Главная страница
Навигация по странице:

  • вектор Умова

  • Уровень звукового давления в децибелах связан с амплитудой звукового давления соотношением

  • 5. Источники и приёмники ультразвуковых волн Кавитация.

  • 6. Технологическое использование ультразвука

  • Физике. физика. Электродинамика Электрические токи в металлах, вакууме и газах. Электрический ток в жидкостях


    Скачать 4.58 Mb.
    НазваниеЭлектродинамика Электрические токи в металлах, вакууме и газах. Электрический ток в жидкостях
    АнкорФизике
    Дата30.06.2022
    Размер4.58 Mb.
    Формат файлаdocx
    Имя файлафизика.docx
    ТипДокументы
    #621722
    страница10 из 19
    1   ...   6   7   8   9   10   11   12   13   ...   19

    Звуковые волны


    Если упругие волны, распространяющиеся в воздухе, имеют частоту в пределах от 20 до 20000 Гц, то, достигнув человеческого уха, они вызывают ощущение звука. Поэтому волны лежащие в этом диапазоне частот называются звуковыми. Упругие волны с частотой менее 20 Гц называются инфразвуком. Волны с частотой более 20000 Гц называются ультразвуком. Ультразвуки и инфразвуки человеческое ухо не слышит.



    Звуковые ощущения характеризуются высотой звука, тембром и громкостью. Высота звука определяется частотой колебаний. Однако источник звука испускает не одну, а целый спектр частот. Набор частот колебаний, присутствующих в данном звуке, называется его акустическим спектром. Энергия колебания распределяется между всеми частотами акустического спектра. Высота звука определяется по одной – основной частоте, если на долю этой частоты приходится значительно большее количество энергии, чем на долю других частот.

    Если спектр состоит из множества частот, находящихся в интервале частот от  до  , то такой спектр называется сплошным (пример - шум).

    Если спектр состоит из набора колебаний дискретных частот, то такой спектр называется линейчатым (пример – музыкальные звуки).

    Акустический спектр звука в зависимости от своего характера и от распределения энергии между частотами определяет своеобразие звукового ощущения, называемое тембром звука. Различные музыкальные инструменты имеют различный акустический спектр, т.е. отличаются тембром звука.

    Интенсивность звука характеризуется раз-личными величинами: колебаниями частиц среды, их скоростями, силами давления, напряжениями в них и др.

    Она характеризует амплитуду колебаний каждой из этих величин. Однако, поскольку эти величины взаимосвязаны, целесообразно ввести единую энергетическую характеристику. Такая характеристика для волн любого типа была предложена в 1877 году. Н.А. Умовым.



    Вырежем мысленно из фронта бегущей волны площадку  . За время  эта площадка переместится на расстояние  , где  - скорость волны.

    Обозначим через  энергию единицы объема колеблющейся среды. Тогда энергия всего объема  будет равна  .

    Эта энергия была перенесена за время  волной, распространяющейся через площадку  .

    Разделив это выражение на  и  , получим энергию, переносимую волной через единицу площади в единицу времени. Эта величина обозначается буквой  и носит название вектора Умова

    .

    Для звукового поля вектор Умова носит название силы звука.

    Сила звука является физической характеристикой интенсивности звука. Мы оцениваем ее субъективно, как громкость звука. Человеческое ухо воспринимает звуки, сила которых превышает некоторое минимальное значение, различное для различных частот. Это значение называется порогом слышимости звука. Для средних частот порядка  Гц порог слышимости порядка  .

    При очень большой силе звука порядка  звук воспринимается кроме уха органами осязания, а в ушах вызывает болевое ощущение.

    Значение интенсивности, при котором это происходит, называется порогом болевого ощущения. Порог болевого ощущения, также как и порог слышимости, зависит от частоты.

    Человек обладает довольно сложным аппаратом для восприятия звуков. Звуковые колебания собираются ушной раковиной и через слуховой канал воздействуют на барабанную перепонку. Колебания ее передаются в небольшую полость, называемую улиткой. Внутри улитки расположено большое количество волокон, имеющих различную длину и натяжение и, следовательно, различные собственные частоты колебаний. При действии звука каждое из волокон резонирует на тот тон, частота которого совпадает с собственной частотой волокна. Набор резонансных частот в слуховом аппарате и определяет область воспринимаемых нами звуковых колебаний.

    Субъективно оцениваемая нашим ухом громкость возрастает гораздо медленнее, чем интенсивность звуковых волн. В то время, как интенсивность возрастает в геометрической прогрессии – громкость возрастает в арифметической прогрессии. На этом основании уровень громкости определяется как логарифм отношения интенсивности данного звука к интенсивности, принятой за исходную

    .

    Единица уровня громкости  называется белом. Используют и более мелкие единицы – децибелы(в 10 раз меньше бела).

    Значение уровня громкости  в децибелах определяется выражением:

    .

    Уровень звукового давления  в децибелах связан с амплитудой звукового давления  соотношением:

    ,

    где  - амплитуда звукового давления при нулевом уровне громкости.

    Внутреннее трение и теплопроводность среды приводят к поглощению звуковой энергии и непрерывному уменьшению распространяющейся звуковой волны. Если вначале сила звука была  , то после прохождения участка длиной  , сила звука будет равна:

    ,

    где  - коэффициент поглощения звука.

    Величина коэффициента поглощения звука возрастает пропорционально квадрату частоты звука, поэтому низкие звуки распространяются дальше высоких.

    В архитектурной акустике для больших помещений существенную роль играет реверберация или гулкость помещений. Звуки, испытывая многократные отражения от ограждающих поверхностей, воспринимаются слушателем в течении некоторого довольно большого промежутка времени. Это увеличивает силу доходящего до нас звука, однако, при слишком длительной реверберации отдельные звуки накладываются друг на друга и речь перестает восприниматься членораздельно. Поэтому стены залов покрывают специальными звукопоглощающими материалами для уменьшения реверберации.

    Источником звуковых колебаний может служить любое колеблющееся тело: язычок звонка, камертон, струна скрипки, столб воздуха в духовых инструментах и т.д. эти же тела могут служить и приемниками звука, когда они приходят в движение под действием колебаний окружающей среды.

    5. Источники и приёмники ультразвуковых волн Кавитация.

    Ультразвуком принято называть упругие колебания и волны, частоты которых превышают частоты звука, воспринимаемого человеческим ухом. Такое определение сложилось исторически, однако нижняя граница ультразвука, связанная с субъективными ощущениями человека, не может быть четкой, поскольку некоторые люди не могут слышать звуки с частотами в 10 кГц, а есть люди, воспринимающие частоты в 25 кГц. Для внесения четкости в определение нижней границы ультразвука с 1983 г. установлено считать ее равной 11,12 кГц (ГОСТ 12.1.001–83).

    Верхняя граница ультразвука обусловлена физической природой упругих волн, которые могут распространяться в среде лишь при условии, что длина волны больше средней длины свободного пробега молекул в газах или межатомных расстояний в жидкостях и твердых телах. Поэтому в газах верхнюю границу ультразвуковых волн (УЗ) определяют из приблизительного равенства длины звуковой волны и средней длины свободного пробега молекул газа (10–6 м), что дает частоту порядка 1 ГГц (109 Гц). Расстояние между атомами и молекулами в кристаллической решетке твердого тела примерно равно 10–10 м. Считая, что и длина волны ультразвука такого же порядка величины, получаем частоту 1013 Гц. Упругие волны с частотами более 1 ГГц называют гиперзвуком.

    Ультразвуковые волны по своей природе не отличаются от волн слышимого диапазона или инфразвука, и распространение ультразвука подчиняется законам, общим для всех акустических волн (законы отражения, преломления, рассеяния и т. п.). Скорости распространения УЗ волн примерно такие же, как и скорости слышимого звука (см. табл. 4), а поэтому длины ультразвуковых волн значительно меньше. Так, при распространении в воде (с = 1500 м/с) ультразвука с частотой 1 МГц длина волны l = 1500/106 = 1,5·10–3 м = 1,5 мм. Благодаря малой длине волны дифракция ультразвука происходит на объектах меньших размеров, чем для слышимого звука. Поэтому во многих случаях к ультразвуку можно применять законы геометрической оптики и изготавливать ультразвуковые фокусирующие системы: выпуклые и вогнутые зеркала и линзы, которые используют для получения звуковых изображений в системах звукозаписи и акустической голографии. Помимо этого, фокусировка ультразвука позволяет концентрировать звуковую энергию, получая при этом большие интенсивности.

    Поглощение ультразвука в веществе, даже в воздухе, весьма значительно, что обусловлено его малой длиной волны. Однако, как и для обычного звука, затухание ультразвука определяется не только его поглощением, но и отражением на границах раздела сред, отличающихся своими акустическими сопротивлениями. Этот фактор имеет большое значение при распространении ультразвука в живых организмах, ткани которых обладают самыми различными акустическими сопротивлениями (например, на границах мышца – надкостница – кость, на поверхностях полых органов и т. п.). Так как акустическое сопротивление биологических тканей в среднем в сотни раз превышает акустическое сопротивление воздуха, то на границе воздух – ткань происходит практически полное отражение ультразвука. Это создает определенные трудности при ультразвуковой терапии, так как слой воздуха всего в 0,01 мм между вибратором и кожей является непреодолимым препятствием для ультразвука. Поскольку избежать прослоек воздуха между кожей и излучателем невозможно, для заполнения имеющихся между ними неровностей используют специальные контактные вещества, которые должны удовлетворять определенным требованиям: иметь акустическое сопротивление, близкое к акустическим сопротивлениям кожи и излучателя, обладать малым коэффициентом поглощения ультразвука, иметь значительную вязкость и хорошо смачивать кожу, быть нетоксичными для организма. В качестве контактных веществ обычно используют вазелиновое масло, глицерин, ланолин и даже воду.

    ПОЛУЧЕНИЕ И РЕГИСТРАЦИЯ УЛЬТРАЗВУКА

    Для получения ультразвука используют механические и электромеханические генераторы.

    К механическим генераторам относят газоструйные излучатели и сирены. В газоструйных излучателях (свистках и мембранных генераторах) источником энергии ультразвука служит кинетическая энергия газовой струи. Первым УЗ генератором был свисток Гальтона – короткая, закрытая с одного конца трубка с острыми краями, на которые направляется воздушная струя из кольцеобразного сопла. Срывы струи на острых концах трубки вызывают колебания воздуха, частота которых определяется длиной трубки. Свистки Гальтона позволяют получать ультразвук с частотой до 50 кГц. Интересно, что подобными свистками еще в прошлом веке пользовались браконьеры, подзывая охотничьих собак сигналами, не слышными для человека.

    Сирены позволяют получать ультразвук с частотой до 500 кГц. Газоструйные излучатели и сирены служат почти единственными источниками мощных акустических колебаний в газовых средах, в которые из-за малого акустического сопротивления излучатели с твердой колеблющейся поверхностью не могут передать ультразвук большой интенсивности. Недостатком механических генераторов является широкий диапазон излучаемых ими частот, что ограничивает область их применения в биологии.

    Электромеханические источники ультразвука преобразуют подводимую к ним электрическую энергию в энергию акустических колебаний. Наибольшее распространение получили пьезоэлектрические и магнитострикционные излучатели.

    В 1880 г. французские ученые Пьер и Жак Кюри открыли явление, получившее название пьезоэлектрического эффекта (греч. пьезо – давлю). Если вырезать определенным образом из кристаллов некоторых веществ (кварца, сегнетовой соли)пластинку и сжать ее, то на ее гранях появятся разноименные электрические заряды. При замене сжатия растяжением знаки зарядов меняются. Пьезоэлектрический эффект обратим. Это означает, что если кристалл поместить в электрическое поле, то он будет растягиваться или сжиматься в зависимости от направления вектора напряженности электрического поля. В переменном электрическом поле кристалл будет деформироваться в такт с изменениями направлениям вектора напряженности и действовать на окружающее вещество как поршень, создавая сжатия и разрежения, т. е. продольную акустическую волну.

    Прямой пьезоэлектрический эффект используют в приемниках ультразвука, в которых акустические колебания преобразуются в электрические. Но если к такому приемнику приложить, переменное напряжение соответствующей частоты, то оно преобразуется в ультразвуковые колебания и приемник работает как излучатель. Следовательно, один и тот же кристалл может служить и приемником, и излучателем ультразвука поочередно. Такой прибор называют ультразвуковым акустическим преобразователем (рис. ). В связи с тем что применение ультразвука в различных областях науки, техники, медицины и ветеринарии с каждым годом возрастает, требуется все большее количество ультразвуковых преобразователей, однако запасы природного кварца не могут удовлетворить возрастающие в нем потребности. Наиболее подходящим заменителем кварца оказался титанат бария, представляющий собой аморфную смесь двух минеральных веществ – углекислого бария и двуокиси титана. Для придания ей нужных свойств аморфную массу нагревают до высокой температуры, при которой она размягчается, и помещают ее в электрическое поле. При этом происходит поляризация дипольных молекул. После охлаждения вещества в электрическом поле молекулы фиксируются в ориентировочном положении и вещество приобретает определенный электрический дипольный момент. У титаната бария пьезоэлектрический эффект в 50 раз сильнее, чем у кварца, а стоимость его невысока.

    Преобразователи другого типа основаны на явлении магни-тострикции (лат. strictura–сжимание). Это явление заключается в том, что при намагничивании ферромагнитный стержень сжимается или растягивается в зависимости от направления намагничивания. Если стержень поместить в переменное магнитное поле, то его длина будет меняться в такт с изменениями электрического тока, создающего магнитное поле. Деформация стержня создает акустическую волну в окружающей среде.

    Для изготовления магнитострикционных преобразователей применяют пермендюр, никель, железоалюминиевые сплавы – альсифёры. У них большие величины относительных деформаций, большая механическая плотность и меньшая чувствительность к температурным воздействиям.

    В современной ультразвуковой аппаратуре используют оба вида преобразователей. Пьезоэлектрические применяют для получения ультразвука высоких частот (выше 100 кГц), магни-тострикционные– для получения ультразвука меньших частот. Для медицинских и ветеринарных целей обычно используют генераторы небольшой мощности (10–20 Вт) (рис. ).

    ВЗАИМОДЕЙСТВИЕ УЛЬТРАЗВУКА С ВЕЩЕСТВОМ

    Рассмотрим, с какими параметрами колебательного движения приходится иметь дело при распространении ультразвука в веществе. Пусть излучатель создает волну с интенсивностью =10Вт/м2 и частотой 10Гц. = 0,5rcA2w= 2cA2rp2n2. Отсюда



    Подставляя в формулу значения входящих в нее величин,, получим, что амплитуда смещения частиц воды при данных условиях А = 0,6 мкм. Амплитудное значение ускорения частиц воды ам = Аw= 2·4·10м/с2, что в 24 000 раз превышает ускорение силы тяжести. Амплитудное значение акустического давления ра = rсАw = 5,6·10Па @ 6 атм. При фокусировании ультразвука получаются еще большие давления.

    При распространении ультразвуковой волны в жидкости во время полупериодов разрежения возникают растягивающие силы, которые могут привести к разрыву жидкости в данном месте и образованию пузырьков, заполненных паром этой жидкости. Это явление носит название кавитации (лат. cavum– пустота). Кавитационные пузырьки образуются, когда растягивающее напряжение в жидкости становится больше некоторого критического значения, называемого порогом кавитации. Для чистой воды теоретическое значение порога кавитации рк= 1,5·10Па = 1500 атм. Реальные жидкости менее прочны в связи с тем, что в них всегда находятся зародыши кавитации – микроскопические газовые пузырьки, твердые частички с трещинами, заполненными газом, и т. п. Часто на поверхности пузырьков возникают электрические заряды. Захлопывание кавитационных пузырьков сопровождается сильным нагревом их содержимого, а также выделением газов, содержащих атомарный и ионизированный компоненты. В результате вещество в кавитационной области подвергается интенсивным воздействиям. Это проявляется в кавитационной эрозии, т. е. в разрушении поверхности твердых тел. Даже такие прочные вещества, как сталь и кварц, разрушаются под действием микроударных гидродинамических волн, возникающих при захлопывании пузырьков, не говоря уже о находящихся в жидкости биологических объектах, например микроорганизмах. Этим пользуются для очистки поверхности металлов от окалины, жировых пленок, а также для диспергирования твердых тел и получения эмульсий несмешивающихся жидкостей.

    При интенсивности ультразвука менее 0,3-10Вт/м2 кавитация в тканях не происходит, и ультразвук вызывает ряд других эффектов. Так, в жидкости возникают акустические потоки, или «звуковой ветер», скорость которого достигает десятков сантиметров в секунду. Акустические потоки перемешивают облучаемые жидкости, изменяют физические свойства суспензий. Если в жидкости находятся частицы, обладающие противоположными электрическими зарядами и разными массами, то в ультразвуковой волне эти частицы будут отклоняться от положения равновесия на разные расстояния и в поле волны возникает переменная разность потенциалов (эффект Дебая). Такое явление происходит,, например, в растворе поваренной соли, содержащей ионы Ни в 35 раз более тяжелые ионы С1. При больших различиях в массах потенциал Дебая может достигать десятков и сотен мВ.

    Поглощение ультразвука веществом сопровождается переходом механической энергии в тепловую. Тепло образуется в областях, примыкающих к границам раздела двух сред с различными акустическими сопротивлениями. При отражении ультразвука интенсивность волны вблизи границы увеличивается и соответственно возрастает количество поглощенной энергии. Легко убедиться в этом, прижав к влажной руке излучатель. Вскоре на противоположной стороне руки возникает болевое ощущение, похожее на боль от ожога, вызванное ультразвуком, отраженным на границе кожа – воздух. Однако тепловое действие ультразвука при интенсивностях, применяемых в терапии, очень незначительно.

    В УЗ поле могут протекать как окислительные, так и восстановительные реакции, причем даже такие, которые в обычных условиях неосуществимы. Одной из характерных реакций является расщепление молекулы воды на радикалы Н+ и ОН с последующим образованием перекиси водорода Н2О2 и некоторых жирных кислот. Значительное действие оказывает ультразвук на некоторые биохимические соединения: от белковых молекул отрываются молекулы аминокислот, происходит денатурация протеинов и т. п. Все эти реакции стимулируются, очевидно, колоссальными давлениями, возникающими в ударных кавитационных волнах, однако законченной теории звукохимических реакций в настоящее время еще не существует.

    Ультразвук вызывает свечение воды и некоторых других жидкостей (УЗ люминесценция). Свечение это очень слабое, и его обычно регистрируют фотоумножителями. Причина свечения в основном заключается в том, что при захлопывании кавитационных пузырьков происходит сильное адиабатическое нагревание заключенного в них пара. Температура внутри пузырьков может достигать 10К, что приводит к возбуждению атомов газа и излучению ими квантов света. Интенсивность УЗ люминесценции зависит от количества газа в пузырьке, от свойств жидкости и интенсивности ультразвука. Это явление несет с собой информацию о природе и кинетике процессов, происходящих при облучении жидкости ультразвуком. Как было показано В. Б. Акопяном и А. И. Журавлевым, при некоторых заболеваниях УЗ свечение ряда биологических жидкостей меняется, что может лечь в основу диагностики этих заболеваний.

    ДЕЙСТВИЕ УЛЬТРАЗВУКА НА БИОЛОГИЧЕСКИЕ ОБЪЕКТЫ

    На живые организмы ультразвук, как и другие физические факторы, оказывает возмущающее действие, следствием чего являются приспособительные реакции организма. Механизм возмущающего действия ультразвука изучен еще недостаточно, но можно утверждать, что он определяется совокупностью механического, термического и физико-химического действий. Эффективность этих факторов зависит от частоты и интенсивности ультразвука. Выше были вычислены амплитудные значения акустического давления и ускорения частиц среды в УЗ волне, которые оказались очень большими, однако они не дают представления о механических усилиях, приходящихся на одну клетку. Расчет сил, действующих на клетку в УЗ поле, был проведен В. Б. Акопяном, который показал, что если на клетку размером 5·10–5 м действует ультразвук с частотой 1 МГц и интенсивностью 10Вт/м2, то максимальная разность растягивающих и сжимающих сил в противоположных концах клетки не превышает 10–13 Н. Такие силы не могут оказывать на клетку заметного влияния, не говоря уже о ее разрушении. Поэтому растягивающие и сжимающие силы, действующие на клетку в УЗ волне, вряд ли могут приводить к ощутимым биологическим последствиям.

    Более эффективны, по-видимому, акустические течения, приводящие к переносу вещества и перемешиванию жидкости. Внутри клетки, обладающей сложной внутренней структурой, микропотоки вполне могут менять взаимное расположение клеточных органелл, перемешивать цитоплазму и изменять ее вязкость,, отрывать от клеточных мембран биологические макромолекулы (ферменты, гормоны, антигены), изменять поверхностный заряд, мембран и их проницаемость, оказывая влияние на жизнедеятельность клетки. Если мембраны не повреждены, то через некоторое время перешедшие во внеклеточную среду или в цитоплазму макромолекулы возвращаются обратно на поверхность мембран, хотя и неизвестно, попадают ли они именно на те места, с которых были вырваны, а если нет, то ведет ли это к каким-либо нарушениям физиологии клетки.

    Разрушение мембран происходит при достаточно больших интенсивностях ультразвука, однако разные клетки обладают различной резистентностью: одни клетки разрушаются уже при интенсивностях порядка 0,1·10Вт/м2, тогда как другие выдерживают интенсивность до 25·10Вт/м2 и выше. Как правило, более чувствительны клетки животных тканей и менее чувствительны растительные клетки, защищенные прочной оболочкой. О различной ультразвуковой резистентности эритроцитов говорилось в главе I. Облучение ультразвуком с интенсивностью более 0,3·104 Вт/м2 (т.е. выше порога кавитации) используют для разрушения имеющихся в жидкости бактерий и вирусов. Так разрушают тифозные и туберкулезные палочки, стрептококки и пр. Следует отметить, что облучение ультразвуком с интенсивностью менее кавитационного порога может приводить к повышению жизнедеятельности клеток и к увеличению числа этих микроорганизмов, что вместо положительного эффекта приведет к отрицательному. Ультразвук, применяемый в терапии и диагностике, не вызывает кавитации в тканях. Это обусловлено либо заведомо низкими интенсивностями (от 0,05 до 0,1 Вт/см2), либо использованием интенсивных (до 1 кВт/см2), но коротких импульсов (от 1 до 10 мкс) при эхолокации внутренних органов. Усредненная по времени интенсивность ультразвука оказывается и в этом случае не выше 0,1-10Вт/м2, что недостаточно для возникновения кавитации.

    Нагревание тканей при их облучении терапевтическим ультразвуком весьма незначительно. Так, при облучении отдельных органов у коров в месте воздействия ультразвука температура кожи повышается не более чем на 1 °С при интенсивности 104 Вт/м2. При облучении ультразвуком теплота в основном выделяется не в объеме ткани, а на границах раздела тканей с разными акустическими сопротивлениями, или в одной и той же ткани на неоднородностях ее структуры. Возможно, что именно этим объясняется тот факт, что ткани со сложной структурой (легкие) более чувствительны к ультразвуку, чем однородные ткани (печень и др.). Сравнительно много тепла выделяется на границе мягких тканей и кости.

    Не менее существенными могут оказаться и эффекты, связанные с потенциалом Дебая. Импульсы диагностического ультразвука способны обусловить в тканях потенциал Дебая до сотен мВ, что сравнимо по порядку величины с потенциалами клеточных мембран, а это может вызвать деполяризацию мембран и повышение их проницаемости по отношению к ионам, участвующим в клеточном метаболизме. Следует отметить, что изменение проницаемости клеточных мембран является универсальной реакцией на ультразвуковое воздействие, независимо от того, какой из факторов ультразвука, действующих на клетки, превалирует в том или ином случае.

    Таким образом, биологическое действие ультразвука обусловлено многими связанными между собой процессами, некоторые из которых еще недостаточно исследованы до настоящего времени и описание которых не входит в задачу учебного пособия. Согласно В.Б. Акопяну, ультразвук вызывает в биологических объектах следующую цепочку превращений: ультразвуковое воздействие ® микропотоки в клетке ® повышение проницаемости клеточных мембран ® изменение состава внутриклеточной среды ® нарушение оптимальных условий для ферментативных процессов ® подавление ферментативных реакций в клетке ® синтез новых ферментов в клетке и т. д. Пороговым для биологического действия ультразвука будет такое значение его интенсивности, при котором не происходит нарушения проницаемости клеточных мембран, т. е. интенсивность не выше 0,01·10Вт/м2.

    Ультразвук, обладающий сильным биологическим свойством,, можно применять в сельском хозяйстве. Опыты последних лет показали перспективность воздействия низкочастотным ультразвуком на семена злаковых и огородных культур, кормовых и декоративных растений.

    УЛЬТРАЗВУК В МИРЕ ЖИВОТНЫХ

    Некоторые птицы, ведущие ночной образ жизни, используют для эхолокации звуки слышимого диапазона (козодои, стрижи-саланганы). Козодои, например, издают резкие отрывистые крики с частой 7 кГц. После каждого крика птица улавливает звук, отраженный от препятствия, и узнает местоположение этого препятствия по направлению, откуда пришло эхо. Зная скорость распространения звука и время, прошедшее от его испускания до приема, можно вычислить расстояние до препятствия. Таких вычислений птица, конечно, не делает, но каким-то образом ее мозг позволяет хорошо ориентироваться в пространстве.

    Наибольшего совершенства достигли ультразвуковые эхолокационные органы у летучих мышей. Поскольку пищей для них служат насекомые, т. е. предметы малых размеров, то для уменьшения дифракции на подобных объектах необходимо использовать колебания с малой длиной волны. В самом деле, если принять, что размер насекомого 3 мм, то дифракция на нем будет незначительной при длине волны такого же порядка величины, а для этого частота колебаний должна быть, по крайней мере, равной n = c/l = 340/3·10–3 » 10Гц = 100 кГц. Отсюда вытекает необходимость использования для эхолокации ультразвука, и, действительно, летучие мыши испускают сигналы с частотами порядка 100 кГц. Процесс эхолокации происходит следующим образом. Зверек испускает сигнал длительностью 1–2 мс, причем на это время его чувствительные ушки закрываются специальными мышцами. Затем сигнал прекращается, ушки открываются, и летучая мышь слышит отраженный сигнал. Во время охоты сигналы следуют один за другим до 250 раз в секунду.

    Чувствительность эхолокационного аппарата летучих мышей очень высока. Так, например, Гриффин натягивал в темной комнате сетку из металлических проволок диаметром 0,12 мм с расстоянием между проволоками в 30 см, что лишь немного превышало размах крыльев летучих мышей. Тем не менее, зверьки свободно летали по комнате, не задевая за проволоки. Мощность воспринимаемого ими сигнала, отраженного от проволоки, была порядка 10–17 Вт. Удивительна также способность летучих мышей выделять нужный сигнал из хаоса звуков. Во время охоты каждая летучая мышь воспринимает только те УЗ сигналы, которые она испускает сама. Очевидно, органы этих животных имеют строгую резонансную настройку на сигналы определенной частоты, и они не реагируют на сигналы, отличающиеся от собственных всего на долю герца. Такой избирательностью и чувствительностью не обладает пока ни одно локационное устройство, созданное человеком. Широко используют УЗ локацию дельфины. Чувствительность их локатора настолько велика, что они могут обнаруживать на расстоянии 20–30 м опущенную в воду дробинку. Диапазон частот, испускаемых дельфинами, составляет от нескольких десятков герц до 250 кГц, но максимум интенсивности приходится на 20–60 кГц. Для внутривидового общения дельфины используют звуки слышимого человеком диапазона, примерно до 400 Гц.

    6. Технологическое использование ультразвука

    Технологическое использование в промышленности весьма многообразно. Можно выделить три основных направления: силовое воздействие на материал; интенсификация технологических процессов; ультразвуковые методы контроля.
    1   ...   6   7   8   9   10   11   12   13   ...   19


    написать администратору сайта