемещении лимфы определенную роль играют ритмические сокращения стенок некоторых лимфатических сосудов. В минуту происходит 8—10, а по данным отдельных исследователей, 22 сокращения. Перемещение лимфы при сокращении сосудистой стенки в связи с существованием клапанов в лимфатических сосудах происходит только в одном направлении. Морфологически обнаружены нервные волокна, подходящие к крупным лимфатическим сосудам, а физиологическими экспериментами показано влияние симпатических нервов на лимфоток. При раздражении симпатического пограничного ствола наблюдали настолько сильное сокращение и спазм лимфатических сосудов, что движение лимфы в них прекращалось. Установлено также, что лимфоток изменяется рефлекторно при болевых раздражениях, повышении давления в каротидном синусе и при раздражении рецепторов кровеносных сосудов многих внутренних органов. В передвижении лимфы большое значение имеют отрицательное давление в грудной полости и увеличение объема грудной клетки при вдохе. Последнее вызывает расширение грудного лимфатического протока, что облегчает движение лимфы по лимфатическим сосудам. Движению лимфы, так же как и венозной крови, способствуют сгибания и разгибания ног во время работы и ходьбы. При мышечных сокращениях лимфатические сосуды сдавливаются, что вызывает перемещение лимфы только в одном направлении. Количество лимфы, возвращающейся в течение суток через грудной проток в кровь, составляет у человека около 1000—3000 мл. Билет 17 1. Нейросекреция. Строение, классификация синапсов, их физиологические свойства. Медиаторы, природа и свойства медиаторов, синаптические рецепторы, их характеристика, системы образования и инактивации медиаторов. Этапы проведения возбуждения в синапсе. Особенности передачи возбуждения в синапсе. Нейросекреция - это способность нейрона синтезировать различные химические соединения, которые обладают биологической активностью. Нейроны выделяют с помощью нейросекрета две группы веществ: 1. нейрогормоны - они выделяются специализированным нейроном, его телом, аксоном в межклеточную жидкость, во внутреннюю среду организма и там вызывают изменения, воздействуя на специфические для них клеточные рецепторы. 2. медиаторы - это тоже биологически активные вещества, они также синтезируются в нервных клетках. Однако, они выделяются не везде. Они концентрируются и выделяются только в месте контакта нейрона с другими клетками. Контакт нейрона с другими клетками называется синапс. Синапсы делятся по способу передачи возбуждения на синапсы с электрической передачей возбуждения синапсы с химической передачей возбуждения Первая группа синапсов немногочисленна до 1-3% от общего числа. Не известны пути влияния на процесс проведения. Вторая группа – синапсы с химической передачей. Строение. Пресинаптическая мембрана - аксон, подходя к объекту иннервации, распадается на терминали, на тончайшие нервные волоконца, которые заканчиваются небольшим утолщением. Свойства пресинаптической мембраны: а) содержит медиатор - находится в везикулах. У каждого конкретного синапса всегда один и тот же медиатор, т.е. какой медиатор в данном синапсе генетически запрограммирован. Один конкретный синапс - мономедиаторен. б) область пресинаптической мембраны электровозбудима - она возбуждается и мембрана деполяризуется, если в эту область по аксону к терминали приходит потенциал действия. в) область пресинаптической мембраны - хемоневозбудима. Химическим путем мембрану не возбудить. У каждого медиатора существует целая система синтеза в нейроне. Медиатор образуется в теле нейрона и диффундирует по аксону (аксональный ток), накапливается в области пресинаптической мембраны, частично медиатор образуется в области пресинаптической мембраны. Второй путь накопления медиатора в синапсе - аптейк - обратный захват медиатора областью пресинаптической мембраны, это - высокоэнергетический процесс. В области пресинаптической мембраны медиатор прочно «упаковывается» в везикулы, которые в покое прочно связаны с цитоскелетом клетки. 2. Постсинаптическая мембрана - это мембрана второй клетки, иннервируемой клетки. Субсинаптическая мембрана - участок постсинаптической мембраны, на котором её свойства выражены максимально. Свойства субсинаптической мембраны : а) она хемовозбудима. б) она электроневозбудима в) она имеет большое число однотипных хеморецепторов, которые воспринимают действие медиатора и высокую концетрацию соответствующих ионных каналов (хемочувствительные,рецепторуправляемые каналы) 3. Синаптическая щель. Размер 200-500 ангстрем /20-50 мкм (микрон)/, заполнена межклеточной жидкостью, существует периферический барьер, /что это такое никто не знает/ препятствующий выходу медиатора за пределы синапса. Механизм передачи возбуждения через синапс Когда возбуждение приходит в область пресинаптической мембраны, она деполяризуется, это: 1. активирует кальциевые потенциалзависимые каналы N-типа, они медленные, быстро инактивируются. В клетку входит небольшое количество кальция 2. Вошедший кальций связывается со специальным белком (кальций - связывающий белок) - синаптосин. Кальций активирует фосфолирирование нескольких молекул синаптосина, вызывая их конформацию, что приводит к ослаблению связей везикул с цитоскелетом клетки и они (везикулы) перемещаются к внутренней поверхности пресинаптической и прилипает к ней. Это вызывает разрыв везикул (ферментативный протеолиз). Параллельно прилипание к мембране активирует мембранный белок- синаптопор, который выступает как переносчик медиатора через мембрану либо как белок - переносчик за счет конформации молекулы, либо образуя транспортный канал, либо вызывая экзоцитоз. Медиатор диффундирует в синаптическую щель, он не выходит за пределы синаптической щели, т.к. сбоку имеются синаптические барьеры, которые препятствуют выходу медиатора за пределы синапса (что такое синаптические барьеры - неизвестно). Молекулы медиатора выделяются квантами. Количество выделившихся квантов зависит от силы и частоты раздражения, т.е. передача возбуждения в синапсе за счёт этого квантируется, она становится дискретной. Молекулы медиатора идут в к постсинаптической мембране, в область субсинаптической мембраны, которая имеет много однотипных хеморецепторов и образуют комплекс «медиатор – рецептор». Это вызывает активацию соответствующих рецепторуправляемых ионных каналов. Все медиаторы можно разделить на возбуждающие медиаторы и тормозные медиаторы. Следовательно и синапсы делятся на возбуждающие и тормозные. Возбуждающие медиаторы взаимодействуя с рецептором субсинаптической мембраны вызывают активацию натриевых каналов и формируют входящий натриевый ток, который вызывает возникновение частичной деполяризации, т.е рецепторный потенциал, который на уровне синапс обозначают как возбуждающий постсинаптический потенциал (ВПСП). Тормозной медиатор вызывает усиление входящего калиевого тока или входящего ток хлора, т.е. вызывает локальную гиперполяризацию. Это формирует тормозной постсинаптический потенциал (ТПСП). Рисунок. Конечный эффект (потенциал действия или тормозной потенциал) формируется за счет суммации ВПСП или ТПСП. В синапсе известно два вида суммации: 1. Пространственная суммация локальных очагов возбуждения (когда в пространстве суммируются эти локальные очаги и возникает потенциал действия); 2. Временная суммация (когда на одни и те же рецепторы последовательно через короткие интервалы времени воздействуют новые порции медиатора и возникает как бы ступенечка - частичная деполяризация, она не окончилась, на нее наслаивается следующая частичная деполяризация и так поляризация достигает КУДа - временная суммация) В дальнейшем комплекс «медиатор-рецептор» диссоциирует. Если этого не происходит, то в возбуждающих синапсах возникает стойкая деполяризация по типу катодической депрессии, При этом данный рецептор перестает воспринимать какую-либо другую информацию. Поэтому в нормальных, естественных условиях медиатор отсоединяется от рецепторов и разрушается ферментами (холинэстераза и т.д.), которые имеются в синапсе. Примерно 20-30% медиатора удаляется таким образом из синаптической щели. Другой способ инактивации медиатора – аптейк - обратный захват пресинаптической мембраной . За счет этого синапс экономно расходует медиатор. Характерные признаки процесса синаптической передачи: 1) Односторонний характер проведения возбуждения в синапсе от пре- к постсинаптической мембране; 2) Квантовый (парциальный) характер освобождения медиатора; 3) Количество квантов медиатора пропорционально частоте и силе приходящего к синапсу (пресинаптической мембране) нервного раздражения; 4) Синаптическая передача не подчиняется закону "всё или ничего"; 5) Синапс способен к суммации процессов возбуждения; 6) Проведение возбуждения в синапсе осуществляется с задержкой во времени (синаптическая задержка; её величину для центральных синапсов сейчас можно в клинике уже определять); 7) При многократном прохождении возбуждения через синапс возникает эффект облегчения проведения возбуждения - это связано с тем, что возникающее возбуждение наслаивается на остаточные процессы; 8) Для синапса характерно проведение возбуждения с декрементом (с ослаблением по силе); 9) Трансформация - способность синапса изменять частоту пришедшего раздражения (как правило, синапс резко снижает частоту пришедшего раздражения); 10) Лабильность синапса существенно меньше, чем у нервов; 11) Из всех звеньев рефлекторной дуги синапс - наиболее утомляемый и наиболее чувствительный к ядам и недостатку кислорода элемент цепи. Частное свойство: длительное или очень сильное воздействие на синапс приводит к прекращению синаптической передачи, которое обусловлено истощением медиатора в области пресинаптической мембраны (эффект истощения). Все вышеперечисленные закономерности характерны как для синапсов ЦНС, так и для периферических синапсов. Медиаторы и синаптические рецепторы Медиаторы являются 1.приизводными аминокислот. Наиболее широко в ЦНС распространены медиаторы - амины: ацетилхолин - производное холина, катехоламины: адреналин, норадреналин, дофамин - производные тирозина, серотонин - производное триптофана, гистамин - производное гистидина, Другие производные аминокислот - ГАМК, глицин, глютамин и др. 2. Нейропептиды - эндорфины, энкефалины Рецепторы субсинаптической мембраны Название рецептора определено медиатором, с которым он взаимодействует: холинорецепторы, адренорецепторы, дофаминовые рецепторы, серотониновые /триптаминовые/ рецепторы, гистаминовые рецепторы, ГАМК-рецепторы, эндорфиновые рецепторы и т.д. Медиаторы обладают 2 видами действия 1.ионотропное - изменяют проницаемость каналов для ионов 2.метаботропное- через вторичные посредники запускают и тормозят соответствующие процессы в клетках. 2. Гомеостатические функции почек, их характеристика и значение. Выделительная функция кожи, легких, желудочно-кишечного тракта. Почки выполняют ряд гомеостатических функций: 1. регуляция водно-солевого баланса в организме, 2. поддержание постоянства обьема жидкостей тела, 3. поддержание осмотического давления крови (за счет уровня глюкозы, аминокислот, липидов, гормонов в ней), 4. поддержание ионного состава крови, 5.регуляция кислотно-щелочного баланса (рН мочи - от 4,5 до 8,4, тогда как рН крови - постоянная), 6. образование мочи, 7. выделение продуктов обмена веществ, 8. удаление из крови чужеродных соединений и нейтрализация токсических веществ, 9. участие в регуляции развития клеток крови в органах кроветворения - синтез эритропоэтинов и лейкопоэтинов, 10. участие в регуляции артериального давления - синтез и выделение в кровь ренина, 11. секреция ферментов и БАВ (брадикинин, простагландины, урокиназа), 12. участие в регуляции свертывания крови. В основе перечисленных функций лежат процессы, происходящие в паренхиме почек: 1. Клубочковая фильтрация - фильтрация из плазмы крови в капсулу почечного клубочка безбелковой жидкости - первичной мочи. 2. Канальцевая реабсорбция - обратное всасывание воды и растворенных в ней веществ из просвета канальца в капиллярное русло. 3. Секреция - процесс активной деятельности канальцевого эпителия, в результате которого из организма удаляются вещества, не фильтруемые из Мальпигиева клубочка в капсулу Шумлянского-Боумена. 4. Синтез новых соединений, поступающих в кровь или мочу (ренин, уромукоид, гиппуровая кислота, некоторые простагландины и т.д.). Процессы выделения - это конечное звено обмена веществ в организме. В результате него из организма удаляются неиспользуемые продукты обмена. К органам выделения относятся: легкие, желудочно-кишечный тракт, потовые железы, почки. Легкие - выделяют из организма углекислый газ, пары воды, а также некоторые летучие вещества: пары эфира, хлороформа, алкоголя и др. Участвуют в регуляции кислотно-щелочного обмена. Желудочно-кишечный тракт - экскретирует: соли тяжелых металлов, продукты превращения веществ, поступающих с желчью (в частности - желчные пигменты). Слюнные железы и железы желудка выделяют: некоторые тяжелые металлы, ряд лекарственных препаратов (морфий, хинин, салицилаты), некоторые чужеродные органические соединения (красители - индигокармин). Печень - экскретирует: продукты обмена гемоглобина, азотистого метаболизма и многие другие вещества.Поджелудочная железа и кишечник - выделяют: соли тяжелых металлов, лекарственные вещества Потовые железы - экскретируют: воду, минеральные соли, продукты диссимиляции - мочевину, мочевую кислоту, креатинин. Кроме того, при интенсивной мышечной работе через потовые железы может выделяется молочная кислота. При нарушении функции почек роль кожи в выделительных процессах значительно возрастает. Среди органов выделения особое место занимают сальные и молочные железы, которые выделяют не конечные продукты обмена веществ, а продукты, имеющие определенное физиологическое значение (молоко, кожное сало). Главным же выделительным органом являются почки. Билет №18 1. Физиологические свойства и функции поперечно-полосатых (скелетных) мышц. Виды и режимы сокращений скелетных мышц. Фазные мышечные сокращения. Одиночное мышечное сокращение, его фазы. Суммация мышечных сокращений. Тетанус и его виды. Оптимум и пессимум раздражения. Нефазные сокращения, их классификация. Физиологические свойства и функции поперечно-полосатых (скелетных) мышц… Поперечно-полосатая мускулатура составляет основу скелетной мускулатуры. Она обладает двумя важнейшими функциями: 1.Функция движения. 2.Функция поддержания позы (позно-тоническая функция). Поперечно-полосатая мускулатура обладает тремя главными физиологическими свойствами, а именно - возбудимостью, проводимостью и сократимостью. Возбудимость скелетных мышц ниже, чем у нервов, и больше (выше), чем у клеток паренхиматозных органов. Возбудимость скелетных мышц значительно выше, чем у гладкой мускулатуры. Проводимость. Скорость проведения возбуждения в мышцах, ниже, чем в нервах и больше, чем у паренхиматозных тканей. У скелетных мышц проводимость больше, чем у гладких. Сократимость - это способность мышцы уменьшать свою длину или/и увеличивать свое напряжение. Сокращение - это процесс. Процесс сокращения может выражаться в изменении длины (укорочение мышцы), изменении напряжения мышцы, в изменении того и другого показателя. Все мышечные сокращения могут быть: 1. изотонические сокращения - это такие сокращения, когда напряжение (тонус) мышц не изменяется ("изо" - равные), а меняется только длина сокращения (мышечное волокно укорачивается). 2. изометрические - при неизменной длине меняется только напряжение мышц. 3. ауксотонические - смешанные сокращения (это сокращения, в которых присутствует и один и другой компонент). Фазы мышечного сокращения: 1. Латентный период - это время от нанесения раздражения до появления видимого ответа. Время латентного периода тратится на: а) возникновение возбуждения в мышце; б) распространение возбуждения по мышце; в) электромеханическое сопряжение (на процесс взаимосвязи возбуждения с сокращением); г) преодоление вязко-эластических свойств мышц. 2. Фаза сокращения выражается в укорочении мышцы или в изменении напряжения, либо и в том и в другом. 3. Фаза расслабления - возвратное удлинение мышцы, или уменьшение возникшего напряжения или то и другое вместе. 4. Фаза остаточных колебаний С позиций фаз все сокращения делятся на: фазные, нефазные Фазные сокращения - это те сокращения, в которых четко выделяют все три фазы. Нефазные сокращения - это такие сокращения, в которых какая- либо из фаз смазана, отсутствует, растянута на неопределенное время. Фазные сокращения. К ним относятся: одиночное мышечное сокращение, тетанус Одиночное мышечное сокращение: 1. латентный период 2. фаза сокращения 3. фаза расслабления На скелетных мышцах одиночное мышечное сокращение может возникнуть только в экспериментальных условиях (в искусственно созданных условиях). В естественных условиях скелетные мышцы никогда не ответят одиночным мышечным сокращением. Потому что к ним импульсы в естественных условиях приходят группами. Однако одиночное мышечное сокращение лежит в основе всех других видов мышечных сокращений. Тетанус - это длительное суммированное фазное сокращение. 1.всегда суммированные одиночные мышечные сокращения. 2.всегда фазное сокращение (можно выделить все три фазы). Механизм формирования тетануса. В основе формироваия тетанического сокращения лежит процесс суммации. По мнению Гельмгольца, крупнейшего немецкого физиолога, в основе тетануса лежит суммация мышечных сокращений. По мнению Введенского, первично наблюдается суммация возбуждения, а вторично - суммация мышечных сокращений. Если в момент расслабления мышцы, когда она находится в фазе относительной рефрактерности, нанести повторное раздражение, то виден эффект суммации - одно мышечное сокращение наслоится на другое. Если нанести через какой-то интервал времени еще одно раздражение, то снова виден эффект суммации. И каждый раз новая суммация на серию импульсов будет начинаться с нового уровня. Зубчатый тетанус возникает тогда, когда импульс приходит в фазу расслабления. Но бывает, что приходящий импульс застает мышцу на пике сокращения и тогда возникает полная суммация амплитуды. При такой частоте возникает сокращение - гладкий тетанус (возрастание амплитуды). Для одного и того же объекта в одном и том же физиологическом состоянии большая частота будет давать гладкий тетанус, меньшая - зубчатый, совсем редкая частота - одиночное мышечное сокращение. Если уменьшить частоту, то в какой-то момент гладкий тетанус перейдет в зубчатый. Для каждой конкретной мышцы своя частота получения гладкого и зубчатого тетануса. От функционального состояния мышцы (от ее лабильности) зависит, какой будет тетанус - гладкий или зубчатый. Нефазные мышечные сокращения 1. Тонус - это длительное, суммированное, постоянно существующее у мышцы напряжение мышечных волокон. Т.е. тонус у живой мышцы существует всегда. В нем нет начала и нет конца. Поэтому тонус относят к нефазным мышечным сокращениям. Это признак того, что мышечный объект живой. Выраженность его может меняться. В нем нельзя выделить фазы. 2. Контрактура - это длительное, суммированное мышечное сокращение с растянутым периодом расслабления. 2. Регуляция функции почек. Значение АД в регуляции почек. Нервная регуляция функции почек. Гуморальная регуляция функции почек. Регуляция мочеобразования. 1. Нервная. 2. Гуморальная (наиболее выраженная). Нервная регуляция мочеобразования - рефлекторное расширение сосудов почек увеличивает диурез. Раздражение симпатических волокон приводит к сужению почечных сосудов, а это в свою очередь - снижает фильтрационное давление и уменьшает или даже прекращает диурез. Нервная система может рефлекторно изменить секрецию гормонов гипофиза (вазопрессин или АДГ) и коры надпочечников (из "минералокортикоидов" - альдостерон - Na - сберегающий). Нервная же система может вызвать болевую анурию (при болевых раздражениях выброс АДГ усиливается). Всякое повышение кровяного давления, связанное с возбуждением нервной системы, приводит к усилению клубочковой фильтрации, а понижение к уменьшению фильтрации. Эти реакции почек направлены на поддержание уровня кровяного давления и постоянства объема крови. Гуморально-гормональная регуляция мочеобразования: Она более выражена по сравнению с нервной (доказано в опытах на собаках с пересадкой почки в область шеи, где почка функционировала, как и в норме, в соответствии с условиями). Гормоны, регулирующие работу почек (мочеобразование) Вазопрессин (АДГ - антидиуретический гормон). В нормальных условиях на клубочковую фильтрацию не влияет, но усиливает обратное всасывание воды - тем самым уменьшает диурез. При недостаточной функции задней доли гипофиза, выделяющей АДГ, стенка дистального отдела нефрона становится непроницаемой для воды и почка выводит ее до 25 литров в сутки - несахарное мочеизнурение. Альдостерон (гормон коркового вещества надпочечников) - Na+ - сберегающий гормон - усиливает реабсорцию натрия в проксимальных канальцах, усиливает секрецию К+ в дистальных канальцах. Натрийуретический гормон вырабатывается в предсердии при раздражнии волюморецепторов - (действует на проксимальные канальцы, восходящую часть петли Генли) Инсулин- снижает реабсорбцию К+. Паратгормон - ( влияет на проксимальные и дистальные канальцы) - усиливает реабсорбцию Са2+, снижает канальцевую реабсорбцию фосфата, Кальцитонин - уменьшает реабсорбцию Са2+ в проксимальных канальцах. Ренин-ангиотензиновая система (ренин-ангиотензиноген-ангиотензин I-ангиотензин II) Выброс ренина происходит при снижении артериального давления, так как возникает угроза прекращения фильтрации и образования первичной мочи. Ангиотензин 11 представляет собой одно из всех известных сосудосуживающих веществ. Длительно повышает тонус гладкой мускулатуры артериол, это приводит к повышению сосудистого сопротивления, что в свою очередь повышает артериальное давление и восстанавливает фильтрацию. Кроме этого, ангиотензин 11вызывает выброс альдостерона. - Адреналин, норадреналин (гормоны мозгового слоя надпочечников) усиливают выработку ренина, непосредственно возбуждая адренорецепторы юкстагломерулярных клеток, а также косвенно активируя барорецепторы в результате сокращения гладкой мускулатуры приносящих артериол. Билет №19 1. Условные рефлексы. Характерные признаки условных рефлексов, отличие условных рефлексов от безусловных. Классификация условных рефлексов, их биологическое значение. Условия выработки условного рефлекса. Периоды формирования условного рефлекса. Механизм образования условного рефлекса. Временная связь, основные процессы, обеспечивающие ее формирование. Динамический стереотип, его свойства. Высшая нервная деятельность (ВНД) подразумевает все многообразие психической деятельности и поведенческих реакций человека и высших животных. И.П. Павлов показал, что, в то время, как в нижележащих отделах ЦНС рефлекторные реакции осуществляются врожденными, наследственно закрепленными нервными связям, в коре головного мозга нервные связи образуются заново в процессе индивидуальной жизни в результате сочетания бесчисленных действующих на организм и воспринимающихся корой раздражителей. Открытие этого факта позволило разделить всю совокупность рефлекторных реакций на две группы – 1.Безусловные рефлексы. 2.Условные рефлексы Одним из основных актов высшей нервной деятельности является условный рефлекс. Биологический смысл условного рефлекса Все условные рефлексы представляют одну из форм приспособительных реакций организма к изменяющимся условиям внешней среда, это индивидуальная форма адаптации, которая является более точной формой приспособления живых организмов к изменяющемуся окружающему миру. В процессе формирования условного рефлекса условный раздражитель приобретает СИГНАЛЬНЫЙ ХАРАКТЕР. УСЛОВНЫЙ РЕФЛЕКС помогает организму лучше приспосабливаться к действию БЕЗУСЛОВНОГО РАЗДРАЖИТЕЛЯ. Условный рефлекс лежит в основе формирования любого навыка, в основе всего процесса обучения. Структурно-функциональной базой условного рефлекса является кора больших полушарий. РАЗЛИЧИЯ УСЛОВНЫХ И БЕЗУСЛОВНЫХ РЕФЛЕКСОВ 1)безусловные рефлексы врожденные, условные рефлексы приобретенные в течение жизни. 2) безусловные рефлексы являются видовые признаками, а условные рефлексы – индивидуальными признаками. 3)Безусловные рефлексы относительно постоянны в течение жизни особи, условные рефлексы образуются, изменяются, исчезают в течении жизни в связи с изменяющимися условиями жизни. 4)Безусловные рефлексы реализуются в пределах нервной системы по структурам закрепленным за ними генетически, а условные рефлексы- по функционально организующимся временным связям. 5)безусловные рефлексы свойственны всем отделам ЦНС и реализуются на уровне подкорковых образований, ствола мозга, спинного мозга, а условные рефлексы для своего образования и реализации требует целостности коры больших полушарий. 6) Безусловный рефлекс имеет свое специфическое рецептивное поле и специфические раздражители, условные рефлексы могут образовываться с любого рецепторного поля на разнообразные раздражители. 7) Безусловные рефлексы возникают на действие натуральных специфических раздражителей, а условные раздражители всегда имеют сигнальный характер и вызывают реакцию приспосабливающую организм к предстоящему действию натурального раздражителя. Классификация условных рефлексов. А).Все условные рефлексы подразделяются на те же группы, что и безусловные на базе которых они выработаны. 1)По биологическому значению различают следующие условные рефлексы: 1.Пищевые. 2.Оборонительные. 3. Половые. 4. Статокинетические. 5. Локомоторные. 6. Ориентировочные. 7. Поддерживающие гомеостаз и др. 2)По виду рецепторов на которые воздействует условный раздражитель различают: а) экстероцептивные, б) интероцептивные, в) проприоцептивные условные рефлексы 3 По характеру ответа и отделу ЦНС, обеспечивающего ответную реакцию условные рефлексы разделяют на: а) соматические/двигательные/ и б) вегетативные/сердечно-сосудистые и др./ Б).Условные рефлексы подразделяются по отношению сигнального /условного/ раздражителя к безусловному/подкрепляющему/ раздражителю. Условные рефлексы делятся на натуральные и искусственные /лабораторные/. натуральные условные рефлексы формируются на сигналы /условные раздражители/, которые являются естественными признаками подкрепляющего/безусловного раздражителя/, на пример, вид, вкус, запах (условные раздражители) пищи(безусловный раздражитель) при выработке натурального пищевого условного рефлекса. искусственные условные рефлексы формируются на условные раздражители не имеющие прямого отношения к безусловному раздражителю(свет и пища) Они подразделяются по: 1)сложности на: а) простые условные рефлексы, вырабатываемые на одиночные раздражители /классические условные рефлексы/, б) комплексные условные рефлексы, вырабатываемые на несколько сигналов действующих одновременно и/или последовательно, в) цепные рефлексы, вырабатываемые на цепь раздражителей каждый из которых вызывает условный рефлекс, г) инструментальный условный рефлекс, при выработке, а за тем реализации которого субъект обязательно совершает действие направленное на поиск/включение/ безусловного подкрепления. 2)соотношению времени действия условного и безусловного раздражителей делятся на: а)наличные и б)следовые. -Наличные условные рефлексы Условный раздражитель имеет сигнальное назначение и по этому при выработке условного рефлекса начинает свое действие раньше безусловного. СТРОГО СОВПАДАЮЩИЙ. Безусловный раздражитель начинает действовать через 0,5-2"/сек/ после начала действия условного, а затем они вместе действуют 30-60 сек ОТСТАВЛЕННЫЙ. Безусловный раздражитель начинает действовать через 5-30" после начала действия условного, а затем они вместе действуют 30-60 с. Запаздывающий. Безусловный раздражитель начинает действовать через 1,5-2 минуты после начала действия условного, а затем они вместе действуют 30-60 сек -Следовые условные рефлексы. Безусловный раздражитель начинает действовать после завершения действия условного раздражителя/ интервал от 30 сек до нескольких минут/. Возбуждение от безусловного раздражителя совпадает со следовым возбуждением условного. В)по выработке условного рефлекса на базе другого условного рефлекса. Различают условные рефлексы: 1 порядка –вырабатываются на базе безусловных рефлексов, 2 порядка – если в качестве условного раздражителя выступает условный рефлекс 1 порядка. У собаки – УР до 3 порядка включительно, у свиньи и ребенка – 6 порядка, у взрослого человека – 7 и 8 порядка, до 11 порядка. Г) Условные рефлексы подразделяют в зависимости от сигнальных систем. Различают условные рефлексы а)на сигналы 1 сигнальной системы и б)на сигналы 2 сигнальной системы. Условия выработки условных рефлексов 1. Наличие двух раздражителей (условного и безусловного). Условный раздражитель – любой "индифферентный раздражитель", не вызывающий оборонительной реакции, носит сигнальный характер. 2. По силе условные и безусловный раздражители должны быть ОПТИМАЛЬНЫЕМИ (не слабые, достаточно сильные, но и не сверхсильные) 3. Безусловный раздражитель должен быть сильнее условного. 4. Совпадение во времени действия (определенное время условный. и безусловный раздражители должны действовать вместе) 5. Начало действия условного раздражителя должно опережать начало действия безусловного раздражителя./сигнальный характер условного раздражителя/ 6. Многократность сочетаний действия условного и безусловного раздражителей. 7. Бодрствующее состояние коры больших полушарий. 8. Не должно быть посторонних раздражителей. (Чтобы рефлекс выработался в чистом виде и появился быстро; "башня молчания"). 9. наличие соответствующей доминирующей мотивации. Периоды образования условного рефлекса 1.Скрытый период- после нескольких сочетанных предъявлений условного и безусловного раздражителей, предъявление только условного раздражителя условный ответ еще не возникает. 2. период неустойчивых условных рефлексов- когда не на каждое предъявление условного стимула возникает условный ответ, на некоторые предъявления условного раздражителя условная реакция отсутствует./еще недостаточно количество сочетанных предъявлений/. 3.период генерализации- условный рефлекс возникает и на сходные/похожие на условный/ раздражители. 4. период специализации- условный рефлекс возникает только на условный стимул, на который был выработан. 5. финальная стадия-появление условного рефлекса стабильной величины. Условный рефлекс считается выработанным тогда, когда безусловная реакция возникает на действие условного раздражения без подкрепления безусловным раздражителем., то есть доведена до автоматизма и становится стереотипной. МЕХАНИЗМ ОБРАЗОВАНИЯ УСЛОВНОГО РЕФЛЕКСА В основе выработки УСЛОВНОГО РЕФЛЕКСА лежит образование ВРЕМЕННОЙ СВЯЗИ /между центрами восприятия условного и безусловного раздражителя/. По И.П. Павлову – такая связь между центрами восприятия условного и безусловного раздражителя замыкается в коре больших полушарий. 1. При первом сочетании – в коре – 2 очага возбуждения. Очаг возбуждения на безусловный раздражитель обладает свойством доминанты./т.к. силы безусловного раздражителя всегда больше чем условного/. Одно из свойств ДОМИНАНТЫ – способность стягивать на себя возбуждение из других возбужденных участков мозга, следовательно, сюда же стягивается и возбуждение, возникшее на действие условного раздражителя. Это – ЭФФЕКТ ПОСЛЕДЕЙСТВИЯ (длительная частичная деполяризация мембран). 2. При последующих повторных сочетаниях действия условного и безусловного раздражителей наблюдается ФЕНОМЕН ОБЛЕГЧЕНИЯ (возбуждение по этому пути будет проходить все легче и легче; на фоне и за счет феномена последействия снижается порог возбуждения). 3. После многократных повторений сочетания условного и безусловного раздражителей, предъявление только условного раздражителя/без безусловного/, в центре условного раздражения будет возникать возбуждение, которое пойдет только по выработанному пути от центра воспринимающего условный раздражитель к центру, который ответственен за формирование безусловного рефлекса и вызовет в нем возбуждение. Это явление называется – ФЕНОМЕН ПРОТОРЕНИЯ ПУТИ, который является заключительным этапом образовалания ВРЕМЕННОЙ СВЯЗИ. 1.Временная связь по Павлову замыкается в коре больших полушарий. 2.По Асратяну временная связь при формировании некоторых условных рефлексов может замыкаться через подкорку, но и без коры больших полушарий в этом случае условный рефлекс реализоваться не сможет. 3.По П.К. Анохину временная связь образуется за счет интегративной деятельности группы нейронов или даже одного нейрона. ДИНАМИЧЕСКИЙ СТЕРЕОТИП В течении жизни – ряд комплексных реакций, которые человек выполняет автоматически (привычки, навыки), они образуются при выработке соответствующего динамического стереотипа это понятие в физиологию и медицину ввел Павлов. |