Главная страница
Навигация по странице:

  • Нарушение переноса жирных кислот в митохондрии.

  • Окисление жирных кислот

  • Жировой обмен

  • Нарушения жирового обмена.

  • Особенности жирового обмена у детей

  • Обмен глицерофосфолипидов.

  • Катаболизм глицерофосфолипидов

  • І стадия

  • Желчнокаменная болезнь.

  • Каталитическая функция. Большинство известных в настоящее время ферментов, называемых биологическими катализаторами, является белками. Транспортная функция


    Скачать 1.95 Mb.
    НазваниеКаталитическая функция. Большинство известных в настоящее время ферментов, называемых биологическими катализаторами, является белками. Транспортная функция
    Анкорekzamen_po_bkh[1].docx
    Дата15.12.2017
    Размер1.95 Mb.
    Формат файлаdocx
    Имя файлаekzamen_po_bkh[1].docx
    ТипДокументы
    #11502
    страница7 из 14
    1   2   3   4   5   6   7   8   9   10   ...   14

    Расщепление триглицеридов в пищеварительном тракте. Слюна не содержит расщепляющих жиры ферментов. Следовательно, в полости рта жиры не подвергаются никаким изменениям. У взрослых людей жиры проходят через желудок также без особых изменений. В желудочном соке содержится липаза, получившая название желудочной, однако роль ее в гидролизе пищевых триглицеридов у взрослых людей невелика. Во-первых, в желудочном соке взрослого человека и других млекопитающих содержание липазы крайне низкое. Во-вторых, рН желудочного сока далек от оптимума действия этого фермента (оптимальное значение рН для желудочной липазы 5,5–7,5). Напомним, что значение рН желудочного сока около 1,5. В-третьих, в желудке отсутствуют условия для эмульгирования триглицеридов, а липаза может активно действовать только на триглицериды, находящиеся в форме эмульсии. Поэтому у взрослых неэмульгированные триглицериды, составляющие основную массу пищевого жира, проходят через желудок без особых изменений. Вместе с тем расщепление триглицеридов в желудке играет важную роль в пищеварении у детей, особенно грудного возраста. Слизистая оболочка корня языка и примыкающей к нему области глотки ребенка грудного возраста секретирует собственную липазу в ответ на сосательные и глотательные движения (при кормлении грудью). Эта липаза получила название лингвальной. Активность лингвальной липазы не успевает ≪проявиться≫ в полости рта, и основным местом ее воздействия является желудок. Оптимум рН лингвальной липазы в пределах 4,0–4,5; он близок к величине рН желудочного сока у таких детей. Лингвальная липаза наиболее активно действует на триглицериды, содержащие жирные кислоты с короткой и средней длиной цепи, что характерно для триглицеридов молока. Иными словами, жир молока – самый подходящий субстрат для этого энзима. У взрослых активность лингвальной липазы крайне низкая. Расщепление триглицеридов в желудке взрослого человека невелико, но оно в определенной степени облегчает последующее переваривание их в кишечнике. Даже незначительное по объему расщепление триглицеридов в желудке приводит к появлению свободных жирных кислот, которые, не подвергаясь всасыванию в желудке, поступают в кишечник и способствуют там эмульгированию жиров, облегчая таким образом воздействие на них липазы панкреатического сока. После того как химус попадает в двенадцатиперстную кишку, прежде всего происходит нейтрализация попавшей в кишечник с пищей соляной кислоты желудочного сока бикарбонатами, содержащимися в панкреатическом и кишечном соках. Выделяющиеся при разложении бикарбонатов пузырьки углекислого газа способствуют хорошему перемешиванию пищевой кашицы с пищеварительными соками. Одновременно начинается эмульгирование жира. Наиболее мощное эмульгирующее действие на жиры оказывают соли желчных кислот, попадающие в двенадцатиперстную кишку с желчью в виде натриевых солей. Большая часть желчных кислот конъюгирована с глицином или таурином. Желчные кислоты представляют собой основной конечный продукт метаболизма холестерина. В желчи человека в основном содержатся холевая (3,7,12-триоксихолановая), дезоксихолевая (3,12-диоксихолановая) и хенодезоксихолевая (3,7-диоксихолановая) кислоты (все гидроксильные группы имеют α-конфигурацию и поэтому обозначены пунктирной линией). Кроме того, в желчи человека в малых количествах содержатся литохолевая (3α-оксихолановая) кислота, а также аллохолевая и уреодезоксихолевая кислоты – стереоизомеры холевой и хенодезоксихолевой кислот. Как отмечалось, желчные кислоты присутствуют в желчи в конъюгированной форме, т.е. в виде гликохолевой, гликодезоксихолевой, гли- кохенодезоксихолевой (около 2/3 – 4/5 всех желчных кислот) или таурохолевой, тауродезоксихолевой и таурохенодезоксихолевой (около 1/5 – 1/3 всех желчных кислот) кислот. Эти соединения иногда называют парными желчными кислотами, так как они состоят из двух компонентов – желчной кислоты и глицина или таурина. Соотношения между конъюгатами обоих видов могут меняться в зависимости от характера пищи: в случае преобладания в ней углеводов увеличивается относительное содержание глициновых конъюгатов, а при высокобелковой диете – тауриновых конъюгатов. Считают, что только комбинация соль желчной кислоты + ненасыщенная жирная кислота + моноглицерид придает необходимую степень эмульгирования жира. Соли желчных кислот резко уменьшают поверхностное натяжение на поверхности раздела жир/вода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию.

    63. Химизм окисления жирных кислот, его связь с митохондриальным окислением. Энергетика окисления жирных кислот. Значение этого процесса для организма. Нарушение окисления жирных кислот при авитаминозах.

    Окисление жирных кислот протекает в печени, почках, скелетных и сердечной мышцах, в жировой ткани. В мозговой ткани скорость окисления жирных кислот весьма незначительна; основным источником энергии в мозговой ткани служит глюкоза. Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют четное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидролизуется до двух молекул уксусной кислоты. Доставка жирных кислот к месту их окисления – к митохондриям – происходит сложным путем: при участии альбумина осуществляется транспорт жирной кислоты в клетку; при участии специальных белков – транспорт в пределах цитозоля; при участии карнитина – транспорт жирной кислоты из цитозоля в митохондрии. Процесс окисления жирных кислот складывается из следующих основных этапов. Активация жирных кислот. Свободная жирная кислота независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться никаким биохимическим превращениям, в том числе окислению, пока не будет активирована. Активация жирной кислоты протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg2+. Реакция катализируется ферментом ацил-КоА- синтетазой:
    R—COOH + HS-KoA + АТФ + R—CO—S-KoA + АМФ + РРi.

    Жирная кислота Ацил-КоА-синтетаза

    Транспорт жирных кислот внутрь митохондрий. Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление. Переносчиком активированных жирных кислотс длинной цепью через внутреннюю митохондриальную мембрану служит карнитин. Ацильная группа переносится с атома серы КоА на гидроксильную группу карнитина с образованием ацилкарнитина, который диффундирует через внутреннюю митохондриальную мембрану: Нарушение переноса жирных кислот в митохондрии. Скорость переноса жирных кислот внутрь митохондрий, а следовательно и скорбеть процесса р-окисления, зависит от доступности карнитина и скорости работы фермента карнитинацилтрансферазы I. р-Окисление могут нарушать следующие факторы:

    • длительный гемодиализ, в ходе которого организм теряет карнитин;

    • длительная ацидурия, при которой карнитин выводится как основание с органическими кислотами;

    • лечение больных сахарным диабетом препаратами сульфонилмочевины, ингибирующими карнитинацилтрансферазу I;

    • низкая активность ферментов, синтезирующих карнитин;

    Невозможность использовать жирные кислоты как источники энергии приводит к увеличению скорости окисления глюкозы. В результате у детей развивается гипогликемия - причина внезапной детской смертности (10% от общего числа умерших новорождённых). Если такие дети выживают, то после голодания в течение 6-8 ч у них развиваются гипогликемические приступы (слабость, головокружение, рвота, потеря сознания). Введение глюкозы приводит к исчезновению симптомов. Во всех случаях, когда нарушается β-окисление, жирные кислоты накапливаются в клетках и распадаются по пути ω-окисления, которое в норме идёт с очень низкой скоростью. Окисление происходит по метильному ω-атому углерода, и в результате образуются дикарбоновые кислоты, выделяющиеся с мочой. Определение этих кислот в моче может служить диагностическим признаком нарушения β-окисления.

    64-65. Биосинтез и окисление глицерина в тканях, их этапы. Энергетика окисления глицерина. Взаимосвязь глицерина с углеводным обменом. Синтез жирных кислот, этапы этого процесса. Строение и функция синтетазы жирных кислот. Взаимосвязь синтеза жирных кислот с обменом углеводов и аминокислот. Образование ненасыщенных жирных кислот. Незаменимые жирных кислоты, их роль в метаболизм

    Окисление жирных кислот и глицерина. Катаболизм липидов. В организме человека (70 кг) находится около 12-15 кг жира. Этот запас ТАГ обеспечивает поддержание основного обмена в течении нескольких недель. Жировая ткань очень метаболически активна и реагирует на изменения в обмене веществ. Особенно тесно связана с печенью, сердечной и скелетными мышцами (50% энергии получают при окислении липидов), т.к. в молекуле ТАГ основная доля – высшие жирные кислоты. Окисление происходит в матриксе митохондрий. Сначала жирная кислота активируется: 1.В цитоплазме каждой кислота активируется с использованием КоА-SH и энергии АТФ. 2.Активная жирная кислота- ацил-КоА – из цитозоля транспортируется в матрикс митохондрий (МХ). КоА-SH остается в цитозоле, а остаток жирной кислоты - ацил- соединяется с карнитином - карнитин выделен из мышечной ткани) с образованием ацил-карнитина, который поступает в межмембранное пространство МХ. Их межмембранного пространства митохондрий комплекс ацил-карнитин переносится в матрикс МХ. При этом карнитин остается в межмембранном пространстве. В матриксе ацил соединяется с КоА-SH. Окисление. В матриксе МХ образуется активная жирная кислота, которая в дальнейшем подвергается реакциям окисления до конечных продуктов. При бета- окислении окисляется группа-СН2- в бета- положении жирной кислоты до группы-С-. При этом на двух стадиях происходит дегидрирование: при участии ацилдегидрогеназы (флавиновый фермент, водород переносится на убихинон) и бета-оксиацилдегидрогеназа (акцептор водорода НАД+). Затем бета кетоацил-КоА при действии фермента тиолазы, распадается на ацетил КоА и ацил-КоА, укороченный на 2 углеродных атома по сравнению с исходным. Этот ацил-КоА вновь подвергается бета-окислению. Многократное повторение этого процесса приводит к полному распаду жирной кислоты до ацил-КоА. Окисление жирных кислот. Включает 2 этапа: 1.последовательное отщепление от С-конца эжкислоты двухуглеродного фрагмента в виде ацетил-КоА; 2.окисление ацетил-КоА в цикле Кребса до СО2 и Н2О. Энергетическая ценность окисления жирных кислот. Стеариновая кислота(С18) проходит 8 циклов окисления с образованием 9 ацетил-КоА.В каждом цикле окисления образуется 8*5 АТФ=40 АТФ, ацетил-КоА дает 9*12 АТФ=108 АТФ. Итого:148 АТФ, но 1 АТФ расходуется на активацию жирной кислоты в цитозоле, поэтому итог 147 АТФ. Особенности окисления ненасыщенных жирных кислот. Окисление ненасыщенных жирных кислот происходит также по двойной связи. В случае, когда двойная связь имеет цис-конфигурацию, действует специальный фермент цис-транс-изомераза, который переводит двойную связь в транс-форму. Транс-еноил-КоА подвергается окислению как описано выше. Особенности окисления жирных кислот с нечетным количеством углеродных атомов. В этом случае образуется 3-х углеродный продукт пропионил-КоА. Таким образом, окисление высших жирных кислот - очень важный источник большого количества энергии для клетки, но жирные кислоты становятся альтернативным энергетическим

    топливом, а на первом месте – глюкоза,т.к. их окисление зависит от окисления глюкозы (1. для

    активации жирной кислоты требуется АТФ, которая образуется в цитозоле в ходе гликолиза; 2.

    для реакции ЦТК требуется ЩУК, которая образуется из глюкозы). Глицерин – продукт метаболизма жировой ткани, глицерин не используется адипоцитами. Глицерин утилизируют ткани, содержащие фермент глицеролкиназу (печень, почки, слизистая кишечника, молочная железа). Глицерол-3-фосфат в клетках этих органов может использоваться по трем направлениям: 1. окисление до конечных продуктов; 2. глюконеогенез; 3. синтез жиров и фосфолипидов.

    66. Биосинтез жиров в организме: ресинтез жира в эндотелии кишечника, синтез жиров в печени и подкожно-жировой клетчатке. Транспорт жиров липопротеинами крови. Резервирование жиров. Физиологическое значение жиров для организма человека. Нарушение процесса синтеза жиров: ожирение, жировое перерождение печени.

    Жировой обмен — совокупность процессов переваривания и всасывания нейтральных жиров (триглицеридов) и продуктов их распада в желудочно-кишечном тракте, промежуточного обмена жиров и жирных кислот и выведение жиров, а также продуктов их обмена из организма. Понятия «жировой обмен» и «липидный обмен» часто используются как синонимы, т.к. входящие в состав тканей животных и растений входят нейтральные жиры и жироподобные соединения, объединяются под общим названием липиды. Нарушения Ж. о. служат причиной или являются следствием многих патологических состояний. В организм взрослого человека с пищей ежесуточно поступает в среднем 70 гжиров животного и растительного происхождения. В ротовой полости жиры не подвергаются никаким изменениям, т.к. слюна не содержит расщепляющих жиры ферментов. Частичное расщепление жиров на глицерин или моно-, диглицериды и жирные кислоты начинается в желудке. Однако оно протекает с небольшой скоростью, поскольку в желудочном соке взрослого человека и млекопитающих активность фермента липазы, катализирующего гидролитическое расщепление жиров, крайне невысока, а величина рН желудочного сока далека от оптимальной для действия этого фермента (оптимальное значение рН для желудочной липазы находится в пределах 5,5—7,5 единиц рН). Кроме того, в желудке отсутствуют условия для эмульгирования жиров, а липаза может активно гидролизовать только жир, находящийся в форме жировой эмульсии. Поэтому у взрослых людей жиры, составляющие основную массу пищевого жира, в желудке особых изменений не претерпевают. Однако в целом желудочное пищеварение значительно облегчает последующее переваривание жира в кишечнике. В желудке происходит частичное разрушение липопротеиновых комплексов мембран клеток пищи, что делает жиры более доступными для последующего воздействия на них липазы панкреатического сока. Кроме того, даже незначительное по объему расщепление жиров в желудке приводит к появлению свободных жирных кислот, которые, не подвергаясь всасыванию в желудке, поступают в кишечник и там способствуют эмульгированию жира. Наиболее сильным эмульгирующим действием обладают желчные кислоты, попадающие в двенадцатиперстную кишку с желчью. В двенадцатиперстную кишку вместе с пищевой массой заносится некоторое количество желудочного сока, содержащего соляную кислоту, которая в двенадцатиперстной кишке нейтрализуется в основном бикарбонатами, содержащимися в панкреатическом и кишечном соке и желчи. Образующиеся при реакции бикарбонатов с соляной кислотой пузырьки углекислого газа разрыхляют пищевую кашицу и способствуют более полному перемешиванию ее с пищеварительными соками. Одновременно начинается эмульгирование жира. Соли желчных кислот адсорбируются в присутствии небольших количеств свободных жирных кислот и моноглицеридов на поверхности капелек жира в виде тончайшей пленки, препятствующей слиянию этих капелек. Нарушения жирового обмена. Одной из причин недостаточного всасывания жиров в тонкой кишке может быть их неполное расщепление вследствие либо пониженной секреции сока поджелудочной железы (недостаток панкреатической липазы), либо вследствие пониженного выделения желчи (недостаток желчных кислот, необходимых для эмульгирования жира и образования жировых мицелл). Другой, наиболее частой причиной недостаточного всасывания жира в кишечнике является нарушение функции кишечного эпителия, наблюдаемое при энтеритах, гиповитаминозах, гипокортицизме и некоторых других патологических состояниях. В этом случае моноглицериды и жирные кислоты не могут нормально всасываться в кишечнике из-за повреждения его эпителия. Нарушение всасывания жиров наблюдается также при панкреатитах, механической желтухе, после субтотальной резекции тонкой кишки, а также ваготомии, приводящей к понижению тонуса желчного пузыря и замедленному поступлению желчи в кишечник.Нарушение всасывания жира в тонкой кишке приводит к появлению большого количества жира и жирных кислот в кале — стеаторее. При длительном нарушении всасывания жира организм получает также недостаточное количество жирорастворимых витаминов. Особенности жирового обмена у детей. Гидролитическое расщепление жиров в желудке играет важную роль в процессе пищеварения у детей, особенно у детей грудного возраста, умеренная кислотность желудочного сока у которых (рН около 5,0) способствует перевариванию эмульгированного жира грудного молока желудочной липазой. Кроме того, при длительном употреблении молока в качестве основного продукта питания у детей грудного возраста возможно адаптивное усиление синтеза желудочной липазы. Слизистая оболочка верхней части пищевода грудного ребенка секретирует свою собственную липазу в ответ на сосательные движения при кормлении ребенка грудью (возможно, что именно эта липаза и проявляет свое действие в желудке детей грудного возраста). У новорожденных желудочная липаза расщепляет только те жиры, в состав молекулы которых входят жирные кислоты с короткой углеродной цепью. Вследствие относительной незрелости внешнесекреторной функции печени и низкой активности панкреатической липазы у детей (особенно у новорожденных и у детей первых 3-х лет жизни) усвоение жира (в основном триглицеридов, содержащих жирные кислоты с длинной углеродной цепью) ниже, чем у взрослых. У доношенных новорожденных усваивается около 85—90% поступающего в организм жира, у недоношенных — 60—79%. У новорожденных вследствие низкого коэффициента усвоения жира нередко отмечается стеаторея. Выделение липидов с калом у 3-месячного ребенка составляет 3 г, а в последующем уменьшается до 1 гв сутки.

    67. Обмен глицерофосфолипидов. Переваривание фосфолипидов в желудочно-кишечном тракте. Внутриклеточный гидролиз фосфолипидов. Ферменты этих процессов. Биосинтез глицерофосфолипидов. Этапы этого процесса. Транспорт фосфолипидов липопротеинами крови. Регуляция обмена фосфолипидов: липотропные факторы. Значение фосфолипидов для организма человека.

    Обмен глицерофосфолипидов. Начальные этапы синтеза глицерофосфолипидов и жиров происходят одинаково до образования фосфатидной кислоты. Фосфатидная кислота может синтезироваться двумя разными путями: через глицеральдегид-3-фосфат и через дигидроксиацетонфосфат. На следующем этапе фосфатидаза отщепляет от фосфатидной кислоты фосфатный остаток, в результате чего образуется диацилглицерол. Дальнейшие превращения диацилглицерола также могут идти разными путями. Один из вариантов - образование активной формы "полярной головки" фосфолипида: холин, серии или этаноламин превращаются в ЦДФ-холин, ЦДФ-серин или ЦДФ-этаноламин. Далее диацилглицерол взаимодействует с ЦМФ-производными, при этом выделяется ЦМФ, и образуется соответствующий фосфолигщц, например фосфатидилхолин. Между глицерофосфолипидами возможны различные взаимопревращения. Фосфатидилхолин может образовываться и другим путём: из фосфатидилэтаноламина, получая последовательно 3 метальные группы от SAM. Фосфатидилсерин может превращаться в фосфа-тидилэтаноламин путём декарбоксилирования. Фосфатидилэтаноламин может превращаться в фосфатидилсерин путём обмена этаноламина на серии. Катаболизм глицерофосфолипидов. Различные типы фосфолипаз, локализованных в клеточных мембранах или в лизосомах, катализируют гидролиз глицерофосфолипидов. Гидролиз некоторых глицерофосфолипидов под действием фосфолипаз имеет значение не только как путь катаболизма, но и как путь образования вторичных посредников или предшественников в синтезе биологически активных веществ - эйкозаноидов. Кроме того, фосфолипазы А1 и А2 участвуют в изменении состава жирных кислот в глицерофосфолипидах, например при синтезе в эмбриональном периоде развития дипальмитоилфосфатидилхолина - компонента сурфактанта.

    68. Обмен ацетоуксусной кислоты в организме. Синтез ацетоуксусной кислоты и использование ее в тканях. Образование кетоновых тел. Нарушение этого процесса при патологии: сахарном диабете, кахексии, острой гипоксии. Биохимические механизмы развития диабетической комы.

    В печени часть жирных кислот превращается в так называемые кетоновые тела – ацетоуксусную и β-гидроксимасляную кислоты. Эти вещества затем поступают в кровь и используются как источники энергии в других органах и тканях. Непосредственным предшественником кетоновых тел служит ацетил-КоА, который может образоваться как из жирных кислот так из углеводов. Однако для синтеза кетоновых тел используется преимущественно ацетил-КоА, образующийся из жирных кислот. Это происходит в результате действия специальных регуляторных механизмов. Содержание кетоновых тел в крови увеличивается в таких состояниях когда основным источником энергии для организма служат жирные кислоты –при длительной мышечной работе, при голодании, при некоторых болезнях. Через двое суток голодания концентрация кетоновых тел в крови достигает 5-8мг/дл через неделю 40-50мг/дл. При сахарном диабете концентрация кетоновых тел может повышаться до 300-400мг/дл, что приводит к метаболическому ацидозу. Кетонемия и кетонурия. Вследствие недостаточности инсулина уменьшается отношение инсулина/глюкагон, т.е. имеется относительное избыточность глюкагона. Однако скорость синтеза кетоновых тел может превышать даже увеличенное в этих условиях их потребление тканями (концентрация кетоновых тел в крови в норме меньше 2мг/дл, при голодании до 30 мг/дл). При диабете кетонемия часто бывает 100 мг/дл, а может достигать и 350 мг/дл. При такой кетонемии возникает и кетонурия - с мочой выделяется до 5г кетовых тел в сутки. В тканях происходит декарбоксилирование ацетоуксусной кислоты: от больных исходит запах ацетона, который ощущается даже на расстоянии). Кетовые теля, являясь кислотами, снижают буферную емкость крови, а при высоких концентрациях снижают и рН крови - возникает ацидоз. В норме рН крови равна 7,4+0,04. При содержании кетовых тел 100мг/дл и больше рН крови может быть близко к 7,0. Ацидоз такой степени резко нарушает функции мозга, вплоть до потери сознания.

    69. Холестерин, его химическое строение, роль в организме, экзогенный и эндогенный холестерин. Биосинтез холестерина, основные этапы этого процесса. Метаболизм холестерина, его транспорт, пути выведения. Понятие о гиперхолестеринемии. Биохимические основы формирования камней желчного пузыря.

    http://sunpin.ru/files/webinar/20110602-12.gif


    Синтез холестерина. Многоэтапный процесс синтеза холестерина (ХЛ) подразделяется на 3 стадии: 1. Образование мевалоновой кислоты из ацетил-КоА, 2. Образование «активного изопрена» и реакции конденсации с образованием сквалена, 3. Реакции циклизации сквалена с образованием стеранового скелета. Начальные реакции синтеза ХЛ сходны с начальными реакциями синтеза кетоновых тел (до образования ОМГ-КоА). Отличием является локализации процессов: синтез кетоновых тел происходит в МХ, а синтез ХЛ-ЦЗ. 1) 2 ацетил-КоА → ацетил-КоА → ОМГ-КоА тиолаза ОМГ-синтаза 2) ОМГ-редуктаза – регуляторный фермент, лимитирующий скорость биосинтеза ХЛ в целом. Её активность подавляется избытком пищевого холестерина. І стадия. Активация мевалоновой кислоты. ІІ стадия. Мевалонат---сквален. Через образование различных эфиров с Р-кислотой(5-фосфорный эфир,5-пирофосфорный эфир). Декарбоксилирование и дефосфорилирование активной мевалоновой кислоты (фермент декарбоксилаза и фосфорилаза). Активный изопрен (изопентинилпирофосфат и димитилаллилпирофосфат ) является предшественником не только ХЛ. В клетках растений и бактерий из него образуются каротиноиды, убихинон, хлорофилл, каучук. Оба изомерных изопентилпирофосфата конденсируются с высвобождением пирофосфата и образованием геранилпирофосфата С10. К геранилпирофосфату вновь присоединяется изопентил пирофосфат, образуя в результате этой реакции фарнезилпирофосфат С15 В заключительной реакции данной стадии в результате НАДФН2- зависимой восстановительной конденсации 2 молекул фарнезилпирофосфата образуется сквален С30 ІІІ стадия. Реакции конденсации изопрена: Сквален (С30) → ланостерин → холестерин. Реакции конденсации и циклизации углеродного скелета требуют большого количества энергии в форме АТФ. Гидроксилирование стеранового кольца предшественника ХЛ протекает с участием монооксигеназной цепи мембран ЭПС. Эфиры ХЛ образуются путем переноса активной жирной кислоты на гидроксильную группу ХЛ. Перенос осуществляют ферменты либо холестерол-ацил- трансфераза(ХАТ) либо лецитин-ХАТ (ЛХАТ). а сутки у здорового человека синтезируется около 2 г ХЛ (с пищей поступает 0,4-0,5 г экзогенного ХЛ). Транспорт ХЛ от печени и кишечника к органам. ХЛ синтезируется в печени как для собственных нужд, так и на «экспорт». Вновь образованный ХЛ и его эфиры включаются вместе с ТАГ в ЛПОНП и поступают в плазму крови. После освобождения ЛПОНП от ТАГ, происходящего на поверхности адипоцитов, из них образуется ЛПНП с высоким содержанием в них ХЛ. На поверхности клеток внутренних органов ЛПНП соединяются с специфическими рецепторами и поглощаются этими клетками. В лизосомах клеток происходит гидролитический распад ЛП. Освободившиеся ХЛ встраивается в клеточные мембраны. Изменение соотношения в плазме фракций ЛП- одна из причин нарушения обмена ХЛ. Пищевой (экзогенный) ХЛ транспортируется ХМ от кишечного эпителия к печени. Избыток ХЛ с желчью выводится в кишечник, где восстанавливается ферментами микрофлоры до копростерина и вместе с небольшим количеством не измененного ХЛ выделяется с калом. Выведению избытка ХЛ из кишечника в значительной мере способствует клетчатка, содержащаяся в пище. Желчнокаменная болезнь. У здорового человека ХЛ в желчи находится в определенном соотношении с ФЛ и желчными кислотами, образую с ними растворимые мицеллы. При увеличении концентрации ХЛ в составе мицелл или снижении содержания желчных кислот и ФЛ, ХЛ выпадает в осадок кристаллизируется и формирует холестериновые камни. Этому способствует застой желчи.

    70. Биохимические основы развития атеросклероза. Основные фактоыр риска, гипохолестериноз, нарушение обмена липопротеинов, состояние сосудистой стенки. Добавочные факторы – повышение уровня триацилглицеринов, ожирение, физическая активность. Генетическая предрасположенность – одна из предпосылок развития гиперхолестеринемии. Нормализация гиперхолестеринемии – одно из основных условий лечения атеросклероза

    Факторы риска развития атеросклероза. Основное биохимическое проявление АС – отложение ХЛ в стенках артерий. Болезнь является результатом нарушения любого звена сложной метаболической системы, включающей:

    1. синтез ХЛ

    2. транспорт и выведение ХЛ

    3. рецепция ЛПНП клетками тканей, в т.ч. сосудистой стенки

    4. состояние клеточных мембран эндотелия сосудов

    5. соотношение ЛПНП и ЛПВП в плазме.

    Следствием нарушения путей системы является гиперхолестеринемия, преобладание в плазме ЛПНП, которые на фоне поврежденного эпителия сосудов сопровождается увеличением его проницаемости для ХЛ и накопление последнего в сосудистой стенке. Это приводит к нарушению клеток, выведение ХЛ в межклеточное пространство, разрастанию и кальцификации соединительной ткани и образованием атеросклеротических бляшек. ЛПНП (бета-ЛП), вводящие ХЛ в клетки, вызываются атерогенными. ЛПВП (альфа-ЛП) удаляют ХЛ из тканей и поэтому являются антиатерогенными. Вероятность развития атеросклероза прогнозируется «индексом атерогенности», который представляет собой отношение ХЛ в ЛПНП к ХЛ в составе ЛПВП. У взрослых людей до 30 лет индекс 2-2,8; у лиц старше 30 лет 3-3,5. При АС индекс 4-6 и выше. Факторы риска развития АС:

    1. Гиподинамия. Следствием её является накопление АТФ, ослабление реакции биологического окисления, торможение реакций ЦТК, усиление свободнорадикального окисления мембранных липидов, гиперхолестеринемия.

    2. Гипоксия, следствием которой является ослабление реакций биологического окисления и ЦТК, накопление ацетил-КоА, гиперхолестеринемия.

    3. Избыточное УВ питание, способствующие интенсивному синтезу ТАГ и ХЛ.

    4. Стресс, следствием которого является мобилизация гликогена, усиленный синтез ТАГ и ХЛ

    5. Избыток жиров в рационе.

    71. Повышенная концентрация фосфолипидов в крови и тканях в раннем возрасте. Роль фосфатидилхолина и сфингомиелина. Врожденная патология обмена фосфолипидов (болезнь Гоше).
    1   2   3   4   5   6   7   8   9   10   ...   14


    написать администратору сайта