Федеральное агентство по образованию иркутский государственный технический университет
Скачать 7.53 Mb.
|
Глава 5 СТРОПИЛЬНЫЕ ФЕРМЫ _____________________________________________________________ 5.1. Общая характеристика и классификация ферм Фермой называют решетчатую конструкцию, образуемую из отдельных прямолинейных стержней, связанных в узлах в геометрически неизменяемую систему. Ферма в целом работает преимущественно на изгиб, а ее элементы (если нагрузка приложена в узлах, оси элементов пересекаются в центре узлов) на осевые усилия (растяжение или сжатие). Жесткость узлов в легких фермах несущественно влияет на работу конструкции, поэтому в большинстве случаев их можно рассматривать как шарнирные. Фермы бывают плоскими (все стержни лежат в одной плоскости) и пространственными. Плоские фермы могут воспринимать нагрузку, приложенную в их плоскости, и нуждаются в закреплении из своей плоскости связями или другими элементами. Основными элементами фермы являются пояса, образующие ее контур, и решетка, состоящая из раскосов и стоек. Пояса фермы работают в основном на продольные усилия и полностью воспринимают изгибающий момент. Решетка объединяет пояса в одно целое, обеспечивает неизменяемость системы и воспринимает поперечную силу. Максимальное усилие в элементах пояса при шарнирном опирании однопролетной фермы действует в середине ее пролета, в раскосах – у опоры. Соединение элементов в узлах фермы осуществляют путем непосредственного примыкания одних элементов к другим или с помощью узловых фасонок. Классифицируются фермы по назначению, статической схеме, очертанию поясов, системе решетки, способу соединения элементов в узлах и на опоре, величине усилия в элементах, напряженному состоянию. По назначению фермы подразделяются на стропильные, фермы мостов, подъемных кранов, опор линий электропередачи и другие. По статической схеме фермы подразделяются на балочные (разрезные, неразрезные, консольные), рамные, арочные и вантовые. Балочные разрезные системы наиболее просты в изготовлении и монтаже, но весьма металлоемки. Неразрезные фермы экономичнее по расходу материала, обладают большей жесткостью, что позволяет уменьшить их высоту, но они, как статически неопределимые системы, чувствительны к осадке опор. Рамные и арочные системы экономичны по расходу стали. Их применение рационально для большепролетных зданий. В вантовых фермах все стержни работают только на растяжение и могут быть выполнены из гибких элементов (стальных тросов). Промежуточными между фермой и сплошной балкой являются комбинированные системы, состоящие из балки, подкрепленной снизу шпренгелем или раскосами, либо сверху аркой. Подкрепляющие элементы уменьшают изгибающие моменты в балке и повышают жесткость системы. В зависимости от очертания поясов фермы бывают с параллельными поясами, треугольные, трапецеидальные, полигональные. Выбор очертания ферм зависит от назначения сооружения, типа и материала кровли, системы водоотвода (малоуклонные рубероидные кровли или металлические и из асбестоцементных листов, которые требуют больших уклонов), типа и размеров фонаря, типа соединения фермы с колоннами (шарнирное или жесткое), статической схемы, вида нагрузок, определяющих эпюру изгибающих моментов (теоретически наиболее экономичной по расходу стали является ферма, очерченная по эпюре моментов). Фермы с параллельными поясами благодаря распространению кровель с рулонным покрытием являются основными для покрытий зданий. По своему очертанию они далеки от эпюры моментов и по расходу стали не экономичны, однако имеют существенные конструктивные преимущества. Равные длины стержней поясов и решетки, одинаковая схема узлов, наибольшая повторяемость элементов и деталей и возможность унификации способствуютт индустриализации их изготовления. Фермы треугольного очертания рациональны для консольных систем, а также для балочных систем при сосредоточенной нагрузке в середине пролета (подстропильные фермы). К конструктивным недостаткам треугольных ферм можно отнести сложный острый опорный узел, допускающий только шарнирное сопряжение с колоннами, длинные средние раскосы, подбираемые по предельной гибкости (вызывают перерасход металла). Применение треугольных ферм под распределенную нагрузку диктуется необходимостью обеспечения большого уклона кровли. Фермы трапецеидального очертания занимают промежуточное место между треугольными и фермами с параллельными поясами, они больше соответствуют эпюре изгибающих моментов, имеют конструктивные преимущества перед треугольными фермами за счет упрощения узлов и возможности устроить жесткий рамный узел, что повышает жесткость каркаса. Фермы полигонального очертания рационально применять для тяжелых ферм больших пролетов, так как очертание их наиболее близко соответствует параболическому очертанию эпюры изгибающих моментов, что дает значительную экономию металла. Элементы верхнего пояса таких ферм прямолинейны между узлами, криволинейное очертание достигается переломами пояса в узлах. Системы решетки ферм бывают: – треугольной (образована непрерывным зигзагом раскосов, направленных попеременно в разные стороны), эта решетка может быть дополнена стойками и подвесками, работающими только на местную нагрузку, а также служащими для уменьшения расчетной длины поясов; – раскосной (непрерывный зигзаг образован раскосами и стойками); – крестовой; – ромбической и полураскосной; – шпренгельного типа. Оптимальный угол наклона раскосов к нижнему поясу в треугольной решетке α = 45о (обычно 40 – 50о), в раскосной – α = 35о (обычно 30 –40о). Направление опорного раскоса может быть восходящим (раскос идет от нижнего опорного узла к верхнему поясу) и нисходящим (направление раскоса от опорного узла верхнего пояса к нижнему). В практике проектирования зданий для стропильных ферм чаще применяется восходящий опорный раскос. Такое решение позволяет надежнее обеспечить горизонтальную жесткость рамы здания при работе фермы как ригеля, конструктивно лучше решить опорный узел и расположение связей. При нисходящем раскосе имеется ряд преимуществ: они растянуты (меньше требуют металла); центр тяжести фермы лежит ниже ее линии опирания (ферма более устойчива на монтаже). Недостаток – удлинение колонны на высоту фермы, что влияет на устойчивость колонны. Выбор типа решетки зависит от схемы приложения нагрузки, очертания поясов и конструктивных требований. Треугольная система решетки имеет наименьшую суммарную длину элементов и наименьшее число узлов при кратчайшем пути усилия от места приложения нагрузки до опоры. Различают фермы с восходящими и нисходящими раскосами. В местах приложения сосредоточенных нагрузок можно установить дополнительные стойки и подвески. В фермах трапецеидального очертания или с параллельными поясами треугольная система решетки является достаточно эффективной. Недостатком треугольной решетки является наличие длинных сжатых раскосов, работающих на устойчивость. В раскосной системе решетки все раскосы имеют усилия одного знака, а стойки – другого. При проектировании необходимо стремиться, чтобы длинные раскосы были растянуты, а короткие стойки сжаты. Это требование удовлетворяется при нисходящих раскосах в фермах с параллельными поясами. Раскосная решетка более металлоемка и трудоемка по сравнению с треугольной. Путь усилия от места приложения нагрузка до опоры длиннее, он идет через все стержни раскосной решетки и узлы. Применение раскосной решетки целесообразно при малой высоте фермы и больших узловых нагрузках. Крестовая решетка одинаково работает при смене направления нагрузки на противоположное и чаще всего выполняется из гибких стержней. В этом случае сжатые раскосы, вследствие большой гибкости, выключаются из работы из-за потери устойчивости (в расчетную схему не входят) и решетка превращается в раскосную с растянутыми раскосами и сжатыми стойками. Ромбическая и полураскосная решетки благодаря двум системам раскосов обладают большой жесткостью, применяются в фермах большой высоты для уменьшения расчетной длины стержней и особенно рациональны при работе конструкций на значительные поперечные силы. Шпренгельную решетку применяют для уменьшения размеров панели при рациональном угле раскоса. Она более трудоемка, однако при частом расположении прогонов достигается предотвращение местного изгиба элементов пояса в местах приложения сосредоточенных сил и уменьшение их расчетной длины, что может обеспечить снижение расхода стали. По способу соединения элементов в узлах фермы подразделяются на сварные и болтовые. Болтовые соединения на высокопрочных болтах, как правило, применяются в монтажных узлах. По величине максимальных усилий условно различают легкие од-ностенчатые фермы с сечениями элементов из простых прокатных или гнутых профилей (при усилиях в стержнях N ≤ 3000 кН) и тяжелые фермы (N > 3000 кН). Стержни тяжелых ферм отличаются от легких более мощными сечениями, составленные из нескольких элементов, и обычно проектируются двустенчатыми. В качестве легких ферм обычно используются стропильные фермы (фермы кровельного покрытия). По напряженному состоянию фермы можно разделить на обычные и фермы с регулированным напряжением – с затяжками (шпренгелями), со смещением уровня опор в неразрезных фермах и другие. Генеральными размерами фермы является ее пролет и высота. Пролет выбирают в зависимости от технологического процесса, который протекает в здании (расстановка оборудования, организация потоков и т.п.). Если нет ограничений технологического характера, пролет назначается из экономических соображений. В целях типизации пролеты ферм унифицируются и принимаются кратными модулю 6 м, т.е. 18, 24, 30, 36, 42 м). В отдельных случаях допускается модуль 3 м. Высота фермы в середине пролета определяется условиями минимального веса, требуемой жесткости, характеризуемой заданным прогибом, и габаритами при перевозке, как правило, железнодорожным транспортом (наибольший габарит по вертикали 3,85 м). Практически из условий стандартизации геометрической схемы высоту стропильных ферм рационально принимать одинаковой для всех ферм различных пролетов: в типовых фермах трапецеидального очертания – 2,2 м (между обушками на разбивочной оси колонны) и в фермах с параллельными поясами 3,15 м. Высота треугольной фермы в середине пролета определяется в зависимости от пролета и уклона верхнего пояса и может достигать значительных размеров. 5.2. Порядок расчета стропильных ферм Проектирование фермы начинают с ее компоновки. На этой стадии выбирают статическую схему и очертание фермы, назначают вид решетки и определяют генеральные размеры. Затем производят статический расчет фермы, подбор сечений элементов фермы, расчет и конструирование ее узлов. 5.2.1. Определение нагрузок на ферму Стропильные фермы рассчитываются на нагрузки, передающиеся на них в виде сосредоточенных сил в узлах: постоянную – от веса кровли, конструкций подвесного потолка, собственного веса фермы со связями и др.; временные – от снега, а также от ветра (при уклонах кровли более 30о), подвесного подъемно-транспортного оборудования (при его наличии) и других возможных технологических нагрузок. Равномерно распределенная нагрузка подсчитывается сначала на 1 м2 площади, затем по грузовой площади находится сосредоточенная сила, действующая на каждый узел. При возможном загружении фермы снеговой нагрузкой на половине пролета может измениться знак усилия с «плюса» на «минус» в средних малонагруженных элементах решетки. В практических расчетах такие элементы принимаются конструктивно по предельно допустимой гибкости как сжатые (независимо от знака усилия). При жестком сопряжении ригеля с колонной ферма в составе рамы испытывает воздействие рамных опорных моментов и продольной силы (усилия от распора) Nр, передающейся при восходящем опорном раскосе на нижний пояс фермы. Значение опорных моментов Мл и Мп принимаются при одной и той же комбинации нагрузок. При определении усилий в стержнях фермы опорные моменты заменяются двумя парами горизонтальных сил, приложенных на опорах: Н1 = Мл/hо и Н2 = Мп/hо, где hо – высота фермы на опоре по центрам тяжести поясов. 5.2.2. Определение усилий в стержнях фермы При работе ферм с элементами из уголков или тавров принимается допущение, что все стержни соединены в узлах шарнирно, оси всех стержней прямолинейны, расположены в одной плоскости и пересекаются в узле в одной точке. После предварительного определения опорных реакций фермы, усилия в элементах стропильных ферм от неподвижной нагрузки определяются, как правило, графическим методом – путем построения диаграммы Максвелла-Кремоны или аналитическим методом отдельно для всех загружений. Для симметричного загружения диаграмма усилий строится для половины фермы. При наличии опорных моментов строится диаграмма усилий от единичного момента М1, приложенного к левой опоре. Зеркальное отображение этих усилий дает значение усилий в стержнях фермы от единичного момента, приложенного к правой опоре. Единичный момент заменяется эквивалентной парой сил Н = М1/hо с плечом hо. Умножая значение усилий в стержнях фермы от единичных моментов соответственно на Мл и Мп, получаем фактические усилия в стержнях. Усилия от каждого загружения оформляются в табличной форме (табл. 5.1). Таблица 5.1 Расчетные усилия в стержнях фермы, кН (форма таблицы)
Лучше всего расчет ферм выполнить на ЭВМ, воспользовавшись любой из известных программ. Для подбора сечений элементов ферм необходимо получить для каждого элемента максимально возможное усилие при самом невыгодном сочетании нагрузок. При приложении нагрузок вне узлов фермы ее пояса рассчитываются на совместное действие продольных усилий и изгибающего момента как неразрезные балки, опирающиеся на узлы ферм. Значение изгибающего момента от сосредоточенной силы F приближенно определяется по формуле М = 0,9Fd/4, где коэффициент 0,9 учитывает неразрезность пояса; d– длина панели. 5.2.3. Определение расчетных длин и предельных гибкостей стержней фермы В критическом состоянии потеря устойчивости при продольном изгибе сжатых стержней возможна в любом направлении (в плоскости фермы или из ее плоскости). Предельная гибкость для сжатых элементов ферм и связей зависит от назначения стержня, степени его загруженности, оцениваемой коэффициентом α = N/(φARyγc), где N– расчетное усилие; φARyγc – несущая способность стержня (табл. 5.2). Таблица 5.2. Предельные гибкости сжатых элементов
Обозначение: – коэффициент, принимаемый не менее 0,5 (в необходимых случаях вместо φ следует применять φе). Гибкие растянутые стержни могут провисать под действием собственного веса, легко повреждаться при транспортировании и монтаже, а при действии динамических нагрузок вибрировать, поэтому их гибкость тоже ограничена (табл. 5.3). При статических нагрузках гибкость растянутых элементов ограничивается только в вертикальной плоскости. Гибкость стержня определяется его расчетной длиной lеf (табл. 5.4) и радиусом инерции сечения i: λ = lеf/i. Расчетные длины стержней определяются: – в плоскости фермы lх = μl; – из плоскости фермы ly = μl1, где μ – коэффициент приведения длины к расчетной, зависящий от способов закрепления концов стержня; l – геометрическая длина элемента (расстояние между центрами узлов); l1 – расстояние между узлами, закрепленными от смещения из плоскости фермы (прогонами, специальными связями, жесткими плитами покрытий, прикрепленными к поясу сварными швами или болтами, и т.п.). Таблица 5.3 Предельные гибкости растянутых элементов
П р и м е ч а н и я: 1. В конструкциях, не подвергающихся динамическим воздействиям, гибкость растянутых элементов следует проверить только в вертикальных плоскостях. 2. Для растянутых элементов, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельную гибкость следует принимать как для сжатых элементов, при этом соединительные прокладки в составных элементах необходимо устанавливать не реже чем через 40i. Особое внимание обращается на устойчивость верхнего пояса в пределах фонаря, где отсутствует кровельный настил или прогоны. Здесь для раскрепления узлов из плоскости фермы предусматриваются распорки (обязательные в коньковом узле). В процессе монтажа (до укладки плит покрытия или прогонов) распорка призвана обеспечить гибкость пояса λу ≤ λu= 220. Таблица 5.4 Расчетные длины стержней ферм
Обозначения: l – геометрическая длина элемента (расстояние между центрами узлов) в плоскости фермы; l1 – расстояние между узлами, закрепленными от смещения из плоскости фермы (прогонами, специальными связями, жесткими плитами покрытий, прикрепленными к поясу сварными швами или болтами, и т.п.). 5.2.4. Выбор типа сечений стержней фермы Для центрально-сжатых стержней, рассчитываемых на устойчивость, основным требованием при конструировании элемента является стремление к обеспечению равноустойчивости стержня относительно осей х-х и у-у: λх= (lх/iх)= λу= (lу/iу). Наиболее распространенными и традиционными являются тавровые сечения стержней ферм, выполненные из двух уголков. Такие сечения имеют большой диапазон площадей, удобны для конструирования узлов на фасонках и прикрепления примыкающих к фермам конструкций (прогонов, кровельных плит, связей). Существенными недостатками такой конструктивной формы являются: большое количество элементов с различными типоразмерами, значительный расход стали на фасонки и прокладки, высокая трудоемкость изготовления и наличие щели между уголками, что способствует коррозии. Использование для поясов ферм тавров позволяет значительно упростить узлы. Тавровое сечение может выполняться из двух равнополочных (iу ≈ 1,33iх) или неравнополочных уголков. Неравнополочные уголки можно составлять узкими полками (iу ≈ 2iх) или более широкими полками (iу≈ iх) в зависимости от расчетных длин элементов при расчете в двух направлениях, обеспечивая равноустойчивость сечения (см. табл. 5.5). Таблица 5.5 Приближенные значения радиусов сечений элементов из уголков
При закреплении сжатого верхнего пояса горизонтальными связями (распорками) через узел расчетная длина из плоскости фермы оказывается в два раза больше, чем в плоскости фермы lу= 2lх, равноустойчивость пояса (λу = λх) будет обеспечена при таком же соотношении радиусов инерции (iу = 2iх). Этому условию отвечают неравнополочные уголки, составленные узкими полками (большими полками из плоскости фермы). Если пояс работает на местный изгиб от межузловой нагрузки при lу = 2lх,сечение пояса принимается из равнополочных уголков. При больших межузловых нагрузках сечение может выполняться из двух швеллеров. Если верхний пояс закреплен из плоскости в каждом узле (связями, прогонами или приваренными к нему крупнопанельными железобетонными плитами), то lу= lх и теоретически наиболее подходящим является сечение, выполненное из двух неравнополочных уголков, составленных широкими полками (iу ≈ iх). Однако вследствие недостаточной боковой жесткости при транспортировании и монтаже пояса такого сечения могут погнуться из своей плоскости, поэтому практически более предпочтительно сечение из равнополочных уголков, которые незначительно уступают неравнополочным по геометрическим характеристикам, зато сортамент их значительно шире. В таких же условиях работают сжатые опорные раскосы, имеющие одинаковые расчетные длины из плоскости и в плоскости фермы, их сечения, как правило, тоже принимают из равнополочных уголков. При уменьшении расчетной длины в плоскости фермы lх вдвое с помощью шпренгеля (что имеет место в типовых фермах покрытий производственных зданий) более рациональным является сечение опорного раскоса из неравнополочных уголков, составленных узкими полками. Остальные сжатые раскосы, а также сжатые стойки обычно проектируются из равнополочных уголков, у которых соотношение радиусов инерции примерно отвечает соотношению расчетных длин lу= 1,25lх. Для растянутых стержней ферм тип и ориентация уголков имеют второстепенное значение. Сечение нижнего пояса рекомендуется принимать из двух неравнополочных уголков, составленных узкими полками для придания ферме боковой жесткости во время перевозки и монтажа. Растянутые стержни решетки, как и сжатые, обычно проектируются таврового сечения из двух равнополочных уголков. Для соединения стрежней из двух уголков между собой и обеспечения их совместной работы как единого стержня ставятся прокладки. Наибольшие расстояния на участках между приваренными прокладками (в свету) должны не превышать: для сжатых элементов – 40i, для растянутых – 80i, гдеi– радиус инерции уголка, принимаемый для тавровых сечений относительно оси, параллельной плоскости расположения прокладок, а для крестовых сечений – минимальным. Прокладки выполняются шириной 60 – 100 мм и длиной на 20 – 30 мм больше ширины уголка. В сжатых элементах ставится не менее двух прокладок. Наиболее эффективным для сжатых элементов является тонкостенное трубчатое сечение, обладающее благоприятным распределением материала относительно центра тяжести и хорошей обтекаемостью, благодаря чему они испытывают меньшие ветровые давления, на них мало задерживается грязь и влага, поэтому они более стойкие против коррозии, их легко очищать и окрашивать, что также повышает долговечность. Сопряжение трубчатых стержней в узлах представляет определенные трудности. Прямоугольные гнутозамкнутые сечения, обладая почти теми же преимуществами, что и круглые трубы, позволяют упростить узлы сопряжения элементов. При наличии межузловой нагрузки, действующей на верхний пояс фермы, возможно выполнение его из двух швеллеров. При относительно небольшом усилии стержни ферм могут выполняться из одиночных уголков. Подбор сечений элементов фермы При подборе сечений элементов ферм для удобства комплектования металла, необходимо стремиться к возможно меньшему числу различных номеров и калибров уголковых профилей, ограничиваясь обычно 6 – 8. При значительных усилиях в элементах ферм возможно применение двух классов стали: более высокой прочности – для сильно нагруженных поясов и опорных раскосов; малоуглеродистой стали обыкновенного качества – для элементов решетки. Подбор сечения начинается с подбора сечения сжатого элемента, имеющего наибольшее расчетное усилие. При выборе уголковых профилей для сжатых элементов следует стремиться к применению уголков возможно меньшей толщины, поскольку их радиусы инерции имеют относительно большие значения. Во избежание повреждения ферм во время перевозки и при монтаже принимается минимальный уголок ∟50×50×5. Для снижения трудоемкости изготовления в фермах пролетом до 24 м включительно, состоящих из двух отправочных марок, пояса принимаются постоянного сечения, подобранного по максимальному усилию. В стропильных фермах пролетом 30 м и более сечение поясов по длине рационально изменять, при этом лучше изменять только ширину полок, сохраняя неизменной толщину уголков, чтобы облегчить устройство стыков. Подбор сечений сжатых элементов ферм производится, как правило, из условия устойчивости элемента, растянутых – из условия прочности. Длинные слабо нагруженные элементы подбираются по предельной гибкости. При расчетах на устойчивость сжатых элементов стержневых конструкций покрытий и перекрытий (за исключением замкнутых трубчатых сечений) вводится коэффициент условий работы γс = 0,95; при расчете сжатых элементов (кроме опорных) решетки составного таврового сечения из уголков сварных ферм покрытий и перекрытий (например, стропильных и аналогичных им ферм) при гибкости λ ≥ 60 вводится коэффициент условий работы γс = 0,8. При расчете соединений (кроме стыковых соединений) рассматриваемых выше элементов коэффициенты условий работы γс = 0,95 и γс = 0,8 учитывать не следует. Подбор сечений элементов ферм оформляется в табличной форме. Для примеров геометрическая схема фермы с расчетными усилиями в стержнях представлена на рис. 5.1. Пример 5.1. Подобрать сечение верхнего сжатого пояса фермы из двух уголков при действии на него расчетного усилия N = – 1300 кН. Расчетные длины стержней: в плоскости фермы 3 м, из плоскости – 3 м (при шаге прогонов кровли d = 3 м). Материал – сталь класса С245 (район ІІ4, здание отапливаемое); Ry = 24 кН/см2; γс = 0,95 (см. табл. 1.3). Максимальное усилие в опорном раскосе Np,max = – 670 кН. Рис. 5.1. Расчетная и геометрическая схемы фермы Толщину фасонок выбирают в зависимости от действующих усилий в элементах решетки (табл. 5.6). Принимаем толщину фасовки tф = 14 мм при максимальном усилии в олорном раскосе 670 кН. Таблица 5.6 Рекомендуемые толщины фасонок
Поскольку ly = lx, принимаем сечение сжатого пояса из двух равнополочных уголков (рис. 5.2). Рис. 5.2. Сечение пояса (к примеру 5.1) При предварительном подборе сечения поясов легких ферм гибкость принимается λ = 60 – 90. Большие значения гибкости принимаются при меньших усилиях. Задаемся λ = 70. Условная гибкость По условной гибкости для для типа кривой устойчивости ′′с′′ (см. табл. 3.12) определяем коэффициент устойчивости = 0,674 (см. табл. 3.11). Из условия устойчивости сжатого стержня определяем требуемую площадь сечения пояса: Атр = N/(φRyγс) = 1300 / (0,674 ∙ 24 ∙ 0,95) = 84,6 см2. Требуемый радиус инерции iтр = lx/λ = 300 / 70 = 4,29 см. По требуемым значениям площади и радиуса инерции из сортамента принимаем сечение из двух равнополочных уголков ∟160×160×14/ГОСТ 8509-93. Площадь сечения А = 43,57 ∙ 2 = 87,14 см2; радиус инерции относительно оси х-х – iх = 4,92 см; радиус инерции одного уголка относительно собственной центральной оси, параллельной свободной, iy= 4,92 см; расстояние от центра тяжести уголка до наружной грани полки, параллельной оси y1-y1, zо = 4,47 см. Определяем радиус инерции составного сечения из двух уголков при зазоре между уголками (толщина фасонки) а = tф = 14 мм: см. Подсчитываем гибкости в главных плоскостях: λх= lx/iх = 300 / 4,92 = 61; λу = lу/iу = 300 / 7,14 = 42. Наибольшая условная гибкость По табл. 3.11. находим минимальный коэффициент φmin = 0,730. Производим проверку устойчивости центрально-сжатого пояса: Недонапряжение Максимальная гибкость λх = 60,7 < λи = (180 – 60α) = (180 – 60 · 0,896) = 126, где α = 0,896 – степень загруженности стержня. В процессе монтажа (раскрепляющие верхний сжатый пояс прогоны или плиты покрытия отсутствуют) в предположении строповки фермы в узлах верхнего пояса через четыре панели гибкость пояса из плоскости фермы не должна превышать предельной λу = lу/ iу = 4 d / i y= 4 ∙ 300 / 7,1 = 169 <λи = 220. Сечение из двух уголков ∟160×160×14 принято. Пример 5.2. Подобрать сечение верхнего сжато-изгибаемого пояса при действии на него осевого усилия N= – 1300 кН и внеузловой нагрузки F= 55 кН, приложенной в середине панели d (расчетная схема представлена на рис. 5.3). Расчетная длина пояса λх= λу =d = 3 м. Материал конструкции – сталь класса С245. Расчетное сопротивление Ry= 24 кН/см2. Коэффициент условий работы γс= 0,95. |