Главная страница

конспекты уроков по геометрии. Ход уроков I. Повторение ранее изученного материала


Скачать 1.6 Mb.
НазваниеХод уроков I. Повторение ранее изученного материала
Анкорконспекты уроков по геометрии.doc
Дата02.04.2017
Размер1.6 Mb.
Формат файлаdoc
Имя файлаконспекты уроков по геометрии.doc
ТипРешение
#4445
страница7 из 12
1   2   3   4   5   6   7   8   9   ...   12

III. Закрепление изученного материала (решение задач).

1. Решение учащимися задач на непосредственное применение выведенных формул:

1) В окружность радиуса R = 12 вписан правильный п-угольник. Определите его сторону и периметр, если: а) п = 3; б) п = 4; в) п = 6.

2) Около окружности радиуса r = 6 описан правильный п-угольник. Определите его сторону и периметр, если: а) п = 3; б) п = 4; в) п = 6.

3) Для правильного п-угольника со стороной а = 6 см найдите радиус описанной около него окружности, если: а) п = 3; б) п = 4; в) п = 6.

2. Решить задачу № 1089.

Решение

Р = 18 см; а = 18 : 3 = 6 (см);

а3 = R; R == 2(см);

а4 = R= 2∙ = 2(см).

Ответ: 2см.

3. Решить задачу № 1090.

Решение

а3 = 3 см; R =(см); d = 2R = 2(см).

ответ: 2см.

4. Решить задачу № 1092.

Решение

Р = 48 см; а6 = 48 : 6 = 8 (см); а6 == 8 (см);

r == 4(см); а4 = 2r = 8(см) ; р = 4 ∙ а4 = 8∙ 4 = 32(см).

Ответ: 32см.

5. Решить задачу:

Правильный треугольник АВС вписан в окружность с центром О и радиусом 8 см. На стороне этого треугольника построен квадрат. Определите радиус окружности, описанной около квадрата.

IV. Итоги урока.

Задание на дом: изучить материал пункта 108; решить задачи №№ 1087, 1088, 1094 (а, б).

Урок 4
Построение правильных многоугольников


Цель: выработать у учащихся умение строить некоторые правильные многоугольники.

Ход урока

I. Проверка домашнего задания.

1. Проверить решение учащимися задач № 1087 и № 1088 по тетрадям.

2. Решить на доске часть заданий, вызвавших затруднения у учащихся.

II. Построение правильных многоугольников.

1. Рассмотреть решение задачи 1 пункта 109.

2. Построение правильного треугольника, вписанного в окружность.

3. Рассмотреть решение задачи 2 пункта 109.

4. Построение правильного двенадцатиугольника, вписанного в окружность (рис. 310).

5. Построение правильных четырехугольника, восьмиугольника, шестнадцатиугольника, вписанных в окружность.

6. Построение правильных шестиугольника, треугольника, описанных около окружности.

7. Построение правильных четырехугольника, восьмиугольника, описанных около окружности.

III. Итоги урока.

Рассмотренные примеры показывают, что многие правильные многоугольники могут быть построены с помощью циркуля и линейки. Оказывается, что не все правильные многоугольники допускают такое построение. Доказано, например, что правильный семиугольник не может быть построен при помощи циркуля и линейки.

Однако с помощью этих инструментов можно построить правильный семнадцатиугольник.

Домашнее задание: выполнить аналогичное задание на чертежных листах (построение правильных многоугольников, вписанных в окружность, и построение правильных многоугольников, описанных около окружности).

Учитель может указать количество сторон правильного многоугольника. Лучшие работы пойдут в методическую копилку.

Решить задачи №№ 1095, 1096, 1097.
Урок 5
Длина окружности


Цели: вывести формулу, выражающую длину окружности через ее радиус; вывести формулу для вычисления длины l дуги окружности с градусной мерой ; закрепить знание формул при решении задач.

Ход урока

I. Математический диктант (15 мин).

Вариант I

1. Найдите угол правильного десятиугольника.

2. Найдите сторону правильного треугольника, если радиус описанной около него окружности равен 2 м.

3. Найдите радиус окружности, вписанной в правильный треугольник, если радиус описанной около него окружности равен 2 м.

4. Найдите площадь правильного треугольника, если расстояние от его центра до вершины равно 2 м.

5. Закончите предложение: «Угол с вершиной в центре окружности называется …»

6. Угол с вершиной в центре правильного многоугольника и сторонами, проходящими через две его соседние вершины, равен 36°. Сколько сторон имеет этот многоугольник?

7. Чему равен cos 0°?

8. С помощью циркуля и линейки постройте правильный шестиугольник.

Вариант II

1. Сколько сторон имеет правильный многоугольник, если его сторона стягивает дугу описанной окружности, равную 18°?

2. Найдите площадь квадрата, если радиус описанной около него окружности равен 2 дм.

3. Закончите предложение: «Кругом называется часть плоскости …»

4. Найдите сторону квадрата, если расстояние от его центра до вершины равно 2 дм.

5. Найдите радиус окружности, вписанной в квадрат, если радиус описанной около него окружности равен 2 дм.

6. Чему равен cos 0°?

7. Найдите угол правильного девятиугольника.

8. С помощью циркуля и линейки постройте правильный треугольник.

II. Изучение нового материала (лекция).

Поскольку материал пункта «Длина окружности» нетрадиционен и опирается на понятие предела, его изложение целесообразно дать в форме лекции.

1. Дать представление о длине окружности с помощью нитки, обмотанной около дна стакана.

2. Работа по рисункам 312 и 313 учебника.

3. Вывод формулы, выражающей длину окружности через ее радиус.

4. Записать в тетради вывод: отношение длины окружности к ее диаметру есть одно и то же число для всех окружностей. Число π (пи).

5. Формула для вычисления длины окружности: C = 2πR; d = 2R, тогда C = πd, где d – диаметр окружности.

Найдем радиус и диаметр окружности: R = ; d = , где π ≈ 3,14.

6. Вывод формулы для вычисления длины l дуги окружности с градусной мерой :

длина дуги в 1° равна ;

длина дуги в ° равна l = ∙ .

III. Закрепление изученного материала (решение задач).

1. Решить задачу № 1101 (таблицу начертить заранее на доске).

2. Устно решить задачи № 1102 и № 1103.

3. Решить задачу № 1109 (а, б).

4. Решить задачу № 1111 (использовать рис. 316).

IV. Итоги урока.

Домашнее задание: изучить материал пункта 110; решить задачи №№ 1109 (в, г), 1106, 1104 (а), 1105 (а).
Урок 6
Площадь круга


Цели: вывести формулу площади круга и научить учащихся применять ее при решении задач.

Ход урока

I. Изучение нового материала (лекция).

Провести в форме лекции доказательство площади круга.

1. Дать определение понятия «круг».

2. Вывести формулу площади круга (рис. 314).

3. Записать в тетрадях: для вычисления площади S круга радиуса R применяется формула .

4. В течение веков усилия многих математиков были направлены на решение задачи, получившей название задача о квадратуре круга: построить при помощи циркуля и линейки квадрат, площадь которого равна площади данного круга. Только в конце XIX века было доказано, что такое построение невозможно.

II. Закрепление изученного материала (решение задач).

1. Решить задачу. На здании МГУ установлены часы с круговым циферблатом, имеющим диаметр примерно 8,8 м. Найдите площадь циферблата этих часов и сравните с площадью вашей классной комнаты.

Ответ: 60,8 м2.

2. Решить задачу № 1118 (самостоятельно).

3. Решить задачу № 1119 на доске и в тетрадях.

Решение

С = 41 м; C = 2πR; D = 2R (диаметр D);

2R = D =; D =≈ 13,06 (м) ≈ 13,1 м.

Sкруга = πR2; так как R =, то Sкруга = π ∙ = π ∙ ;

S = ≈ 133,84 (м2).

Ответ: ≈ 13,06 м; 133,84 м2.

4. Решить задачу № 1125 на доске и в тетрадях.

На сторонах произвольного прямоугольного треугольника АВС, как на диаметрах, построены полукруги. Докажите, что сумма площадей полукругов, построенных на катетах, равна площади полукруга, построенного на гипотенузе.

Решение

Пусть АС = 2а, АВ = 2b, ВС = 2с, тогда радиусы соответствующих кругов равны а, b, с.



По теореме Пифагора а2 + b2 = с2, поэтому .

5. Решить задачу № 1116 (а) на доске и в тетрадях.

Решение

Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, а радиус описанной окружности равен половине гипотенузы.

По теореме Пифагора находим: с2 = а2 + b2; тогда

R = .

Значит, Sкруга = πR2 =.

Ответ: .

III. Итоги урока.

Домашнее задание: повторить материал пунктов 105–110; изучить материал пункта 111; решить задачи №№ 1114, 1115, 1117 (а).

Урок 7
Площадь кругового сектора


Цели: ввести понятие кругового сектора, вывести формулу для вычисления площади кругового сектора; научить применять знания при решении задач.

Ход урока

I. Проверка изученного материала.

1. Формула длины окружности. Выражение радиуса окружности через длину окружности.

2. Формулы площади круга, радиуса круга через площадь круга, формула площади круга, выраженная через диаметр круга.

3. Формула длины дуги окружности.

4. Устно решить задачу № 1115.

II. Объяснение нового материала.

1. Ввести понятие кругового сектора и понятие дуги сектора
(рис. 315).

2. Вывести формулу для вычисления площади S кругового сектора радиуса R, ограниченного дугой с градусной мерой .

Так как площадь всего круга равна πR2, то площадь кругового сектора, ограниченного дугой в 1°, равна .

Поэтому площадь S выражается формулой

S =∙ 

3. Ввести понятие кругового сегмента и познакомить учащихся с нахождением площади кругового сегмента, используя таблицу «Круговой сегмент».

III. закрепление изученного материала (решение задач).

1. Решить задачу.

АВСD – квадрат со стороной 1 дм. Найдите площадь «чечевицы», заштрихованной на рисунке.

Решение

Так как сторона квадрата равна 1 дм, то площадь квадрата АВСD равна 1 дм2.



Площадь сектора DАKС равна ∙  =
= ∙ 90° = (дм2).

Площадь треугольника АСD равна дм2.

Площадь сегмента АKС равна (дм2).

Площадь «чечевицы»: 2 ∙ ≈ 0,7 (дм2).

Ответ: ≈ 0,7 дм2.

2. Решить задачу № 1126 (самостоятельно).

Решение

R = 10 см; Sкруга = πR2 = 100π (см2).

l =  = 60°; Sсектора = (см2).

S = SкругаSсектора = 100π –≈ 262 (cм2).

Ответ: ≈ 262 см2.

3. Решить задачу № 1127.

Решение

 = 72°, Sсектора = S. Найти: R.

S =; 5S = πR2; R2 =; R =.

Ответ: .

4. Вывести формулу площади кольца, ограниченного двумя окружностями с общим центром и радиусами R1 и R2, где R1 < R2.

Решение

; Sкольца = S2S1 = .

5. Решить задачу № 1120.

Решение

R1 = 1,5 cм, R2 = 2,5 см.

Sкольца = π (2,52 – 1,52) = π (2,5 – 1,5) (2,5 + 1,5) = π ∙ 1 ∙ 4 = 4π (см2).

Ответ: 4π см2.

6. Решить задачу № 1122 на доске и в тетрадях.

Решение

R1 = 3 м, R2 = 3 + 1 = 4 (м);

Sдорожки = π = π (42 – 32) = π (4 – 3) (4 + 3) = 7π (м2).

На 1 м2 дорожки требуется 0,8 дм3 песка; тогда 0,8 ∙ 7π = 5,6π (дм3) ≈
≈ 17,6 дм3.

Ответ: ≈ 17,6 дм3.

IV. Итоги урока.

Домашнее задание: выучить материал пунктов 110–112; повторить материал пунктов 105–109; ответить на вопросы 1–12 на с. 290; решить задачи № 1121, 1128, 1124.

Урок 8
Решение задач


Цели: закрепить знания учащихся по изученной теме «Длина окружности и площадь круга»; научить учащихся применять изученные формулы при решении задач; развивать логическое мышление учащихся.

Ход урока

I. Актуализация опорных знаний учащихся.

1. Повторить определения окружности, круга, кругового сектора и кругового сегмента.

2. Записать на доске и в тетрадях формулы для вычисления длины окружности, длины дуги окружности; для вычисления площади круга, площади кольца, площади кругового сектора.

II. Решение задач.

1. Решить задачу № 1112.

Решение

l = ∙ ; l = 24 см;  = 38°. Найдем: R.

R = ≈ 36,3 (см).

ответ: ≈ 36,3 см.

2. Решить задачу № 1113 (самостоятельно).

3. Решить задачу № 1123 на доске и в тетрадях.

Решение



АВСD – квадрат; = ОВ = r;

Sкруга = πr2; Sквадрата = а2,

ВD = 2r; из ДВСD по теореме Пифагора найдем сторону квадрата АВСD:

а2 + а2 = (2r)2; 2а2 = 4r2; а2 = 2r2;
тогда Sквадрата = 2r2.

Найдем площадь оставшейся части круга:

S = SкругаSквадрата = πr2 – 2r2 = r2 (π – 2).

Ответ: r2 (π – 2).

4. Решить задачу № 1116 (б).



Решение

АСD – прямоугольный;

А = , СD = а.

АD = 2R (диаметр), АСD = 90° (вписанный угол, опирающийся на диаметр, прямой).

Найдем АD.

Sin  =; AD =, тогда радиус R описанной около прямоугольного треугольника окружности равен R =AD =. Площадь круга равна S = πR2 =.

Ответ: .

5. Решить задачи:

1) Площадь кругового кольца, заключенного между двумя окружностями с одним и тем же центром, равна 12 дм2. Найдите радиусы окружностей, если один их них в два раза больше другого.

Ответ: дм; дм.

2) Площадь кругового кольца, заключенного между двумя окружностями с одним и тем же центром, равна 8 см2. Найдите площади этих кругов, ограниченных этими окружностями, если радиус одной из них в три раза больше, чем радиус другой.

Ответ: 1 см2 и 9 см2.

6. Решить задачу № 1108 (самостоятельно).

III. Самостоятельная работа (10–15 мин).

Вариант I

Решить задачи №№ 1102 (в), 1115 (б), 1109 (в), 1104 (б).

Вариант II

Решить задачи №№ 1102 (г), 1115 (а), 1109 (г), 1116 (а).

IV. Итоги урока.

Домашнее задание: повторить материал пунктов 105–112; решить задачи №№ 1107, 1132, 1137.

Уроки 9–10
Решение задач по материалу главы XII


Цели: закрепить знания и умения учащихся по изученному материалу главы; подготовить учащихся к контрольной работе.

Ход уроков

I. Математический диктант (15 мин).

Вариант I

1. Площадь круга равна S. Найдите длину ограничивающей его окружности.

2. Найдите длину дуги окружности радиуса 9 м, если градусная мера дуги равна 120°.

3. Длина дуги окружности равна 3π, а ее радиус равен 8. Найдите градусную меру этой дуги.

4. Найдите площадь кольца, ограниченного двумя окружностями с общим центром и радиусами 13 и 12 см.

5. Найдите площадь кругового сектора радиуса 4 см, если его центральный угол равен 45°.

6. Площадь кругового сектора равна 18π м2, а его центральный угол равен 40°. Найдите радиус сектора.

Вариант II

1. Длина окружности равна С. Найдите площадь ограниченного ею круга.

2. Найдите площадь кольца, ограниченного двумя окружностями с общим центром и радиусами 25 и 24 см.

3. Найдите площадь кругового сектора радиуса 3 см, если его центральный угол равен 20°.

4. Площадь кругового сектора равна 10π м2, а его радиус равен 6 м. Найдите центральный угол сектора.

5. Найдите длину дуги окружности радиуса 6 дм, если ее градусная мера равна 120°.

6. Найдите радиус окружности, если длина дуги окружности равна 6π, а ее градусная мера равна 60°.
1   2   3   4   5   6   7   8   9   ...   12


написать администратору сайта