Главная страница
Навигация по странице:

  • Відгалуження сучасної біохімії

  • 2. Об’єкти вивчення та завдання біохімії. Прові д на роль біохімії у встановленні молекулярних механізмів патогенезу хвороб людини. Об’єктами вивчення

  • 4. Історія біохімії; розвиток біохімічних досліджень в Україні.

  • 5. Структурно-функціональні компоненти клітин, їх біохімічні функції. Класи біомолекул. Їх ієрархія та походження. Біохімічні компоненти клітини

  • Ферменти та коферменти. Регуляція метаболізму

  • Номенклатура ферментів.

  • 1-й клас. Оксидоредуктази

  • 6-й клас. Лігази (синтетази)

  • Механізми дії ферментів.

  • Білети з біологічної хімії (пмк 2) Введення в біохімію. Біохімічні компоненти клітин


    Скачать 0.76 Mb.
    НазваниеБілети з біологічної хімії (пмк 2) Введення в біохімію. Біохімічні компоненти клітин
    Дата29.12.2018
    Размер0.76 Mb.
    Формат файлаdocx
    Имя файла2_5201860828940206934.docx
    ТипДокументы
    #62192
    страница1 из 8
      1   2   3   4   5   6   7   8

    білети з біологічної хімії (пмк №2)
    Введення в біохімію. Біохімічні компоненти клітин
    1. Біологічна хімія ( біохімія) як наука. Місце біохімії серед інших медико-біолгічних дисциплін.
    Біохімія – наука, предметом вивчення якої є хім. cклад організмів людини, тварин, рослин, мікроорганізмів, вірусів та хімічні реакції, в які вступають біоорганічні і біонеорганічні сполуки, що входять до складу цих організмів. Відгалуження сучасної біохімії молекулярна біологія та біотехнологія – все в більшій мірі стають основою теоретичної медицини, впливаючи на напрямки розвитку й інших медико-біологічних наук, зокрема фізіології, морфології, імунології, мікробіології, вірусології тощо.
    2. Об’єкти вивчення та завдання біохімії. Провідна роль біохімії у встановленні молекулярних механізмів патогенезу хвороб людини.
    Об’єктами вивчення є живі організми на різних етапах еволюційного розвитку: віруси, бактерії, рослини, тварини, організм людини як біологічний об’єкт.

    Основними завданнями біохімії є вивчення хімічного складу організму і структури речовин, з яких він складається, послідовності і взаємозв’язку реакцій хімічних перетворень, які характерні для живого організму і відрізняються від неживого.

    Курс біохімії містить наукові відомості, що стосуються біохімічних процесів, які відбуваються в організмі здорової та хворої людини, і засвоєння яких є необхідною передумовою для оволодіння знаннями про молекулярні механізми як фізіологічних ф-цій, так і розвитку патологічних процесів. Біохімічні, молекулярно-біологічні підходи та методи посідають все важливіше місце в діагностичному процесі, контролі за перебігом хвороби та ефективністю лікування.
    3. Зв’язок біохімії з іншими біомедичними науками. Медична біохімія. Клінічна біохімія. Біохімічна лабораторна діагностика.
    Медична біохімія – це розділ біохімії, який вивчає закономірності обміну речовин та їх порушення в умовах як нормального функціонування людського організму, так і виникнення патологічних процесів різного ґенезу, зокрема спричинених дією на організм

    ушкоджуючи факторів біологічного, хімічного, фізичного походження. З метою розв’язання біохімічних механізмів виникнення хвороб в медичній біохімії широко використовується метод моделювання певних патологічних процесів на експериментальних тваринах.

    Клінічна біохімія є підрозділом медичної біохімії, що вивчає біохімічні процеси, які відбуваються в організмі хворої людини, притаманні окремим захворюванням, пов’язані з патогенезом хвороб, і дослідження яких може бути використаним у діагностиці ураження певних органів, тканин, клітинних структур. Важливим розділом клінічної біохімії є клінічна ензимологія. Об’єктом вивчення цього розділу клінічної біохімії є перебіг ферментних реакцій в організмі людини за умов різних захворювань шляхом визначення активності окремих ферментів, ізоферментів та ферментних констеляцій в біологічних рідинах і біоптатах та використання набутої інформації в діагностичному та лікувальному процесах.
    4. Історія біохімії; розвиток біохімічних досліджень в Україні.

    • До початку 19 століття, вважалося, що лише живі організми здатні виробляти молекули, характерні для них. Лише в 1828 році Фрідріх Велер опублікував роботу про синтез сечовини, здійснений в лабораторних умовах, довівши, що органічні сполуки можуть бути створені штучно.

    • Після робіт Велера поступово почали встановлюватися такі наукові поняття, як дихання, бродіння, ферментація, фотосинтез. Вивчення хімічного складу і властивостей сполук, виділених з тварин і рослин, стає предметом органічної хімії (хімії органічних сполук).

    • Початок біохімії також ознаменувався відкриттям першого ферменту, діастази (зараз відомого як амілаза) в 1833 році Ансельмом Паєном.

    • Сам термін «біохімія» був вперше запропонований в 1882 році, проте, вважається, широкого використання він набув після робіт німецького хіміка Карла Нойберга в 1903 році.

    • Починаючи з середини 20 століття, перш за все завдяки розробці нових методів, таких як

    • хроматографія, рентгеноструктурний аналіз, ЯМР-спектроскопія, радіоізотопне мічення, електронна та оптична мікроскопія та, нарешті, молекулярна динаміка й інші методи обчислювальної біології. Ці методи дозволили відкриття і детальний аналіз багатьох молекул і метаболічних шляхів клітини, таких як гліколіз і цикл Кребса.

    • В 1950-х роках Джеймс Ватсон, Френсіс Крік, Розалінда Франклін і Моріс Вілкінс зуміли розшифрувати структуру ДНК та запропонували її зв'язок із генетичною передачею інформації в клітині.

    • В 200-х роках Андрю Файр і Крег Мелло показали роль РНК-інтерференції (RNAi), в придушенні експресії генів.

    • Зараз, направлення біохімічних досліджень протікають в трьох напрямках, сформульованих Майклом Шугаром. Біохімія рослин досліджує біохімію переважно автотрофних організмів та досліджує такі процеси як фотосинтез та інші. Загальна біохімія включає дослідження як рослин, так і тварин і людини, тоді як медична біохімія фокусується переважно на біохімії людини та відхиленнях біохімічних процесів від норми, зокрема в результаті хвороб.


    5. Структурно-функціональні компоненти клітин, їх біохімічні функції. Класи біомолекул. Їх ієрархія та походження.
    Біохімічні компоненти клітини – біомолекули — біоорганічні сполуки, що входять до складу живих організмів та спеціалізовані для утворення клітинних структур і участі в біохімічних реакціях, які становлять сутність обміну речовин та фізіологічних функцій живих клітин.

    Функції біомолекул у живих організмах:

    • участь у біохімічних реакціях обміну речовин в ролі субстратів та проміжних продуктів (метаболітів). Прикладами є моносахариди та їх фосфорні ефіри, жирні кислоти та продукти їх окислення, амінокислоти, кетокислоти, дикарбонові кислоти, пуринові та піримідинові основи тощо;

    • участь в утворенні інших, більш складних молекул — білків, нуклеїнових кислот, полісахаридів, ліпідів (наприклад, амінокислоти, нуклеотиди, вищі жирні кислоти тощо), або біологічних структур (мембран, рибосом, ядерного хроматину тощо);

    • участь у регуляції біохімічних процесів та фізіологічних функцій окремих клітин та цілісного організму. Біомолекулами-регуляторами є вітаміни, гормони та гормоноподібні сполуки, внутрішньоклітинні регулятори—циклічні нуклеотиди цАМФ, цГМФ тощо.

    Головні класи біомолекул, що складають основу структури та функції живих організмів.


    • Білки – біоорганічні високомолекулярні сполуки, молекули яких є гетерополімерами, побудовані із залишків α-L-амінокислот, об’єднаних кислото-амідними (пептидними) зв’язками (—СО—NН-).

    • Пептиди (поліпептиди) – біомолекули, що відрізняються від власне білків меншою молекулярною масою (меншою 5-6 кД) та фізико-хімічними характеристиками. При гідролізі природних білків та пептидів вивільняється близько 20 α-L-амінокислот, розміщення кожної з яких в поліпептидному ланцюзі кодується триплетом нуклеотидів в ДНК геному, що кодує даний білок.

    • Нуклеїнові кислоти — ДНК, РНК — біополімери (біомакромолекули), що складаються з п’яти основних нуклеотидів пуринового та піримідинового ряду, є носіями генетичної інформації у всіх живих організмах, починаючи від найпростіших вірусів до організму людини.

    • Ліпіди та їх похідні — біомолекули різноманітної хімічної будови, головною особливістю яких є їх гідрофобний характер. Ліпіди виконують численні біологічні функції, виступаючи як енергетичний матеріал (триацилгліцероли, або нейтральні жири), основа структури біомембран (фосфоліпіди, гліколіпіди), фізіологічно активні сполуки з регуляторною дією (стероїдні гормони, жиророзчинні вітаміни, ейкозаноїди).

    • Вітаміни — сполуки, що не синтезуються в тваринних організмах, але необхідні для життєдіяльності, зокрема є компонентами метаболізму, за участю яких функціонують певні найважливіші ферментні системи.

    • Гормони – фізіологічно активні сполуки, що продукуються залозами внутрішньої секреції (ендокринними залозами) або іншими спеціалізованими клітинами і діють як біорегулятори, контролюючи перебіг біохімічних реакцій та фізіологічних функцій в організмі.

    • Нейромедіатори (нейротрансміттери) – біомолекули, що забезпечують передавання хімічних сигналів (нервових імпульсів) у нервовій системі з одного нейрона на інший або з нейрона на ефекторний орган.



    Ферменти та коферменти. Регуляція метаболізму
    1. Ферменти: визначення; властивості ферментів як біологічних катплізаторів.
    Ферменти (ензими) – біологічні каталізатори білкової природи, які синтезуються в клітинах живих організмів і забезпечують необхідні швидкість і координацію біохімічних реакцій, що становлять метаболізм.

    Властивості ферментів:

    • ферменти значно підвищують швидкість перебігу біохімічних реакцій, але не входять до складу кінцевих продуктів реакції; ферменти забезпечують перебіг лише тих біохімічних реакцій, які можливі згідно з законами термодинаміки;

    • ферменти прискорюють швидкість як прямої, так і зворотної реакції перетворення субстрату, не змінюючи константи рівноваги (Кр) реакції та зменшуючи термін часу до досягнення стану рівноваги (або стаціонарного стану у відкритій метаболічній системі);

    • протягом реакції фермент певним чином взаємодіє із субстратом, що перетворюється, але до складу кінцевих продуктів реакції не входить. Під час перебігу біохімічної реакції, що каталізується, відбувається циклічний процес, в ході якого фермент та субстрат підлягають ступінчастому перетворенню з утворенням продукту реакції та регенерацією ферменту;

    • ферменти є високоспецифічними каталізаторами, тобто діють, як правило, на структурно близькі субстрати, що мають певний хімічний зв’язок, структурно подібні радикали або функціональні групи. Проявом високої специфічності ферментів є їх стереоспецифічність, тобто здатність перетворювати тільки певні стереоізомери, наприклад L- або L- амінокислоти, D- або L-моносахариди;

    • відповідно до білкової природи, каталітична активність ферментів дуже чутлива до змін фізико-хімічних властивостей середовища (рН, температури), які можуть впливати на структурну організацію молекул ферментів, спричиняючи в певних умовах їх денатурацію;

    • активність ферментів може суттєво змінюватися під впливом певних хімічних сполук, що збільшують (активатори) або зменшують (інгібітори) швидкість реакції, яка каталізується.


    2. Класифікація та номенклатура ферментів, характеристика окремих класів ферментів.
    Класифікація ферментів. Ферменти поділяють на класи згідно з типом реакції, яку вони каталізують; класи ферментів поділяють на підкласи, а останні - на підпідкласи, у складі яких кожному ферменту відповідає певний номер.

    Номенклатура ферментів. Код ферменту (за систематичною класифікацією ферментів - КФ) складається з чотирьох цифр, що позначають: клас - підклас - підпідклас – порядковий номер ферменту в підпідкласі.

    1-й клас. Оксидоредуктази

    ферменти, що каталізують окислювально-відновлювальні реакції різних типів. До оксидоредуктаз належать дегідрогенази - ферменти, що каталізують реакції дегідрування; оксидази та оксигенази, що окислюють субстрати шляхом приєднання кисню; цитохроми -переносники електронів тощо.

    2-й клас. Трансферази

    ферменти, що каталізують міжмолекулярного переносу хімічних груп. Трансферази поділяють на амінотрансферази, метилтрансферази, ацил-трансферази, фосфотрансферази, глікозилтрансферази —ферменти, що переносять амінні, метальні, ацильні, фосфатні, глікозильні групи відповідно. До трансфераз належать також кінази, зокрема протеїнкінази - ферменти, що каталізують фосфорилування субстратів та інших білків за рахунок фосфатного залишку АТФ.

    3-й клас. Гідролази

    ферменти, що каталізують реакції гідролізу, тобто розщеплення субстратів за участю молекули води. Гідролази здатні розщеплювати складноефірні, пептидні, глікозидні та інші зв’язки - естерази, пептидази та протеази, глікозидази.

    4-й клас. Ліази

    ферменти, що каталізують реакції розщеплення ковалентних зв’язків між атомами С, О, N, S негідролітичним шляхом. До ліаз належать декарбоксилази - ферменти, що відщеплюють від органічних кислот карбоксильну групу у вигляді С02; альдолази, що розщеплюють вуглець-вуглецеві зв’язки з утворенням альдегідів; дегідратази, які відщеплюють від субстратів молекулу води з утворенням подвійного зв’язку.

    5-й клас. Ізомерази

    ферменти, що каталізують реакції ізомеризації субстратів (рацемізації, епімеризації, внутрішньомолекулярної оксидоредукції тощо) - рацемази, епімерази тощо.

    6-й клас. Лігази (синтетази)

    ферменти, що каталізують реакції синтезу біомолекул, тобто утворення нових хімічних зв’язків за рахунок енергії АТФ.



    3. Будова та механізми дії ферментів. Активний та алостеричний (регуляторний) центр.
    Будова ферментів повязана із тим, що більшість з них є олігомерними білками, що складаються із протомерів. Кожна із субодиниць або окремі їх частини відіграють певну роль у процесі функціонування ферменту. Прості (однокомпонентні) ферменти здійснюють ферментативне перетворення субстрату з участю власне білкової молекули.

    Безпосередню участь у реакції бере не весь поліпептидний ланцюг ферменту, а тільки незначна його частина, що близько прилягає до субстрату. У ферментативну реакцію включається тільки декілька залишків амінокислот. Ці залишки можуть розташовуватися в поліпептидному ланцюзі як поруч, так і далеко один від одного, але просторово вони повинні бути досить зближені. Та частина молекули ферменту, яка з'єднується із субстратом, називається активним центром ферменту.

    Активний центр відповідає за специфічну спорідненість ферменту із субстратом, утворення ферменто-субстратного комплексу і каталітичне перетворення субстрату. Розрізняють так звану каталітичну ділянку, де відбувається каталітичне перетворення субстрату, і контактну, або якірну ділянку, що зв'язує фермент із субстратом. За утворення активного центру ферменту, як і за його каталітичну дію, відповідає третинна структура білкової молекули. Отже, при порушенні третинної структури (денатурація) роз'єднуються

    просторово поєднані амінокислотні залишки і, як наслідок, фермент втрачає активність. У складі активного центру простого ферменту знаходиться приблизно 15 залишків амінокислот. Активний центр утворюють залишки таких амінокислот, як серин, цистеїн, гістидин, тирозин, лізин та деякі інші, що надають ферменту як просторової, так і електричної спорідненості із субстратом, також беруть участь в утворенні кофактори даного ферменту: простетичні групи, іони металів. Ферменти можуть мати 1, 2, 3 і більше активних центрів, що залежить від кількості протомерів (субодиниць), які входять у його структуру.

    Крім активних центрів, у ферментах можуть бути ще так звані алостеричні центри (від грец. алос — інший, другий; стереос — просторовий, структурний) – служать місцем впливу на фермент різних регуляторних чинників, тому їх ще називають регуляторними центрами, а речовини, що взаємодіють з алостеричним центром, отримали назву ефекторів. Приєднання до алостеричного центру ефектора призводить до певних структурних змін в активному центрі та, як наслідок, пригнічення або підвищення активності ферменту. Ефекторами можуть служити продукти ферментативних реакцій, гормони, медіатори нервової системи, метали. Алостеричних центрів (як і активних) фермент може мати декілька, відповідно до кількості протомерів. Важливо зазначити, що алостеричні й активні центри у ферментах просторово відокремлені, тобто знаходяться один від одного на певній відстані.

    Механізми дії ферментів. Ферменти збільшують швидкості біохімічних реакцій, які вони каталізують, у 108-1020 разів та при відсутності ферменту будь-яка метаболічна реакція практично не відбувається. Константа швидкості хімічної реакції залежить від її енергії активації та температури, що виражається рівнянням Арреніуса в експоненційній формі: k = Ае-ΔЕ/RT. Під енергією активації (ΔЕ в рівнянні Арреніуса) в хімічній термодинаміці розуміють додаткову енергію, необхідну для переходу молекул (субстратів S) у перехідний (активований) стан (S*), який передує їх перетворенню в продукти реакції. Згідно з цим, експоненційний член рівняння е-ΔЕ/RT (фактор Больцмана) - частка молекул у системі, які мають енергію, достатню для хімічного перетворення. Оскільки всі метаболічні процеси в живих організмах перебігають в ізотермічних умовах, каталітична дія ферментів реалізується за рахунок зниження енергії активації (ΔЕ) біохімічної реакції, що збільшує фактор Больцмана і, відповідно, константу швидкості реакції на декілька порядків.
    4. Кофактори та коферменти. Будова та властивості коферментів, вітаміни як попередники в біосинтезі коферментів.
    Кофактор – небілкова частина молекул складних ферментів, яка входить до складу їх активних центрів і забезпечує катаболічну активність. Роль кофакторів можуть відігравати біоорганічні сполуки різної хімічної природи або іони металів (Mg2+, Ca2+, Fe3+, Fe2+, Cu2+, Cuj+ та ін.). Іони металів зв'язані з апоферментом або входять до складу небілкової простетичної групи – найчастіше порфіринового кільця гемінових ферментів (цитохромів, пероксидаз, каталази). Ферменти, які міцно зв'язані з іонами металів і не втрачають цього зв'язку за умов виділення та фракціонування ферменту, назваються металоферментами. У деяких випадках іони металів не входять до складу ферментів як інтегральні структурні компоненти, а виконують лише функцію їх активаторів.

    Коферменти (коензими) — біоорганічні сполуки небілкової природи, що є необхідними для дії ферменту, тобто перетворення субстрату в каталітичному акті. Вони можуть сполучатися з білковою частиною (апоферментом) нековалентними фізико-хімічними або ковалентними зв'язками (в останньому випадку вони є простетичними групами ферментного білка – флавінові коферменти, піридоксаль-фосфат, ліпоєва кислота тощо); інколи коферменти утворюють комплекси з апоферментом лише в ході каталітичного процесу (НАД, НАДФ). За хімічною природою коферменти поділяють на: - похідні вітамінів, зокрема: вітаміну В, - тіаміндифосфат; вітаміну В2 - флавінмононуклеотид (ФМН); вітаміну В6 -піридоксальфосфат, піридоксамінфосфат; пантотенової кислоти - коензим А; вітаміну В12 - метилкобаламін, дезоксиаденозилкобаламін; вітаміну Н (біотину) - карбоксибіотин; фолієвої кислоти - тетрагідрофолієва кислота; - динуклеотиди (похідні нікотинаміду - НАД, НАДФ; похідна рибофлавіну - ФАД); - нуклеотиди - похідні пуринів та піримідинів (АТФ, АДФ, ЦТФ, ЦДФ, УТФ, УДФ); - комплекси порфіринів з іонами металів.
      1   2   3   4   5   6   7   8


    написать администратору сайта