Главная страница
Навигация по странице:

  • Среда Раппопорта

  • Биологические методы – методы, основанные на биологических свойствах бактерий: 1)метод Щукевича

  • Идентификация E . coli по биохимическим признакам: а) идентификация по сахаролитической активности

  • Идентификация стафилококков по биохимическим признакам: а) определение каталазной активности

  • Экзаменационные вопросы по дисциплине Микробиология, вирусология


    Скачать 0.77 Mb.
    НазваниеЭкзаменационные вопросы по дисциплине Микробиология, вирусология
    Дата04.04.2022
    Размер0.77 Mb.
    Формат файлаdocx
    Имя файлаMikra_ekzamen.docx
    ТипЭкзаменационные вопросы
    #441709
    страница9 из 35
    1   ...   5   6   7   8   9   10   11   12   ...   35

    Среда Эндо. Состоит из МПА с добавлением 1% лактозы и обесцвеченного сульфитом натрия основного фуксина (индикатор). Среда Эндо имеет слабо розовый цвет. Используется в диагностике кишечных инфекций для дифференциации бактерий, разлагающих лактозу с образованием кислых продуктов, от бактерий, не обладающих этой способностью. Колонии лактозопозитивных микробов (кишечная палочка) имеют красный цвет вследствие восстановления фуксина. Колонии лактозонегативных микроорганизмов - сальмонелл, шигелл и др. -бесцветны.

    К дифференциально-диагностическим средам относятся короткий и развёрнутый пёстрый ряд. Он состоит из сред с углеводами (среды Гисса), МПБ, молока, мясопептонной желатины.

    Среды Гисса готовятся на основе пептонной воды, к которой прибавляются химически чистые моно-, ди- или полисахариды (лактоза, сахароза, глюкоза мальтоза, маннит)

    Для обнаружения сдвигов рН в результате образования кислот и разложения углевода в среды прибавляют индикатор Андреде-кислый. При более глубоком расщеплении углеводов образуются газообразные продукты (СО2, СН4 и др.), которые улавливаются при помощи поплавков - маленьких пробирочек, опущенных в среду кверху дном. Среды с углеводами могут готовиться и плотными – с добавлением 0,5-1% агар-агара. Тогда газообразование улавливается по образованию пузырьков (разрывов) в столбике среды.

    На МПБ, входящем в пёстрый ряд, обнаруживают продукты, образующиеся при расщеплении аминокислот и пептонов (индол, сероводород). 

    Среда Левина – МПА + лактоза + эозин + метиленовый синий. Колонии бактерий, ферментирующих лактозу окрашиваются в синий цвет. Для дифференцировки сем. Enterobacteriaceae. E.coli –синие, патогенные сальмонеллы и шигеллы – бесцветны.

    Среда Плоскирева – МПА + лактоза + нейтральный красный + бриллиантовая зелень + соли желчных кислот. Анализ испражнений на сальмонелл и шилелл. E.coli вырастет через 2-3 дня.

    Среда Раппопорта является средой обогащения и дифференциально-диагностической средой. В ее состав входит: МПБ, желчь10%, 2% глюкоза, индикатор (кислый фуксин, обесцвеченный щелочью; в щелочной среде бесцветный, в кислой – красный). Назначение: для накопления тифо-паратифозных бактерий при посеве крови больного, а также для ориентировочной дифференциации тифо-паратифозных бактерий. Принцип д-я: при росте тифо-паратифозных бактерий из-за ферментации глюкозы происходит диффузное помутнение и покраснение среды. Для паратифозных бактерий, в отличие от брюшно-тифозных, наличие в поплавке газа

    38. Короткий «пестрый» ряд. Изменение короткого «пестрого» ряда при росте Е. coli и S.tiphi.

    Идентификация по сахаролитической активности E.coli проводится по изменению короткого «пестрого» ряда, который включает в себя среды Гисса (МПБ, 0,5% углеводов: лактозы, сахарозы, глюкозы, мальтозы, маннита и индикатр Андреде-кислый фуксин; в каждую пробирку помещают « поплавок» - стеклянные трубочки, запаянные с одного конца для улавливания газа; покраснение среды является показателем образования кислоты при ферментации углеводов). Исследуемую культуру засевают на среды «пестрого» ряда и инкубируют при 370 в теч. 18-24 часов. E.coli ферментирует всех углеводов короткого «пестрого» ряда до кислоты и газа, за исключением сахарозы (рис.16) и в отличие от других представителей семейства Enterobacteriaceae, например, возбудителей брюшного тифа и паратифов А и В: S. typhi, S.P.A и S.P.B. S. typhi ферментирует всех углеводов короткого «пестрого» ряда до кислоты за исключением сахарозы и лактозы (рис.17), паратифозные палочки - тех же углеводов, но с образованием кислоты и газа

    39. Методы выделения чистых культур аэробов (механические и биологические). Колония, чистая культура.

    Механические методы выделения чистых культур аэробных и факультативно-анаэробных бактерий основаны на механическом разобщении бактериальных клеток на поверхности твердых питательных сред. Чистая культура — это популяция микроорганизмов одного вида. К механическим методам относятся:

    1. метод Дригальского – это качественный метод, широко применяется для бактериологической диагностики инфекционных заболеваний;

    2. метод пластинчатых разводок Коха – это количественный метод, применяется в санитарной микробиологии;

    3. метод клонов – получение колоний из одной бактериальной клетки (клонирование).

    Биологические методы – методы, основанные на биологических свойствах бактерий:

    1)метод Щукевича. Исследумый материал засевают в конденсационную воду скошенного МПА. Данный метод культивирования применяется при подозрении на инфицирование бактериями рода Proteus (P. vulgaris). В случае роста P. vulgaris обнаруживается ползучий рост – рост по всей поверхности агара за счет выраженной подвижности.;

    2) бактериостатический метод, основанный на различном действии некоторых химических веществ (например, 5% серная кислота быстро убивает большинство микробов, а микобактерии туберкулеза выживает в этих условиях) и антибиотиков на бактерии (например, небольшие концентрации пенициллина задерживает рост грамположительных бактерий и не влияет на грамотрицательные;

    3) метод прогревания. При прогревании исследумого материала при 80°С в течение 10-15 минут вегетативные формы бактерий погибают, а споры сохраняются;

    4) метод обогащения. Исследумый материал засевают на элективные питательные среды, способствующие росту определенного вида микроорганизмов. Например, культивирование стафилококков на желточно-солевом агаре.

    5) культивирование в организме лабораторных животных, например, выделение чистой культуры возбудителя чумы (Y. рestis) из материала, загрязненного посторонней микрофлорой, возбудителя туляремии (Fr. tularensis). Бактериологическая диагностика туляремии имеет существенную особенность – выделить возбудителя от больного человека непосредственными высевами не удается, тат как накопление микроба в крови и тканях больных крайне незначительно, поэтому бактериологическое исследование начинают с заражения лабораторных животных, то есть с обогащения биологическим способом.

    6) культивирование вирусологическими методами (заражение куриного эмбриона, тканевых культур, чувствительных животных) облигатных внутриклеточных паразитов: риккетсий, хламидий, факультативных паразитов. Например, микоплазмы – мембранные паразиты, очень требовательны к питательным средам, растут на сложных питательных средах с добавление холестерина, жирных кислот, белка, углеводов и др., растут медленно, образуют колонии, напоминающие «яичницу – глазунью», то есть более гомогенным приподнятым центром и ажурными плоскими полупросвечивающими краями. Можно их культивировать на клеточных культурах и куриных эмбрионах.
    40. Метод Дригальского, назначение, этапы: I ΙΙ, III, IV.
    Цель метода: Выделение чистой культуры аэробных и факультативно-анаэробных бактерий и их идентификации.

    Исследуемыми материалами могут быть мокрота, гной, испражнение и др. в зависимости от локализации возбудителя инфекционного заболевания. Метод проводится в 4 этапа, при выделении гемокультуры – 5 этапов. Выделение чистой культуры аэробных и факультативно-анаэробных бактерий изучаем на примере выделения чистой культуры кишечной палочки (E coli) из ее смеси со стафилококком.

    1-й этап. Получение изолированных колоний. Колонии – это размножившиеся особи одной бактериальной клетки, выросшие на поверхности твердой питательной среды в виде изолированного скопления.

    Ход работы:

    а) приготовление мазков из данной смеси микробов и окраска по Граму. Под микроскопом видны грамотрицательные кишечные палочки и грамположительные стафилококки;

    б) рассев смеси на чашку с МПА шпетелем. Мы засеваем несколько измененным методом Дригальского. Вместо 3-х чашек с МПА берем одну. На поверхность питательной среды в чашке наносят петлёй каплю исследуемого материала в 3-х точках: первые две точки – ближе к стенке чашки, а третью точку – в центре, которую растирают прокаленным и охлажденным шпателем сначала в одном направлении, затем перпендикулярно в другом направлении. Чашку подписывают (фамилия студента, номер группы, дата) и ставят в специальный цилиндр вверх дном, чтобы образующиеся капельки паров воды, попадающие на крышу, не стекали на поверхность среды и не размазывали посева;






    в) инкубация посева в термостате при 370 в течение 18-24 часов.

    2-й этап. Выделение чистой культуры, то есть культуры, содержащей одного вида бактерий.

    Ход работы:

    а) макроскопическое изучение колоний по величине, форме, окраске, характеру поверхности и краев, консистенции, структуре и размеру.

    Просматривают чашку (не открывая) со стороны дна в проходящем свете, держа ее на уровне глаз на расстоянии 20-30 см. Видно, что посев смеси дал рост неоднородных колоний. Колонии стафилококка выпуклые, гладкие, блестящие, с ровным краем, размером 1-4 мм в диаметре, прозрачные, золотистые или белого цвета. Колонии кишечной палочки слабовыпуклые, полупрозрачные, сероватого цвета, с ровным краем и гладкой блестящей поверхностью, размером 2-3 мм в диаметре.

    Колонии можно просмотреть с помощью лупы или под микроскопом (при малом увеличении) при этом лучше видна разница в структуре колоний;

    б) микроскопическое исследование колоний.

    Выбирают изолированные колонии того и другого микроба, из части каждой колонии делают мазки, окрашивают их по Граму и микроскопируют. Убеждаются, что золотистого цвета колонии содержат стафилококки - кокки располагаются скоплениями, грамположительны, а серого цвета колонии - кишечные палочки, беспорядочно расположенные, грамотрицательные;

    в) остатки колоний кишечной палочки и стафилококков пересевают в пробирки с косым агаром. К пробиркам прикрепляют этикетку с указанием даты посева, группы, фамилии студента;

    г) инкубация посевов в термостате при 370 в течение 18-24 часов.

    3-й этап. Идентификация выделенной чистой культуры.

    Ход работы:

    а) макроскопическое определение роста культуры на скошенном МПА. Стафилококк на скошенном агаре растет в виде прозрачного налета золотистого или белого цвета, кишечная палочка - в виде сочного, блестящего, полупрозрачного налёта серого цвета;

    б) проверка чистоты культуры. Готовят мазок, окрашивают его по Граму и просматривают под микроскопом (не менее 10 полей зрения). Во всех полях зрения чистая культура должна быть однородной морфологически и тинкториально;

    в) идентификация выделенной чистой культуры бактерий проводится по биохимическим, антигенным свойствам, фагочувствительности, токсигенности (вирулентности) и по генетической структуре.

    Идентификация E.coli по биохимическим признакам:

    а) идентификация по сахаролитической активности E.coli проводится по изменению короткого «пестрого» ряда, который включает в себя среды Гисса (МПБ, 0,5% углеводов: лактозы, сахарозы, глюкозы, мальтозы, маннита и индикатр Андреде-кислый фуксин; в каждую пробирку помещают « поплавок» - стеклянные трубочки, запаянные с одного конца для улавливания газа; покраснение среды является показателем образования кислоты при ферментации углеводов). Исследуемую культуру засевают на среды «пестрого» ряда и инкубируют при 370 в теч. 18-24 часов. E.coli ферментирует всех углеводов короткого «пестрого» ряда до кислоты и газа, за исключением сахарозы (рис.16) и в отличие от других представителей семейства Enterobacteriaceae, например, возбудителей брюшного тифа и паратифов А и В: S. typhi, S.P.A и S.P.B. S. typhi ферментирует всех углеводов короткого «пестрого» ряда до кислоты за исключением сахарозы и лактозы (рис.17), паратифозные палочки - тех же углеводов, но с образованием кислоты и газа.

    б) идентификация по протеолитической активности.

    Разложение микробами белка сопровождается образованием индола, сероводорода, аммиака.

    Реакция на сероводород. Исследуемую культуру засевают в МПБ, под пробкой укрепляют полоску бумаги, пропитанной ацетатом свинца. Почернение бумаги после инкубации при 370 в течение 2-3 суток свидетельствует о наличии сероводорода. E.coli не образует сероводород в отличие от возбудителей брюшного тифа и паратифа В.

    Проба на индол: Способ Эрлиха: в пробирку с культурой бактерий прибавляют 2-3 мл эфира, содержимое энергично перемешивают и добавляют несколько капель реактива Эрлиха (спиртовой раствор парадиметиламидобензальдегида с хлороводородной кислотой). В присутствии индола наблюдается розовое окрашивание; при осторожном наслаивании образуется розовое кольцо.

    Идентификация стафилококков по биохимическим признакам:

    а) определение каталазной активности

    На предметное стекло наносят каплю 1-3% раствора пероксида водорода и вносят в нее петлю с бактериальной культурой. Каталаза разлагает пероксид водорода на кислород и воду. Выделение пузырьков O2 свидетельствует о наличии у данного вида бактерий фермента каталазы. Каталазной активностью обладают стафилококки в отличие от стрептокков;

    б) определение плазмокоагулазной активности. Плазмокоагулаза – фермент S.aureus сворачивающий фибрин за счет активации предшествующего в плазме крови протромбина, тем самым, защищая бактерии от клеточных и гуморальных факторов иммунитета.

    В пробирку с цитратной плазмой вносят исследуемую культуру, помещают в термостат при (37 +/- 1) °С и через 1, 2, 3, 18 и 24 ч проверяют наличие свертывания плазмы. Реакция считается положительной независимо от степени свертывания плазмы. S.аureus обладает плазмокоагулазной активностью в отличие от других стафилококков.

    4-й этап. Учет результатов идентификации и оформление заключения о виде.

    Например, выделена чистая культура E.coli (S. аureus), идентификация проведена по морфологическим, тинкториальным, культуральным, биохимическим, антигенным свойствам, токсигенности (вирулентности), фагочувствительности и по генетической структуре.
    41. Выделение чистой культуры анаэробов (I, II, III, IV, V этапы).
    Выделение чистых культур анаэробов изучаем на примере выделения C.perfringensиз раневого отделяемого при подозрении на газовую гангрену.

    1-й этап. Обогащение на среде Китта–Тароци.

    1.Приготовление мазков из раневого отделяемого и окраска по Граму. Под микроскопом видны крупные грамположительные палочки, часть которых окружены неокрасившейся капсулой (в виде белого ободка), что позволяет заподозрить газовую инфекцию.

    2.Посев раневого отделяемого на среду Китта-Тароцци, предварительно прокипяченной в течении 30 минут. После посева среду прогревают 15 минут при 80°С для уничтожения вегетативных форм, споры анаэробов при этом сохраняются;

    3.Инкубация посевов в термостате при 370 в течение 18-24 часов.

    2-й этап. Получение изолированных колоний.

    1.Изучение характера роста на среде Китта-Тароцци. При росте C.perfringens она мутнеет и в ней образуется газ (результат образования газа при ферментации глюкозы).

    2.Приготовление мазка из бульонной культуры и окраска по Граму. Под микроскопом видны крупные грамположительные палочки.

    3.Получение изолированных колоний анаэробов двумя способами:

    - на поверхности твердой питательной среды (сахарно-кровяного агара) по Цейсслеру в анаэробных условиях;

    - в глубине среды Вильсон-Блера по Вейнбергу.

    4.Инкубация посевов в термостате при 370 в течение 18-24 часов.

    3-й этап. Выделение чистой культуры.

    1.Макроскопическое изучение выросших колоний анаэробов:

    а) на сахарно-кровяном агаре, обратить внимание на зону гемолиза вокруг колоний, что является признаком гемолитической активности бактерий (вирулентности);

    б) в глубине среды Вильсон-Блера, обратить внимание на цвет колоний. Черные колонии образует C.perfringensза счет образования сульфата железа (FeS).

    2.Приготовление из подозрительных колоний мазков и окрашивание их по Граму. Под микроскопом выявляются крупные грамположительные палочки;

    3.Остаток колонии, подвергшейся микроскопическому изучению, отсевают на среду Китта-Тароцци для получения чистой культуры.

    4.Инкубация посевов в термостате при 370 в течение 18-24 часов.

    4-й этап. Идентификация выделенной чистой культуры анаэробов.

    1.Макроскопическое определение роста культуры на среде Китта-Тароцци;

    2. Проверка выделенной культуры на чистоту - приготовление мазков со среды Китта-Тароцци и окрашивание их по Грамму. Во всех полях зрения чистая культура должна быть однородной морфологически и тинкториально.

    3.Окончательная идентификация выделенной чистой культуры анаэробов

    проводится по токсигенности в реакции нейтрализации экзотоксина на белых мышах, биохимическим, антигенным свойствам и по генетической структуре.

    5-й этап. Учет результатов идентификации и оформление заключения о виде.

    Например, выделена чистая культура C.perfringens, идентификация проведена по морфологическим, тинкториальным, культуральным, биохимическим, антигенным, токсигенным свойствам и по генетической структуре.
    42. Вирусологические методы. Назначение, принцип.

    Для выделения и культивирования облигатных паразитов (вирусов, риккетсий и хламидий) применяются вирусологические методы: заражение тканевых культур, куриного эмбриона и восприимчивых лабораторных животных. Вирусологическое исследование проводится в два этапа: выделение вируса и идентификация вируса. Материалами для вирусологического исследования могут быть отделяемое носоглотки, испражнения, кровь и другие материалы в зависимости от локализации вируса. Вирусологические методы также применяются для культивирования некоторых факультативных паразитов, например, микоплазмы, бруцелл, франциселл, легионелл и др.
    1   ...   5   6   7   8   9   10   11   12   ...   35


    написать администратору сайта