Главная страница
Навигация по странице:

  • Классификация микроорганизмов

  • Сферические формы, или кокки

  • Факультативные структуры

  • Ворсинки, или пили (фимбрии)

  • Классические капсулообразующие: Cl . perfringens , Y . pestis , St.pneumonia.

  • Окраска капсул бактерий

  • Разрешающая способность

  • Общее увеличение

  • Темнопольная микроскопия

  • Фазово-контрастная микроскопия

  • Электронная микроскопия.

  • Люминесцентная микроскопия.

  • Экзаменационные вопросы по дисциплине Микробиология, вирусология


    Скачать 0.77 Mb.
    НазваниеЭкзаменационные вопросы по дисциплине Микробиология, вирусология
    Дата04.04.2022
    Размер0.77 Mb.
    Формат файлаdocx
    Имя файлаMikra_ekzamen.docx
    ТипЭкзаменационные вопросы
    #441709
    страница3 из 35
    1   2   3   4   5   6   7   8   9   ...   35

    Вид – это основная таксономическая категория. В микробиологии под видом обычно понимают типовой штамм и все остальные штаммы, которые считаются достаточно сходными с типовым штаммом.
    Типовой штамм– это штамм, выбранный в качестве постоянного образца того, что подразумевается под данным видом.
    Виды объединяются в роды, роды – в семейства, семейства – в порядки, далее следуют классы, отделы, царства.
    В микробиологии существуют также более мелкие таксономические единицы, чем вид: подвид (subspeciens), разновидность. Подвиды могут различаться по физиологическим (biovar), морфологическим (morphovar) или по антигенным (serovar) свойствам.
    Клон – чистая культура, полученная из одной клетки
    Штамм – культуры бактерий одного вида, выделенные из различных источников либо из одного источника в разное время либо полученные в ходе генетических манипуляций. Разные штаммы одного и того же вида бактерий могут отличаться друг от друга по целому ряду свойств, например, по чувствительности к антибиотикам, способности к синтезу токсинов, ферментов и др.


    Критерии вида
    :

    а) морфологический - световая и иммерсионная микроскопия (установить род и семейство);
    б) тинкториальные свойства (способность окрашиваться и расположение);
    в) культуральный –метод культивирования (бактериологич и вирусологич)
    г) биохимический - дифф-диагностические среды, спец реактивы
    д)серологический (антигенная структура);
    е)биологический (вирулентность) – заражение лаб животных
    ж)генетический – ПЦР, ИФА

    Классификация микроорганизмов:

    I.царство прокариоты
    1.отдел Скотобактерии
    1.1.класс Бактерии
    1.1.1. порядок Истинные бактерии
    1.1 2 порядок Спирохеты
    1.1.3 порядок Актиномицеты
    1.2. класс Рикеттсии
    1.2.1. порядок Рикеттсии
    1.2.2. порядок Хламидии
    1.3. класс Моликутес
    1.3.1. порядок Микоплазмы
    II. Царство Вирусов

    5. Морфология бактерий. Основные формы, постоянные и непостоянные структуры бактериальной клетки.

    Различают несколько основных форм бактерий: кокковидные, палочковидные, извитые и ветвящиеся:
    Сферические формы, или кокки- шаровидные бактерии размером 0,5-1 мкм, которые по взаимному расположению делятся на микрококки, диплококки, стрептококки, тетракокки, сарцины и стафилококки.
    Микрококки (от греч. micros - малый) - отдельно расположенные клетки.
    Диплококки (от греч. diploos - двойной), или парные кокки, располагаются парами (пневмококк, гонококк, менингококк), так как клетки после деления не расходятся. Пневмококк (возбудитель пневмонии) имеет с противоположных сторон ланцетовидную форму, а гонококк (возбудитель гонореи) и менингококк (возбудитель эпидемического менингита) имеют форму кофейных зерен, обращенных вогнутой поверхностью друг к другу.
    Стрептококки (от греч. streptos - цепочка) - клетки округлой или вытянутой формы, составляющие цепочку вследствие деления клеток в одной плоскости и сохранения связи между ними в месте деления.
    Сарцины (от лат. sarcina - связка, тюк) располагаются в виде пакетов из 8 кокков и более, так как они образуются при делении клетки в трех взаимно перпендикулярных плоскостях.
    Стафилококки (от греч. staphyle - виноградная гроздь) - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

    Палочковидные бактерииразличаются по размерам, форме концов клетки и взаимному расположению клеток. Длина клеток 1-10 мкм, толщина 0,5-2 мкм. Палочки могут быть правильной (кишечная палочка и др.) и неправильной булавовидной (коринебактерии) формы. К наиболее мелким палочковидным бактериям относятся риккетсии.

    Концы палочек могут быть как бы обрезанными (сибиреязвенная бацилла), закругленными (кишечная палочка), заостренными (фузобактерии) или в виде утолщения. В последнем случае палочка похожа на булаву (коринебактерии дифтерии).

    Слегка изогнутые палочки называются вибрионами (холерный вибрион). Большинство палочковидных бактерий располагается беспорядочно, так как после деления клетки расходятся. Если после деления клетки остаются связанными общими фрагментами клеточной стенки и не расходятся, то они располагаются под углом друг к другу (коринебактерии дифтерии) или образуют цепочку (сибиреязвенная бацилла).

    Извитые формы- спиралевидные бактерии, которые бывают двух видов: спириллы и спирохеты. Спириллы имеют вид штопорообразно извитых клеток с крупными завитками. К патогенным спириллам относятся возбудитель содоку (болезнь укуса крыс), а также кампилобактерии и хеликобактерии, имеющие изгибы, напоминающие крылья летящей чайки. Спирохеты представляют тонкие длинные извитые бактерии, отличающиеся от спирилл более мелкими завитками и характером движения.

    Ветвящиеся - палочковидные бактерии, которые могут иметь разветвление в форме латинской буквы Y, встречающиеся у бифидобактерий.

    Факультативные структуры: споры, жгутики, капсула

    Бактериальную клетку окружает оболочка, состоящая из клеточной стенки и цитоплазматической мембраны. Под оболочкой находится протоплазма, состоящая из цитоплазмы с включениями и наследственного аппарата - аналога ядра, называемого нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры (образуются во внешней среде у вирулентных и невирулентных. Спорообразующие – семество Bacillacae: B.antracis, Cl.tetani, Cl.perfringens).


    Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму. Она участвует в процессе деления клетки и транспорте метаболитов, имеет рецепторы для бактериофагов, бактериоцинов и различных веществ. Наиболее толстая клеточная стенка у грамположительных бактерий. Так, если толщина клеточной стенки грамотрицательных бактерий около 15-20 нм, то у грамположительных она может достигать 50 нм и более.
    Основу клеточной стенки бактерий составляет пептидогликан. 

    Цитоплазматическая мембрана при электронной микроскопии представляет собой трехслойную мембрану. 

    Есть рибосомы, участвующие в синтезе белка, в цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, β-оксимасляной кислоты и полифосфатов (волютин). Они накапливаются при избытке питательных веществ в окружающей среде и выполняют роль запасных веществ для питания и энергетических потребностей.
    Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. 
    Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, плотно уложенной наподобие клубка. Нуклеоид бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). У большинства бактерий содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК. Кроме нуклеоида, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

    Жгутики бактерий определяют подвижность бактериальной клетки (есть у палочковидных). Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из трех частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками. Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. Жгутики состоят из белка - флагеллина (flagellum - жгутик), являющегося антигеном - так называемый Н-антиген. Субъединицы флагеллина закручены в виде спирали.
    Число жгутиков у бактерий разных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен, отходящих по периметру бактерии (перитрих), у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

    Ворсинки, или пили (фимбрии) - нитевидные образования, более тонкие и короткие (3-10 нм * 0,3-10 мкм), чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина. Известно несколько типов пилей. Пили общего типа отвечают за прикрепления к субстрату, питание и водно-солевой обмен. Многие пили являются рецепторами для бактериофагов.

    Споры - своеобразная форма покоящихся бактерий с грамположительным типом строения клеточной стенки. Спорообразующие бактерии рода Bacillus, у которых размер споры не превышает диаметр клетки, называются бациллами. Спорообразующие бактерии, у которых размер споры превышает диаметр клетки, отчего они принимают форму веретена, называются клостридиями, например бактерии рода Clostridium (от лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нельсена в красный, а вегетативная клетка - в синий цвет.

    Спора долго может сохраняться из-за наличия многослойной оболочки, низкого содержания воды и вялых процессов метаболизма. В почве, например, возбудители сибирской язвы и столбняка могут сохраняться десятки лет.

    Капсула – трехслойный полисахарид. Этот покров выполняет важные функции: делает оболочку клетки (состоящей из клеточной стенки и ЦПМ) более плотной и прочной, предохраняет бактерии от воздействия бактерицидных факторов, обеспечивает адгезию на различных субстратах, может содержать запасы питательных веществ. Классические капсулообразующие: Cl.perfringens, Y.pestis, St.pneumonia.

    Капсулированные бактерии могут превращаться в бескапсульные варианты и, поскольку первые образуют мукоидные или гладкие (S), а бескапсульные — шероховатые (R) колонии, это явление известно, как S- и R-диссоциация. Капсула и слизистый слой не препятствуют поступлению и выходу различных веществ из бактериальной клетки, а также плохо удерживают красители.

    Окраска капсул бактерий. Для облегчения микроскопирования капсулы можно сделать видимыми, проведя негативную окраску мазка по Бурри-Гинсу.

    6. Основные характеристики светового микроскопа (разрешающая способность, общее увеличение). Принцип иммерсионного микроскопа.

    Световой микроскоп – ϶ᴛο оптическая система, состоящая из конденсора, объектива и окуляра. Пучок света от источника освещения собирается в конденсоре, направляется на объект; пройдя через объект, лучи света попадают в систему линз объектива, они строят первичное изображение, которое увеличивается с помощью линз окуляра.
    Разрешающая способность – ϶ᴛο минимальное расстояние между двумя точками, при котором они еще раздельно изображаются данной оптической системой.
    Общее увеличение, которое дает микроскоп, определяется как произведение увеличения объектива на увеличение окуляра.

    Иммерсионная микроскопия (от лат. immersio — погружение) — метод микроскопического исследования малых объектов с помощью погружения объектива светового микроскопа в среду с высоким коэффициентом преломления, расположенную между микроскопическим препаратом и объективом. 

    Для проведения исследований используют специальные иммерсионные объективы -объективы больших увеличений (
    85, 90). При работе с ними необходима максимальная освещенность препарата; устранение рассеивания, неизбежного при работе с сухими объективами, в данном случае достигается путем использования иммерсионных жидкостей, у которых показатель преломления близок к показателю преломления стекла.

    Вначале под малым увеличением микроскопа наводят свет и определяют на препарате участок микроскопирования. Затем на выбранное место наносят каплю иммерсии и осторожно (под контролем глаз с боку) погружают в нее фронтальную линзу иммерсионного объектива (90).

    7. Особенности фазово-контрастной и темнопольной микроскопии.

    Темнопольная микроскопия основана на освещении объекта косыми лучами света (эффект Тиндаля). При таком освещении лучи не попадают в объектив, поэтому поле зрения выглядит темным. Если в исследуемом препарате содержатся клетки микроорганизмов, то косые лучи отражаются от их поверхности, отклоняются от своего первоначального направления и попадают в объектив. На интенсивно черном фоне видны сияющие объекты. Такое освещение препарата достигается использованием специального темнопольного конденсора, которым заменяют обычный конденсор светлопольного микроскопа.

    При микроскопировании в темном поле можно увидеть объекты, величина которых измеряется сотыми долями микрометра, что находится за пределами разрешающей способности обычного светлопольного микроскопа. Однако наблюдение за объектами в темном поле позволяет исследовать только контуры клеток и не дает возможности рассмотреть их внутреннюю структуру.

    Фазово-контрастная микроскопия ценна прежде всего тем, что с ее помощью можно наблюдать живые объекты, которые имеют коэффициенты преломления, близкие к коэффициентам преломления среды. С точки зрения увеличения изображения объекта, никакого выигрыша не происходит, однако прозрачные объекты видны более четко, чем в проходящем свете обычного светлопольного микроскопа. При отсутствии специального микроскопа обычный световой может быть оснащен специальным фазово-контрастным устройством, которое переводит фазовые изменения световых волн, проходящих через объект в амплитудные. В результате этого живые прозрачные объекты становятся контрастными и видными в поле зрения.
    С помощью фазово-контрастной микроскопии изучают форму, размеры, взаимное расположение клеток, их подвижность, размножение, прорастание спор микроорганизмов.


    8. Основные характеристики электронного микроскопа (разрешающая способность, общее увеличение). Особенности люминесцентной микроскопии

    Электронная микроскопия. Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способности светового микроскопа (0,2 мкм). Электронный микроскоп применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмикроскопических объектов.

    Обычный просвечивающий электронный микроскоп похож на световой, за тем исключением, что объект облучается не световым потоком, а пучком электронов, генерируемым специальным электронным прожектором. Полученное изображение проецируется на люминесцентный экран с помощью системы линз. Увеличение просвечивающего электронного микроскопа может достигать миллиона, однако, для атомно-силовых микроскопов и это не предел.


    Люминесцентная микроскопия.
    Люминесценцией (или флуоресценцией) называют такое явление, когда некоторые вещества под влиянием падающего на них света испускают лучи с другой (обычно большей) длиной волны. Кроме того, вещества, имеющие определенный цвет при обычном освещении, при освещении ультрафиолетовыми лучами приобретают совершенно иной цвет. Объект, не видимый в ультрафиолетовом свете, может приобрести яркий блеск после обработки его флуоресцирующим веществом (флуорохромом). В таком препарате люминесцирующие объекты светятся различным цветом в темном поле зрения. Сила их света бывает различной, но чаще всего она невелика, поэтому люминесцентную микроскопию следует проводить в затемненном помещении. Разница между микроскопией в проходящем свете и флуоресценцией заключается в том, что в последнем случае препарат рассматривается в излучаемом им свете. При этом химический состав клеток и тканей влияет на качество люминесценции и люминесцентная микроскопия в определенной мере является гистохимическим исследованием. Существует первичная и вторичная флуоресценция. При первичной флуоресценции в самом объекте находятся вещества, способные флуоресцировать. Вторичная флуоресценция – наведенная, возникает при специальной обработке объекта веществами, способными флуоресцировать. Эти вещества называются флуорохромами (акридин оранжевый, флуоресцеин, родамин и др.). Люминесцентная микроскопия находит широкое применение в микробиологии Ее преимуществами являются: 1) цветное изображение; 2) высокая степень контрастности самосветящихся объектов на черном фоне; 3) возможность исследования как прозрачных, так и непрозрачных живых объектов; 4) возможность исследования различных жизненных процессов в динамике их развития; 5) обнаружение и установление локализации отдельных микробов и вирусов; 6) развитие тончайших методов цито- и гистохимии и экспресс-диагностика.

    9. Этапы приготовления мазка для иммерсионной микроскопии.

    Приготовление окрашенного препарата состоит из следующих этапов: а) приготовление мазка, б) высушивание, в) фиксация, г) окраска.

    а) Обезжиренное предметное стекло и бактериологическую петлю прожигают в пламени горелки. Пробирку с изучаемой культурой держат между указательным и большим пальцами левой руки. Петлю берут правой рукой, мизинцем правой руки прижимают пробку пробирки к ладони. Если мазок готовится с жидкой питательной среды, то каплю культуры наносят петлей на предметное стекло. Если мазок делают из культуры с агара, то петлю с культурой вносят на предметное стекло и добавляют каплю физиологического раствора, в котором эмульгируют внесенный материал. Петлю обжигают в пламени горелки. Мазок должен быть тонким, равномерно растертым, округлой формы, размером 1,5-2смІ.

    б) высушивание мазка производится на воздухе или для ускорения предметное стекло с мазком, обращённым кверху, можно подержать в струе теплого воздуха высоко над пламенем горелки, но не вносить в огонь.

    в) после высушивания производят фиксацию (прикрепление к стеклу) препарата. Для этого стекло с мазком, обращённым кверху, медленно проводят через пламя 3-4 раза. При этом микробы погибают, приклеиваются к стеклу и не смываются при дальнейшей обработке.

    г) после охлаждения стекла производится окраска препарата простым или сложным методами:

    -простыми методами, когда окрашивается вся клетка и используется только один краситель (водный фуксин Пфейффера или метиленовая синька Леффлера)

    -сложными методами, когда определяются клеточные структуры (методы Грама, Циля-Нильсена и др.).

    После окраски мазок промывают водой, высушивают фильтровальной бумагой и микроскопируют под иммерсией.
    10. Определение подвижности бактерий методами «раздавленной» и «висячей» капли.

    Жгутики являются органами движения бактерий, состоят из белка флагеллина. По количеству и характеру расположения жгутиков различают бактерии: монотрихи, лофотрихи, амфитрихи и перитрихи. Жгутики обладают антигенными свойствами (Н-антиген) и дают возможность бактериям перемещаться в жидкой среде.

    О наличии жгутиков можно судить по характеру движения бактерий в «раздавленной» и «висящей» каплях при опущенном конденсоре и частично прикрытой диафрагме микроскопа.
    1   2   3   4   5   6   7   8   9   ...   35


    написать администратору сайта