ТСП 11. I источники энергии для сварки глава физические основы и классификация сварочных процессов
Скачать 4.1 Mb.
|
Пример 2.7. Для Ме-дуги из эксперимента получено: UK = 8 В, Ua = 3 В при Т ≈ 5800 К. Для значений кТ ≈0,5 эВ, ф = 4 эВ определить тепловыделение в приэлектродных областях. Решение. В соответствии с формулами (2.81) и (2.82) на 1 А тока тепловыделение составит: в катодной области WK = 8 - (4 + 1) = 3 В; в анодной области Wa = 3 + (4 + 1) = 8 В. Пример 2.8. Вольфрамовая, или W-дуга, характеризуется следующими параметрами: UK = 9 В, Т ≈ 23 000 К, кТ = 2 эВ, φ = 4 эВ, Ua = 3 В. Найти тепловыделение в приэлектродных областях на 1 А тока. Решение. Подставляя числовые значения в (2.81) и (2.82), получаем, что тепловыделение составит: в катодной области WK = 9 - (4 + 4) = 1 В; в анодной области Wa = 3 + (4 + 4) = 11 В. Пример 2.9. Для плавящегося стального электрода теплота плавления на 1 А за 1 ч будет равна (2.83) где αр - коэффициент расплавления электрода, составляющий для ручной дуговой сварки 6... 14, а для автоматической 12...24 г/(А•ч); ΔН -теплосодержание расплавленного материала. Найти тепловыделение для ручной дуговой сварки в приэлектродных областях на 1 А тока. Решение. Для сварки стали ΔН = 2300 Дж/г. Переводя час в секунды и подставляя числовые значения в (2.83), находим выражение для qпл в вольтах: qпл ≈0,64 αр. Подставляя αр = 10, получим q пл ≈ 6,4 В. Из этих примеров следует, что в анодной области дуги тепловыделение энергии значительно больше, чем в катодной (как показано на рис. 2.25). Это учитывается технологами при выборе полярности электрода и изделия. Тепловыделение в столбе дуги зависит от длины дуги и от напряженности электрического поля Е. В свою очередь, Е зависит от теплофизических свойств среды и тока и имеет максимальное значение при сварке в среде водяного пара (Е = 60...80 В/см), минимальное - в вакуумной дуге (Е = 2.. .4 В/см). 2.6.6. Потоки плазмы в дуге Потоки плазмы в дуге увлекают за собой окружающий газ и поэтому всегда сопровождаются газовыми потоками. При малых токах (меньше 30 А) это движение вызывается подъемной силой, возникающей в результате того, что плотность горячей плазмы меньше плотности окружающей атмосферы. Дуги, в которых характер движения газа определяется свободной конвекцией, относятся к слаботочным дугам. В связи с этим интересно отметить, что название «дуга» произошло от формы, которую принимает газовый разряд низкой интенсивности между горизонтальными электродами под влиянием подъемных сил. При увеличении тока возникает струйное течение плазмы со скоростями, которые значительно превышают скорости, обусловленные естественной конвекцией. Течение плазмы в таких сильноточных дугах направлено обычно от стержневого катода к плоскому аноду и называется катодной струей. Газовый поток входит в зону W-дуги в районе катода и уходит в радиальном направлении вблизи анода (рис. 2.29). Давление в дуге возникает под действием электромагнитных сил (сил Лоренца). Радиальное сжатие (пинч-эффект) обратно пропорционально сечению, по которому идет ток. Следовательно, при стержневом катоде и плоском аноде оно постепенно убывает от катода к аноду. Наибольшее давление на оси столба при токе I и его плотности j составляет (2.84) а скорость катодной струи , где А - коэффициент, зависящий от размерности; р - плотность плазмы. Для W-дуг типична форма колокола (рис. 2.30), расширяющаяся к аноду. Область перед катодом здесь можно представить как электромагнитный насос, который забирает газ из среды и выбрасывает его к аноду. Скорость ионизованного газа в катодной струе W-дуги может иметь порядок 102 м/с, что соответствует от 0,1 до 0,2 М (М - число Маха). Поэтому катодную струю можно исследовать методами теоретического течения несжимаемой жидкости. При сварке Ме-дугой возможны скорости плазменного потока до 103 м/с. Потоки плазмы дуги обычно направлены перпендикулярно поверхности электродов, и их интенсивность увеличивается с ростом тока. В Ме-дугах возникают встречные плазменные потоки струи как на катоде, так и на аноде. Они иногда могут располагаться соосно: внутренняя - от катода к аноду, а наружная - от анода к катоду, причем анодные струи (от анода к катоду) часто движутся быстрее, чем катодные. Скорость их движения может достигать 5 • 103 м/с. Причиной сжатия дуги у плоского анода может быть охлаждение слоя газа в анодной области. Всякое сжатие дуги может послужить причиной возникновения потока плазмы в результате появления градиента давления. Это хорошо видно на рис. 2.31, где между угольными электродами показана в двух положениях (а, б) охлаждаемая водой медная пластинка Sс отверстием. На катоде возникает поток плазмы. На широком аноде его нет. В отверстии возникают плазменные струи, направленные в обе стороны. В обычной дуге места сужения, а следовательно, и плазменные струи возникают только вблизи электродов, и в этом смысле о них можно говорить, как о явлениях, связанных с электродами. Однако инжектирование струи горячего, хорошо проводящего газа или пара способствуют возникновению «сердечника» столба, характерного для мощной дуги. Такой «сердечник» возникает также в связи с отрицательным наклоном кривой зависимости теплопроводность - температура после максимума диссоциации или ионизации. Его иногда называют стержнем или шнуром диссоциации (ионизации). Если плазменная струя сообщает «жесткость» дуге вблизи катода, то в этом случае можно говорить о дуге, стабилизированной катодной струей (потоком плазмы). 2.7. Магнитогидродинамика сварочной дуги Так как всякое перемещение заряженных частиц сопровождается появлением магнитного поля, то существуют оно, безусловно, и в сварочной дуге. На проводник длиной l с током I, находящийся в магнитном поле, действует пондеромоторная сила Ампера F, направление которой можно определить для тока от плюса к минусу по правилу левой руки: (2.85) где В = μaН - магнитная индукция, Тл (В • с/м2 ); μa = μμ0 - абсолютная магнитная проницаемость вещества; μ - относительная магнитная проницаемость вещества; μ0 = 12,57•10-7 В •с/ (А•м) (или 12,57•10-7 Гн/м) - магнитная постоянная; Н - напряженность магнитного поля, А/м. При μ ≈ 1 для неферромагнитной среды (для вакуума) (2.86) В газовом разряде вектор силы Лоренца F¯, действующей на частицу зарядом е, движущуюся в магнитном поле со скоростью v¯, будет определяться векторным произведением (2.87) или на единицу объема (2.88) Сила Лоренца F¯ перпендикулярна плоскости, проходящей через векторы В¯ и v¯. Она не производит работы, но меняет направление скорости частицы. Если заряженная частица движется в однородном магнитном поле со скоростью, перпендикулярной вектору магнитной индукции В¯, то сила Лоренца F¯ создает центростремительное ускорение v2/r и частица будет двигаться под действием центростремительной силы mv2/r = evB, где m - масса заряженной частицы. Движение заряженной частицы будет происходить по спирали или винтовой траектории, радиус которой называется ларморовским радиусом r. Формула для вычисления r, см, при энергии частицы ε, эВ, и магнитной индукции В, Тл, имеет вид: для электрона (2.89) для иона с атомной массой А (2.90) При А = 1 (для протона) ларморовский радиус ri ≈ 42 rе. 2.7.1. Собственное магнитное поле дуги Так как в столбе дуги могут быть два вида тока – электронный и ионный, то сила Лоренца F¯ будет направлена по-разному для каждого сорта частиц при одинаковом направлении их скоростей. Но дрейфовые скорости электронов (ve) и ионов (vi) имеют противоположные направления и сила F¯ для любой частицы оказывается направленной к центру дуги (рис. 2.32). При цилиндрической симметрии имеется только азимутальная составляющая напряженности магнитного поля Hφ. Взаимодействие собственного азимутального магнитного поля с аксиальной составляющей плотности тока приводит к сжатию электромагнитной силой столба цилиндрической дуги, что способствует повышению давления в столбе дуги. Действию данных сил препятствует газостатическая сила, вызванная появлением градиента термического давления плазмы столба дуги. Собственный магнитный поток столба дуги B¯соб, силовые линии которого охватывают столб (их направление может быть определено по правилу буравчика) и стабилизируют дугу вследствие пинч-эффекта. Рассмотрим его подробнее. Значение электромагнитного сжимающего давления, так называемого пинч-эффекта, можно определить, проинтегрировав элементарные силы, действующие на отдельные площадки кольцевого слоя проводника (плазмы) единичной длины (рис. 2.33). Распределение избыточного электромагнитного давления имеет параболическую форму с максимумом в центре (рис. 2.34). При r = О (2.91) Так как при равномерном распределении j по сечению столба дуги то (2.92) Для проводника переменного сечения, например, для сужения столба дуги около стержневого электрода (рис. 2.35), разность давлений вызовет осевую силу ΔF, действующую от меньшего сечения S1 к большему S2 . Для ее оценки определим сначала осевую силу в проводнике постоянного сечения. Электромагнитное давление р, выражаемое формулой (2.91) для жидкого или газообразного проводника, может быть в произвольной точке принято постоянным независимо от направления. Поэтому в осевом направлении элементарная сила df = p•2πrdr,а силу ΔF по всей площади сечения определим по формуле (2.93) Отсюда ΔF = 5•10 -8 I2, (2.94) т. е. осевая сила ΔF не зависит от сечения проводника, а зависит только от квадрата тока. Пример 2.10. Найти осевую силу ΔF, если сечения S1 и S2 отличаются по площади в 4 раза. Решение. Поскольку осевая сила зависит от тока, то разность давлений при токе, например 200 А, создаст силу Этой силы достаточно, например, для удержания на торце электрода стальной капли диаметром около 4 мм. В теории магнитного поля доказывается, что полю напряженностью Н, соответствует условное магнитное давление (2.95) Следует учесть, что действие пинч-эффекта должно уравновешиваться изнутри термическим давлением плазмы (идеального газа), т. е. рм =рт, причем рт = пкТ, где п = пе + пi + па. Давление рт распределено в соответствии с изменением температуры и концентрации частиц по радиусу столба дуги, поэтому эффект сжатия столба дуги будет определяться теплофизическими свойствами вещества в столбе дуги. Однако из равенства электромагнитного (см. (2.91)) и термического давлений pmax = pT следует, что температура газа в столбе дуги под влиянием пинч-эффекта будет повышаться пропорционально квадрату тока: 2.7.2. Магнитное поле сварочного контура. Магнитное дутье Электрическая цепь электрод - дуга - изделие вместе с подводящими проводниками образует сварочный контур, магнитное поле которого может отклонять дугу в ту или иную сторону. Это явление называется магнитным дутьем. Разность плотностей магнитных силовых линий, сконцентрированных внутри и вне сварочного контура, образованного электродом и токопроводящей частью пластины, будет «выжимать» дугу наружу (рис. 2.36). Меняя место подвода тока, а также изменяя угол наклона электрода к поверхности изделия, можно управлять отклонением дуги (рис. 2.37). В установившемся положении отклоняющая сила собственного магнитного поля (пропорциональная квадрату тока) будет уравновешиваться противодействующими силами, вызванными «жесткостью» столба дуги. Для объяснения «магнитного распора» в сварочном контуре лучше всего воспользоваться понятием магнитного давления, которое согласно формуле (2.95) тем больше, чем больше напряженность Н. Движение «эластичного» проводника (дуги) будет происходить всегда только в сторону уменьшения плотности магнитных силовых линий H. Наличие значительных ферромагнитных масс вблизи дуги может вызвать ее отклонения, относимые также к магнитному дутью. Можно считать, что в ферромагнитной массе благодаря ее высокой магнитной проницаемости (например, относительная магнитная проницаемость μ для железа примерно в 104 раз выше, чем для воздуха) магнитные силовые линии контура «стремятся» сконцентрироваться. Вследствие этого магнитное давление со стороны ферромагнитной массы снижается и дуга отклоняется (рис. 2.38), причем часто в сторону сварного шва или от кромки в сторону основной массы изделия. При рассмотрении магнитного дутья следует учитывать, что металл в сварочной ванне и вблизи нее нагрет выше точки Кюри и практически теряет магнитные свойства. Все сказанное выше о магнитном дутье относится в основном к дуге постоянного тока. При сварке дугой переменного тока в металле изделия создается система замкнутых вихревых токов. Вихревые токи создают собственную переменную магнитодвижущую силу, сдвинутую почти на 180° по фазе по отношению к сварочному току. Результирующий магнитный поток сварочного контура оказывается значительно меньшим, чем при сварке дугой постоянного тока. При сварке под флюсом магнитное дутье обычно мало. Однако при сварке продольных швов труб вследствие значительной ферромагнитной массы и замкнутого контура трубы возникает поперечное магнитное поле, «сдувающее» дугу вдоль трубы. Изменяя токоподвод или наклон электрода, можно устранить отрицательное влияние магнитного дутья. 2.7.3. Внешнее магнитное поле и дуга Внешнее магнитное поле по отношению к оси столба дуги может быть продольным либо поперечным. Все промежуточные случаи могут быть сведены к этим двум. Продольное внешнее магнитное поле. Направление продольного внешнего магнитного поля совпадает с направлением электрического поля, поэтому на дрейфовое движение заряженных частиц магнитное поле влиять не будет. Однако электроны и ионы обладают еще скоростью хаотического теплового движения и скоростью амбиполярной диффузии. Магнитное поле с магнитной индукцией В¯ искривляет траекторию заряженной частицы и заставляет ее двигаться с угловой скоростью так называемой циклотронной, или ларморовской, частотой, равной, например для электрона: (2.96) по спирали с ларморовским радиусом г (см. (2.89), (2.90)). Для электрона ω = 1,7 • 1011 с-1 при В = 1 Тл. Он вращается по часовой стрелке, если смотреть по направлению поля, и его скорость образует с вектором В¯ правовинтовую систему. Положительный ион массой mi вращается в обратном направлении с частотой, выражаемой формулой (2.96), в которой нужно mе заменить на mi. При движении по окружности путь l частиц между двумя соударениями в среднем такой же, как и при отсутствии магнитного поля. Но длина свободного пробега Λ измеряется по прямой, т. е. по хорде, стягивающей дугу окружности радиусом r. Значит, пробег Λ уменьшается, что равносильно увеличению давления газа Δр. Отношение Δр/р пропорционально квадрату магнитной индукции поля В2 , но для обычных сварочных режимов оно невелико. В обычных сварочных дугах при атмосферном давлении наибольшее влияние продольное внешнее магнитное поле оказывает на скорости диффузии ионов и электронов, которые направлены по радиусу от центра дуги к периферии, туда, где меньше их температура и концентрация (рис. 2.39, а). В связи с тем, что скорости диффузии электронов и ионов в квазинейтральном столбе дуги равны (ve ≈ vi), а масса электрона mе значительно меньше массы иона mi, импульсы, передаваемые нейтральным частицам от ионов, будут в тысячи раз больше, чем от электронов. Поэтому плазма столба дуги придет во вращательное движение, соответствующее движению ионов в магнитном поле. Столб дуги будет вращаться против часовой стрелки, если смотреть по направлению поля В. Угловая скорость вращения столба дуги будет максимальной в тех его участках, где наибольшие скорости диффузии. Действие электрического поля, которым пренебрегаем в рассуждениях, приводит к появлению осевой составляющей вектора скорости, и заряженные частицы начинают двигаться по спирали. Продольное магнитное поле получают с помощью соленоида (рис. 2.39, б) и используют для придания дуге большей жесткости и устойчивости. Воздействие продольного внешнего магнитного поля несколько повышает температуру в центре столба дуги в связи с тем, что появляется магнитное давление, которое, как указано в разд. 2.7.1, уравновешивается термическим давлением рТ = пкТ. |